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Abstract We present several advances in the effective field
theory calculation of the Higgs mass in MSSM scenarios with
heavy superparticles. In particular, we compute the dominant
two-loop threshold corrections to the quartic Higgs coupling
for generic values of the relevant SUSY-breaking parameters,
including all contributions controlled by the strong gauge
coupling and by the third-family Yukawa couplings. We also
study the effects of a representative subset of dimension-six
operators in the effective theory valid below the SUSY scale.
Our results will allow for an improved determination of the
Higgs mass and of the associated theoretical uncertainty.

1 Introduction

At the price of doubling the particle content of the Standard
Model (SM), supersymmetry (SUSY) provides elegant solu-
tions to several open issues, including the stability of the
electroweak (EW) scale, the nature of dark matter and the
possibility of embedding the SM in a grand-unified gauge
theory. Common features of supersymmetric extensions of
the SM are an extended Higgs sector and the existence of
tree-level relations between the quartic Higgs couplings and
the other couplings of the considered model, which translate
into predictions for the Higgs-boson masses. When radiative
corrections are included, those predictions are sensitive to
the whole particle spectrum of the model, and can be used
to constrain its parameter space even before the discovery of
SUSY particles.

In the minimal SUSY extension of the SM, or MSSM,
the mass mh of the lightest Higgs scalar is bounded at tree
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level from above by mZ | cos 2β|, where mZ is the Z -boson
mass and tan β ≡ v2/v1 is the ratio of the vacuum expec-
tation values (vevs) of the two Higgs doublets that partici-
pate in the breaking of the EW symmetry. However, as has
been known [1–6] since the early 1990s, the tree-level upper
bound on mh can be significantly raised by radiative correc-
tions involving top quarks and their SUSY partners, the stop
squarks. By now, the computation of radiative corrections to
the MSSM Higgs masses1 is quite advanced: full one-loop
corrections [7–13] and two-loop corrections in the limit of
vanishing external momentum [14–27] are available, and the
dominant momentum-dependent two-loop corrections [28–
30] as well as the dominant three-loop corrections [31,32]
have also been obtained. Over the years, many of the known
corrections have been implemented in widely used codes for
the determination of the MSSM mass spectrum. In partic-
ular, FeynHiggs [33] includes full one-loop corrections
to the Higgs masses from Ref. [13] and dominant two-
loop corrections in the on-shell (OS) renormalization scheme
from Refs. [17,22–25,29], whereas SoftSusy [34,35],
SuSpect [36] and SPheno [37,38] include full one-loop
corrections to the Higgs masses from Ref. [12] and domi-
nant two-loop corrections in the DR scheme from Refs. [22–
25,39].

For the MSSM, both the discovery in 2012 [40,41] of a
SM-like Higgs boson with mass about 125 GeV [42] and
the negative results of the searches for stop squarks at the
LHC [43–48] favor scenarios with a SUSY mass scale MS in
the TeV range. In particular, the observed value of the Higgs
mass requires the radiative correction to the squared-mass

1 We focus here on the MSSM with real parameters. Significant efforts
have also been devoted to the Higgs-mass calculation in the presence
of CP-violating phases, as well as in non-minimal SUSY extensions of
the SM.

123

http://crossmark.crossref.org/dialog/?doi=10.1140/epjc/s10052-017-4885-7&domain=pdf
mailto:emanuele.bagnaschi@desy.de
mailto:jpardovega@gmail.com
mailto:slavich@lpthe.jussieu.fr


 334 Page 2 of 19 Eur. Phys. J. C   (2017) 77:334 

parameter, �m2
h , to be at least as large as its tree-level value:

if the stops are heavy enough, this can be realized via the
dominant top/stop contributions, which are controlled by the
top Yukawa coupling, gt ∼ O(1), and are enhanced by loga-
rithms of the ratio between the stop and top masses. A further
increase in �m2

h can be obtained if the left–right stop mixing
parameter Xt is about twice the average stop mass. Roughly
speaking, for tan β large enough to almost saturate the tree-
level bound on the lightest-scalar mass, mh ≈ 125 GeV
requires the average stop mass to be somewhere around 1 TeV
for the “maximal” (i.e., most favorable) value of Xt , and
above 10 TeV for vanishing Xt . However, when the SUSY
scale is significantly larger than the EW scale, fixed-order cal-
culations of mh such as the ones implemented in the codes
mentioned above may become inadequate, because radiative
corrections of order n in the loop expansion contain terms
enhanced by as much as lnn(MS/mt )–where we take the
top mass as a proxy for the EW scale. Indeed, a possible
symptom of such heavy-SUSY malaise is the fact that, in
scenarios with TeV-scale stop masses and large stop mixing,
the spread in the predictions of those codes for mh exceeds
the theoretical accuracy of their (largely equivalent) two-loop
calculations, which was estimated in the early 2000s to be
about 3 GeV [49,50] in what were then considered natural
regions of the MSSM parameter space.

In the presence of a significant hierarchy between the
SUSY scale and the EW scale, the computation of the Higgs
mass needs to be reorganized in an effective field theory
(EFT) approach: the heavy particles are integrated out at the
scale MS , where they only affect the matching conditions
for the couplings of the EFT valid below MS ; the appropri-
ate renormalization-group equations (RGEs) are then used to
evolve those couplings between the SUSY scale and the EW
scale, where the running couplings are related to physical
observables such as the Higgs-boson mass and the masses
of gauge bosons and fermions. In this approach, the compu-
tation is free of large logarithmic terms both at the SUSY
scale and at the EW scale, while the effect of those terms
is accounted for to all orders in the loop expansion by the
evolution of the couplings between the two scales. More pre-
cisely, large corrections can be resummed to the (next-to)n-
leading-logarithmic (NnLL) order by means of n-loop calcu-
lations at the SUSY and EW scales combined with (n+1)-
loop RGEs. On the other hand, the common procedure of
matching the MSSM to a renormalizable EFT – such as
the plain SM – in the unbroken phase of the EW symme-
try amounts to neglecting corrections suppressed by powers
of v2/M2

S , where we denote by v the vev of a SM-like Higgs
scalar. Those corrections can in fact be mapped to the effect
of non-renormalizable, higher-dimensional operators in the
EFT Lagrangian.

The EFT approach to the computation of the MSSM
Higgs mass dates back to the early 1990s [51–53]. Over the

years, it has also been exploited to determine analytically
the coefficients of the logarithmic terms in �m2

h at one [54],
two [55–58] and even three [49,59] loops, by solving per-
turbatively the appropriate systems of boundary conditions
and RGEs. However, when the focus was on “natural” sce-
narios with SUSY masses of a few hundred GeV, the omis-
sion of O(v2/M2

S) terms limited the accuracy of the EFT
approach, and the effect of the resummation of logarithmic
corrections was not deemed important enough to justify aban-
doning the fixed-order calculations of the Higgs mass in favor
of a complicated EFT set-up with higher-dimensional oper-
ators.2 More recently, an interest in “unnatural” scenarios
such as split SUSY [61,62] and high-scale SUSY (see, e.g.,
Ref. [63]), and then the LHC results pushing the expecta-
tions for the SUSY scale into the TeV range, have brought
the EFT approach back into fashion. On the one hand, in
Ref. [64] the authors of FeynHiggs combined the fixed-
order calculation of mh implemented in their code with a
resummation of the LL and NLL terms controlled exclu-
sively by gt and by the strong gauge coupling g3. On the
other hand, three papers [65–67] presented updates of the
traditional EFT calculation: the use of the state-of-the-art
results collected in Ref. [68] for the SM part (i.e., three-loop
RGEs and two-loop EW-scale matching conditions), together
with the full one-loop and partial two-loop matching condi-
tions at the SUSY scale, allow for a full NLL and partial
NNLL resummation of the logarithmic corrections.3 Sev-
eral public codes for the EFT calculation of the Higgs mass
in the MSSM with heavy SUSY have also been released:
SusyHD [69], based on Ref. [67]; MhEFT [70], based on
Refs. [65,71] and covering as well scenarios with a light two-
Higgs-doublet model (THDM); HSSUSY [72,73], a module
of FlexibleSUSY [74] with the same essential features
as the original SusyHD; FlexibleEFTHiggs [72,73],
which combines a full one-loop computation of mh with a
LL resummation of the logarithmic corrections; finally, an
EFT approach similar to the one of Ref. [73] was recently
implemented in SPheno/SARAH [75].

In MSSM scenarios with stop masses of several TeV,
where the effects of O(v2/M2

S) can be safely neglected, the
theoretical uncertainty of the EFT prediction for the Higgs
mass stems from missing terms of higher orders in the loop
expansion, both in the calculation of the matching condi-
tions at the SUSY scale and in the SM part of the cal-
culation. In Refs. [66,67] such uncertainty was estimated
to be at most 1 GeV in a simplified MSSM scenario with
degenerate SUSY masses of 10 TeV, tan β = 20 and van-
ishing Xt , where mh ≈ 123.5 GeV. In such scenario, the

2 See, however, Ref. [60] for the effect of dimension-six operators in a
scenario with only one light stop.
3 Refs. [64,65] also obtained analytic results for the coefficients of
logarithmic terms in �m2

h beyond three loops.
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prediction for mh of the “hybrid” (i.e., fixed-order+partial
NLL) calculation of Ref. [64] was about 3 GeV higher,
well outside the theoretical uncertainty of the EFT result.
In Refs. [67,71] it was suggested that most of the discrep-
ancy came from the determination of the coupling gt used
in the resummation procedure, for which Ref. [64] omitted
one-loop EW and two-loop QCD effects, consistently with
the accuracy of themh calculation in that paper. Those effects
were later included in FeynHiggs, which now also allows
for a full NLL and partial NNLL resummation of the loga-
rithmic corrections [76]. In the simplified MSSM scenario
mentioned above, the refinements in the resummation proce-
dure of FeynHiggs reduce the discrepancy with the EFT
prediction for mh to a few hundred MeV.

As mentioned earlier, MSSM scenarios with stop masses
below a couple of TeV and large stop mixing – which are def-
initely more interesting from the point of view of LHC phe-
nomenology – suffer from even larger spreads in the predic-
tions of different codes for mh . For example, in a benchmark
point with degenerate SUSY masses of 1 TeV, tan β = 20,
and Xt varied so as to maximize mh , the EFT calculation
finds mmax

h ≈ 123 GeV, whereas SoftSusy, SuSpect
and SPheno – which implement the same corrections to the
Higgs masses, but differ in the determination of the running
couplings – find mmax

h ≈ 124.5 − 126.5 GeV, and the latest
version of FeynHiggs [77] finds mmax

h ≈ 126 − 128 GeV
(depending on the code’s settings). However, in this case the
comparison between the EFT prediction for mh and the vari-
ous fixed-order (or hybrid) predictions is less straightforward
than in scenarios with multi-TeV stop masses, because there
is no obvious argument to favor one calculational approach
over the others: the O(v2/M2

S) terms might or might not be
negligible, and the logarithmic corrections might or might
not be important enough to mandate their resummation. For
all approaches, this unsatisfactory situation points to two
urgent needs: first, to improve the calculation of mh with
the inclusion of higher-order effects; second, to provide a
better estimate of the theoretical uncertainty, tailored to the
“difficult” region of the parameter space with stop masses
about 1–2 TeV.

In this paper we take several steps towards an improved
EFT determination of the Higgs mass in the MSSM with
heavy superpartners. In particular, in Sect. 2 we compute
the two-loop, O(g6

t ) contribution to the SUSY-scale match-
ing condition for the quartic Higgs coupling – which was
previously known only in simplified scenarios [21,65,67] –
allowing for generic values of all the relevant SUSY-breaking
parameters. We also include the two-loop contributions con-
trolled by the bottom and tau Yukawa couplings, addressing
some subtleties related to the presence of potentially large
tan β-enhanced corrections. Our new results bring the match-
ing condition for the quartic Higgs coupling to the same level,
in terms of an expansion in coupling constants, as the two-

loop Higgs-mass calculations in SoftSusy, SuSpect and
SPheno. In Sect. 3 we study instead the effects of a rep-
resentative subset of dimension-six operators in the EFT.
We obtain both an improvement in our prediction for mh

in scenarios with stop masses about 1–2 TeV and a more-
realistic estimate of the theoretical uncertainty associated
to O(v2/M2

S) effects. The results presented in this paper
have been implemented in modified versions of the codes
SusyHD [69] and HSSUSY [72]. All the analytic formulas
that proved too lengthy to be printed here are available upon
request in electronic form.

2 Two-loop matching of the quartic Higgs coupling

In this section we describe our calculation of the two-loop
matching condition for the quartic Higgs coupling. We con-
sider a set-up in which all SUSY particles as well as a linear
combination of the two Higgs doublets of the MSSM are
integrated out at a common renormalization scale Q ≈ MS ,
so that the EFT valid below the matching scale is just the
SM. Using the conventions outlined in Sect. 2 of Ref. [66],
the two-loop matching condition for the quartic coupling of
the SM-like Higgs doublet H takes the form

λ(Q) = 1

4

[
g2(Q) + g′ 2(Q)

]
cos2 2β + �λ1� + �λ2�, (1)

where g and g′ are the EW gauge couplings, β can be inter-
preted as the angle that rotates the two original MSSM dou-
blets into a light doublet H and a massive doublet A, and
�λn� is the n-loop threshold correction to the quartic cou-
pling arising from integrating out the heavy particles at the
scale MS . The contributions to �λ1� controlled by the EW
gauge couplings and by the top Yukawa coupling, for generic
values of all SUSY parameters, were given in Ref. [66],
completing and correcting earlier results of Refs. [78,79].
For completeness, we report in the appendix the full result
for the one-loop contributions of heavy scalars, including
also terms controlled by the bottom and tau Yukawa cou-
plings. However, the only one-loop contributions relevant to
our computation of the two-loop threshold correction, where
we will consider the “gaugeless” limit g = g′ = 0, are those
proportional to the fourth power of a third-family Yukawa
coupling, which read

�λ
g4
f =

∑
f =t,b,τ

ĝ4
f N

f
c

(4π)2

×
⎧
⎨
⎩ln

m2
f̃L
m2

f̃ R

Q4 + 2 X̃ f

[
F̃1(x f ) − X̃ f

12
F̃2(x f )

]⎫⎬
⎭,

(2)
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where by ĝ f we denote SM-like Yukawa couplings,4 related
to their MSSM counterparts ŷ f by ĝt = ŷt sin β , ĝb =
ŷb cos β and ĝτ = ŷτ cos β . Moreover, for each fermion
species f : N f

c is the number of colors; (m f̃L
,m f̃R

) are
the soft SUSY-breaking sfermion masses, i.e. (mQ3 ,mU3),
(mQ3 ,mD3) and (mL3 ,mE3) for stops, sbottoms and staus,
respectively; X̃ f = X2

f /(m f̃L
m f̃R

), where X f = A f −μ r f ,
A f is the trilinear soft SUSY-breaking Higgs-sfermion cou-
pling, μ is the Higgs-mass term in the MSSM superpotential,
rt = cot β and rb = rτ = tan β ; x f = m f̃L

/m f̃R
; finally,

the loop functions F̃1 and F̃2 are defined in Appendix A of
Ref. [66].

For what concerns the two-loop threshold correction
�λ2�, simplified results for the O(g4

t g
2
3) and O(g6

t ) con-
tributions, valid in the limit mQ3 = mU3 = mA = mg̃ ≡
MS (where mA is the mass of the heavy Higgs doublet
and mg̃ is the gluino mass), were made available as far
back as in Ref. [21]. Among the recent EFT analyses,
Refs. [66,67] obtained formulas for the O(g4

t g
2
3) contri-

butions valid for arbitrary values of all the relevant SUSY-
breaking parameters. The O(g6

t ) contributions, on the other
hand, were neglected in Ref. [66], while they were included in
Refs. [65,67] only through simplified formulas derived from
those of Ref. [21]. In this paper we extend the calculations of
Refs. [66,67] to obtain all contributions to �λ2� controlled
only by the third-family Yukawa couplings, again for arbi-
trary values of all the relevant SUSY-breaking parameters.
Besides improving our knowledge of the O(g6

t ) contribu-
tions from two-loop diagrams involving stops, this allows us
to properly account for sbottom and stau contributions that
can become relevant at large values of tan β. We also discuss
how to obtain the O(g4

b g
2
3) contributions from the known

results for the O(g4
t g

2
3) ones. Altogether, our results amount

to a complete determination of �λ2� in the limit of vanishing
EW gauge (and first-two-generation Yukawa) couplings.

2.1 Outline of the calculation

The two-loop, Yukawa-induced threshold correction to the
quartic Higgs coupling λ at the matching scale Q can be
expressed as

�λ2� = 1

2

∂4�V 2�, heavy

∂2H†∂2H

∣∣∣∣
H=0

+ �λshift, f + �λshift, f̃ ,

(3)

where by �V 2�, heavy we denote the contribution to the
MSSM scalar potential from two-loop diagrams involving
sfermions that interact with themselves, with Higgs doublets

4 Beyond tree level, we must distinguish these couplings from the
proper Yukawa couplings of the SM, denoted as g f , and specify a
renormalization prescription for the angle β.

or with matter fermions and higgsinos only through the third-
family Yukawa couplings, as well as from two-loop diagrams
involving only the heavy Higgs doublet and matter fermions.
The last two terms in Eq. (3) contain additional two-loop con-
tributions that will be described below. In the following we
will focus on the contributions to �λ2� that involve the top
and bottom Yukawa couplings, and comment only briefly on
the inclusion of the contributions that involve the tau Yukawa
coupling, which are in general much smaller. However, we
stress that the results that we implemented in SusyHD [69]
and HSSUSY [72] (and that we make available upon request)
do include the tau-Yukawa contributions through two loops.

In the gaugeless limit adopted in our calculation, the field-
dependent mass spectrum of the particles that enter the rel-
evant two-loop diagrams simplifies considerably: we can
approximate the masses of the lightest Higgs scalar and of
the would-be Goldstone bosons to zero, and the masses of all
components (scalar, pseudoscalar and charged) of the heavy
Higgs doublet to m2

A; the charged and neutral components
of the two higgsino doublets combine into Dirac spinors
with degenerate mass eigenvalues |μ|2; the tree-level mix-
ing angle in the CP-even sector is just α = β − π/2. For
the contributions to �V 2�, heavy that involve the top and bot-
tom Yukawa couplings, we adapt the results used for the
effective-potential calculation of the MSSM Higgs masses in
Ref. [25].5 To compute the fourth derivative of the effective
potential entering Eq. (3) we follow the approach outlined
in section 2.3 of Ref. [66]: we express the stop and sbottom
masses and mixing angles as functions of field-dependent
top and bottom masses, mt = ĝt |H | and mb = ĝb |H |, and
obtain

∂4�V 2�, heavy

∂2H†∂2H

∣∣∣∣
H=0

=
[
ĝ4
t

(
2 V (2)

t t + 4m2
t V

(3)
t t t + m4

t V
(4)
t t t t

)

+ĝ2
t ĝ

2
b

(
2 V (2)

tb + 12m2
t V

(3)
t tb

+ 4m4
t V

(4)
t t tb + 3m2

t m
2
b V

(4)
t tbb

)]

mt ,mb → 0

+
[
t ←→ b

]
, (4)

where the term in the last line is obtained from the terms in
the first three lines by swapping top and bottom, and we used
the shortcuts

V (k)
q1... qk = dk�V 2�, heavy

dm2
q1

. . . dm2
qk

. (5)

5 We compared our result for the top and bottom Yukawa contribution
to �V 2�, heavy with the one obtained by imposing the gaugeless limit
and removing the SM-like contribution in Eq. (D.6) of Ref. [21]. We
find agreement except for the overall sign of the next-to-last line of that
equation.
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The derivatives of the field-dependent stop and sbottom
parameters and the limit of vanishing top and bottom masses
in Eq. (4) are obtained as described in Ref. [66]. As in the
case of the O(g4

t g
2
3) contributions, we find that the fourth

derivative of the two-loop effective potential contains terms
proportional to ln(m2

q/Q
2), which would diverge for vanish-

ing quark masses but cancel out against similar terms in the
contribution denoted as �λshift, f in Eq. (3). Indeed, above
the matching scale the one-loop contribution to the quar-
tic Higgs coupling from box diagrams with a top or bottom
quark,

δλg4
q , q = −

∑
q=t,b

ĝ4
q Nc

(4π)2

(
2 ln

m2
q

Q2 + 3

)
, (6)

is expressed in terms of the MSSM couplings ĝq , whereas
below the matching scale the same contribution is expressed
in terms of the SM couplings gq . To properly compute the
two-loop, Yukawa-only part of the matching condition for
the quartic Higgs coupling, we must re-express the MSSM

couplings entering δλg4
q , q above the matching scale (includ-

ing those implicit in mq ) according to ĝq → gq (1 + �gY
q ),

where �gY
q denotes the terms controlled by the Yukawa cou-

plings in the threshold correction to gq . In particular, we find
for the top and bottom Yukawa couplings

�gY
t = − ĝ2

t

(4π)2 sin2 β

[
3

4
ln

μ2

Q2 + 3

8
cos2 β

(
2 ln

m2
A

Q2 − 1

)

+ F̃6

(
mQ3

μ

)
+ 1

2
F̃6

(
mU3

μ

) ]

− ĝ2
b

(4π)2 cos2 β

[
1

4
ln

μ2

Q2 + 1

8
sin2 β

(
2 ln

m2
A

Q2 − 1

)

+ cos2 β

(
ln

m2
A

Q2 − 1

)

+ 1

2
F̃6

(
mD3

μ

)

+ Xb cot β

2 μ
F̃9

(
mQ3

μ
,
mD3

μ

)]
− δZq̃

H

2
, (7)

�gY
b = − ĝ2

b

(4π)2 cos2 β

[
3

4
ln

μ2

Q2 + 3

8
sin2 β

(
2 ln

m2
A

Q2 − 1

)

+ F̃6

(
mQ3

μ

)
+ 1

2
F̃6

(
mD3

μ

) ]

− ĝ2
t

(4π)2 sin2 β

[
1

4
ln

μ2

Q2 + 1

8
cos2 β

(
2 ln

m2
A

Q2 − 1

)

+ sin2 β

(
ln

m2
A

Q2 − 1

)

+ 1

2
F̃6

(
mU3

μ

)

+ Xt tan β

2 μ
F̃9

(
mQ3

μ
,
mU3

μ

)]
− δZq̃

H

2
, (8)

where the last term on the right-hand side of each equation
reads, in a notation analogous to the one of Eq. (2),

δZq̃
H = −

∑
q=t,b

ĝ2
q Nc

(4π)2

X̃q

6
F̃5(xq), (9)

and corresponds to the threshold correction to the light-Higgs
WFR arising from squark loops. The loop functions F̃5, F̃6

and F̃9 are defined in appendix A of Ref. [66]. We also remark
that Eqs. (7)–(9) assume that the angleβ entering the relations
between the SM-like couplings ĝq and their MSSM counter-
parts ŷq is renormalized as described in Sect. 2.2 of Ref. [66],
removing entirely the contributions of the off-diagonal WFR
of the Higgs doublets. Combining the effects of the shifts in
the Yukawa couplings with the renormalization of the Higgs
fields (keeping into account also the field-dependent quark
masses in the logarithms) we obtain the total contribution to
�λ2� arising from the quark-box diagrams of Eq. (6),

�λshift, f = −
∑
q=t,b

ĝ4
q Nc

(4π)2

(
2 ln

m2
q

Q2 +4

)(
4 �gY

q + 2 δZq̃
H

)
,

(10)

which cancels the logarithmic dependence on the quark
masses of the derivatives of �V 2�, heavy. We checked that the
contributions in Eq. (4) that involve more than two deriva-
tives of the two-loop effective potential cancel out completely
against the shift of the corresponding contributions in the
one-loop part – namely, the non-logarithmic term in the right-
hand side of Eq. (6) – so that the final result for �λ2� can
be related to the two-loop correction to the light-Higgs mass.
This is the same “decoupling” property found in Ref. [66]
for the O(g4

t g
2
3) part of �λ2�. Finally, it can be inferred

from Eqs. (7)–(10) that the contribution of δZq̃
H cancels out

of �λshift, f .
The last term in Eq. (3), �λshift, f̃ , arises from shifts in the

sfermion contribution to the one-loop matching condition for
the quartic Higgs coupling, Eq. (2). In particular, it contains
terms arising from the WFR of the Higgs fields, which are
not captured by the derivatives of �V 2�, heavy, plus additional
contributions that arise if we express the one-loop threshold
correction in Eq. (2) in terms of the SM Yukawa couplings,
gq , instead of the MSSM ones, ĝq . We remark here that, while
the shift of the Yukawa couplings in the quark-box diagrams
of Eq. (6) is required for a consistent two-loop matching of
the quartic Higgs coupling, an analogous shift in the squark
contribution of Eq. (2) is to some extent a matter of choice. In
Refs. [66,67] the top Yukawa coupling entering the one-loop
part of the threshold correction to the quartic Higgs coupling
was interpreted as the SM one. Applying that choice to both
the top and the bottom Yukawa couplings, we would find
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�λshift, f̃ =
∑
q=t,b

ĝ4
q Nc

(4π)2

{
ln

m2
q̃L
m2

q̃R

Q4

+ 2 X̃q

[
F̃1(xq) − X̃q

12
F̃2(xq)

]}

(
4 �gY

q + 2 δZq̃
H

)
, (11)

where again the contributions of the WFR of the Higgs fields
cancel out against analogous terms in the shifts of the Yukawa
couplings. After including in �λ2� the shifts in Eqs. (10) and
(11), we checked that, in the limit of gb = 0 and mQ3 =
mU3 = mA ≡ MS , the O(g6

t ) part of �λ2� coincides with
the simplified result given in Eq. (21) of Ref. [67].

On the other hand, it is well known [80–82] that the rela-
tion between the bottom Yukawa coupling of the SM and its
MSSM counterpart is subject to potentially large corrections
enhanced by tan β, which, in the gaugeless limit, arise from
diagrams involving either gluino–sbottom or higgsino–stop
loops. As discussed, e.g., in Ref. [83], these tan β-enhanced
terms can be “resummed” in the DR-renormalized coupling
of the MSSM by expressing it as

ĝb(Q) = gb(Q)

1 − (
�gsb + �gY

b

) , (12)

where gb(Q) is the MS-renormalized coupling of the SM,
extracted at the EW scale from the bottom mass and evolved
up to the matching scale Q with SM RGEs, �gY

b is given in
Eq. (7), and

�gsb = −g2
3 CF

(4π)2

[
1 + ln

m2
g̃

Q2 + F̃6

(
mQ3

mg̃

)

+ F̃6

(
mD3

mg̃

)
− Xb

mg̃
F̃9

(
mQ3

mg̃
,
mD3

mg̃

)]
, (13)

where CF = 4/3 is a color factor, and we recall that
Xb = Ab − μ tan β. In contrast with our treatment of the
top Yukawa coupling, we will therefore choose to interpret
the bottom Yukawa coupling entering the one-loop part of
the threshold correction to the quartic Higgs coupling as the
MSSM one, in order to absorb the tan β-enhanced effects
directly in �λ1�. We recall that a similar approach was dis-
cussed in Refs. [18,24,25] in the context of the fixed-order
calculation of the Higgs masses in the MSSM.

With our choice for the bottom Yukawa coupling enter-
ing �λ1�, we must omit the term 4 �gY

b in the formula

for �λshift, f̃ , see Eq. (11), when computing the contribu-
tions to �λ2� controlled only by the top and bottom Yukawa
couplings. Concerning the O(g4

b g
2
3) contributions, they can

be obtained from the O(g4
t g

2
3) contributions computed in

Refs. [66,67] via

�λg4
b g

2
3 = �λg4

t g
2
3 [ t → b ]

−4 �gsb
ĝ4
b Nc

(4π)2

{
ln

m2
Q3
m2

D3

Q4 + 2 X̃b

[
F̃1(xb)

− X̃b

12
F̃2(xb)

] }
, (14)

where the notation [ t → b ] in the first line represents the
replacements gt → gb, Xt → Xb and mU3 → mD3 in
the formulas for the O(g4

t g
2
3) contributions. We note that,

in practice, our choice removes from �λ2� potentially large
terms characterized by a higher power of tan β than of ĝb,
i.e. terms scaling like ĝ4

b g
2
3 tan5β or like ĝ4

b ĝ
2
t tan5β.

We now comment on the inclusion of the contributions
to �λ2� controlled by the tau Yukawa coupling. The two-
loop contributions of O(g6

τ ), i.e. those involving only the tau
Yukawa coupling, do not require a separate calculation, since
they can be obtained from the top-only, O(g6

t ) ones via the
replacements gt → gτ , At → Aτ , Nc → 1, mQ3 → mL3 ,
mU3 → mE3 and cos β ↔ sin β (see also Ref. [25]). Indeed,
as long as we neglect the EW gauge couplings, the threshold
correction to the tau Yukawa coupling does not contain any
tan β-enhanced terms, and reads

�gτ = − ĝ2
τ

(4π)2 cos2 β

[
3

4
ln

μ2

Q2 +3

8
sin2 β

(
2 ln

m2
A

Q2 −1

)

+ F̃6

(
mL3

μ

)
+ 1

2
F̃6

(
mE3

μ

)]
− δZ f̃

H

2
, (15)

where the sfermion contribution to the Higgs WFR, δZ f̃
H , is

obtained including also the stau contribution (with Nc = 1) in
Eq. (9). We can therefore treat the tau Yukawa coupling in the
same way as the top one, expressing the stau contribution to
�λ1� in terms of the SM coupling gτ . In addition, “mixed”
contributions to the two-loop effective potential controlled
by both the tau and the bottom Yukawa couplings arise from
diagrams that involve the quartic sbottom-stau coupling; see
Appendix B of Ref. [50]. The corresponding contributions
to �λ2� can be obtained directly from the derivatives of the
effective potential (without additional shifts) with the pro-
cedure outlined around Eq. (4), after replacing t → τ in
the latter. Finally, the choice of using the MSSM coupling
ĝb in �λ1� spoils the cancellation of Higgs WFR effects in
�λshift, f̃ ; see Eq. (11). As a result, when we take into account

the O(g2
τ ) contribution from stau loops in δZ f̃

H , we find an
additional O(g4

b g
2
τ ) contribution to �λ2�.

2.2 Numerical examples

We now provide some illustration of the numerical impact
of the newly computed two-loop corrections to the quar-
tic Higgs coupling. To this purpose, we implemented those
corrections in modified versions of the codes SusyHD [69]
and HSSUSY [72]. All plots presented in this section were
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Fig. 1 Effects of the top-Yukawa contributions to �λ2� in a scenario
with non-degenerate SUSY masses, compared with approximate results
obtained with degenerate masses. The left plot shows the predictions
for mh as a function of the ratio of soft SUSY-breaking stop masses

mQ3/mU3 , while the right plot shows the shifts in mh induced by the
two-loop contributions alone. The choices of MSSM parameters and
the meaning of the different curves are described in the text

produced with HSSUSY, but we checked that fully analo-
gous plots can be obtained with SusyHD. Small discrepan-
cies in the predictions for mh arise from differences in the
calculations implemented in the two codes, as discussed in
Section 2.3 of Ref. [73], but they do not affect the qualita-
tive behavior and relative importance of the new two-loop
corrections. The SM input parameters used for HSSUSY in
our studies, which we take from Ref. [84], are: the Fermi
constant GF = 1.16638×10−5 GeV−2; the Z boson mass
mZ = 91.1876 GeV; the pole top mass Mpole

t = 173.21 GeV;
the MS-renormalized bottom mass mb(mb) = 4.18 GeV; the
tau mass mτ = 1777 MeV; finally, the strong and electro-
magnetic coupling constants in the five-flavor MS scheme,
αs(mZ ) = 0.1181 and α(mZ ) = 1/127.950.

To start with, we omit all contributions to �λ2� con-
trolled by the bottom and tau Yukawa couplings, and focus
on the effect of extending the contributions controlled by
the top Yukawa coupling to generic values of the rele-
vant SUSY-breaking parameters. We consider a scenario in
which all SUSY-particle masses are larger than one TeV, but
the stop masses are not degenerate. In particular, we take
mU3 = 1.5 TeV and mQ3 = κ mU3 , where κ is a scal-
ing parameter that we vary in the range 1 ≤ κ ≤ 4. We
also take mg̃ = mA = mU3 , μ = 4mU3 and tan β = 20,
and we fix At via the “maximal” stop mixing condition
At − μ cot β = (6mQ3 mU3)

1/2. For the remaining MSSM
parameters, which affect the one-loop part of the calculation,
we set all sfermion masses other than those of the stops, as
well as the EW gaugino masses, equal to mU3 , and we take
Ab = Aτ = At . All of the MSSM parameters listed above –
with the exception of tan β, which is defined as described in
Sect. 2.2 of Ref. [66] – are interpreted as DR-renormalized
parameters at the scale Q = (mQ3 mU3)

1/2.

In Fig. 1 we compare the predictions for mh obtained with
the “exact” (i.e., valid for generic SUSY masses) formu-
las for the top-Yukawa contributions to �λ2� with “approx-
imate” predictions obtained by replacing the scalar and
gluino masses of our scenario with the degenerate masses
m′

Q3
= m′

U3
= m′

A = m′
g̃ = (mQ3 mU3)

1/2, and then using

for theO(g4
t g

2
3) andO(g6

t ) contributions to �λ2� the simpli-
fied formulas given in Refs. [66,67], respectively. In partic-
ular, the dotted black line in the left plot of Fig. 1 represents
the prediction for mh , as a function of the stop mass ratio
κ = mQ3/mU3 , obtained by neglecting all two-loop contri-
butions to the matching of the quartic Higgs coupling, and
using the exact results from Refs. [66,67] for the one-loop
contributions; the dashed blue line includes also the simpli-
fied O(g4

t g
2
3) contributions given in Eq. (36) of Ref. [66];

the solid blue line includes instead the exact O(g4
t g

2
3) con-

tributions from Refs. [66,67]; the dashed red line includes,
on top of the exact O(g4

t g
2
3) contributions, the simplified

O(g6
t ) contributions given in Eq. (21) of Ref. [67]; finally,

the solid red line includes instead the exact O(g6
t ) contri-

butions derived in this paper. In the right plot of Fig. 1 we
show for clarity the effect on mh of the different implemen-
tations of the two-loop corrections alone, i.e. we show the
difference between the (dashed or solid, blue or red) two-
loop lines and the (dotted, black) one-loop line of the left
plot. The meaning of each line in the right plot mirrors the
one of the corresponding line in the left plot.

Figure 1 confirms that, as already noticed in Refs. [66,67],
the overall effect of the top-Yukawa contributions to �λ2� on
the EFT predictions for mh in scenarios with multi-TeV stop
masses is rather small, typically less than one GeV. However,
the comparison between the dashed and solid lines in the plots
of Fig. 1 shows that, in scenarios with non-degenerate mass
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Fig. 2 Predictions for mh as a function of tan β for different imple-
mentations of the corrections controlled by the bottom Yukawa cou-
pling. We consider an MSSM scenario with all SUSY masses equal
to MS = 1.5 TeV except mg̃ = 2.5 TeV, and with μ = −1.5 TeV,
Xt = √

6 MS and Ab = Aτ = At . The meaning of the different curves
is explained in the text

spectra, the use of simplified formulas with an “average”
SUSY mass can lead to a rather poor approximation of the
exact results. In particular, the comparison between dashed
and solid blue lines shows that by using Eq. (36) of Ref. [66]
for the O(g4

t g
2
3) corrections we would significantly overes-

timate their effect on mh when κ � 2 in our scenario. In turn,
the dashed and solid red lines show that, by using Eq. (21) of
Ref. [67] for the O(g6

t ) corrections, we could entirely mis-
characterize their effect on the Higgs mass: between the point
where the solid blue line crosses the solid red one and the
point where it crosses the dashed red one, the approximate
calculation of the O(g6

t ) corrections gives a negative shift
in mh , while the exact calculation gives a positive shift. We
remark, however, that the latter finding depends on the some-
what large value of μ adopted in our scenario: for smaller μ

the quality of the approximation for the O(g6
t ) corrections

would improve.
We now turn our attention to the effect of the threshold

corrections to the quartic Higgs coupling controlled by the
bottom Yukawa coupling. In Fig. 2 we show the EFT pre-
diction for mh as a function of tan β, in a simplified MSSM
scenario with all soft SUSY-breaking masses of sfermions
and EW gauginos, as well as the heavy Higgs-doublet mass
mA, set equal to MS = 1.5 TeV, while the gluino mass is set to
mg̃ = 2.5 TeV; the trilinear Higgs-stop coupling At is fixed
by the maximal mixing condition At − μ cot β = √

6 MS ,
and Ab = Aτ = At ; finally, we take μ = −1.5 TeV, to
enhance the effect of the corrections controlled by the bot-
tom Yukawa coupling. Indeed, negative values of the prod-
ucts μmg̃ and μAt ensure that ĝb – which we extract at
the matching scale from the SM coupling gb via Eq. (12)

– becomes larger for increasing tan β, and possibly hits a
pole as the denominator on the right-hand side of Eq. (12)
approaches zero. Again, all soft SUSY-breaking parameters
as well as μ are renormalized in the DR scheme at the match-
ing scale Q = MS .

The dotted black line in Fig. 2, which shows very lit-
tle dependence on tan β, represents the prediction for mh

obtained by omitting the one- and two-loop corrections to the
quartic Higgs coupling controlled by the bottom Yukawa cou-
pling altogether; the dashed black line includes the one-loop
O(g4

b) contribution to �λ1�, which, as discussed in Sect. 2.1,
we express in terms of the MSSM coupling ĝb ; the solid
blue line includes also the two-loop O(g4

b g
2
3) contributions

to �λ2�; finally, the solid red line includes also the two-loop
O(g6

b, g
4
b g

2
t , g

2
b g

4
t ) contributions to �λ2�. The comparison

between the dashed black line and the solid blue and red
lines shows that, when expressed in terms of the MSSM cou-
pling ĝb, the O(g4

b) contribution to �λ1� already determines
the bulk of the dependence of mh on tan β. Indeed, only at
rather large tan β, where the dependence becomes steep, can
the O(g4

b g
2
3) and O(g6

b, g
4
b g

2
t , g

2
b g

4
t ) contributions to �λ2�

shift the prediction for mh by more than one GeV. Moreover,
those corrections partially cancel out for our choice of MSSM
parameters.

Finally, we recall that the strong dependence of mh on
tan β depicted in Fig. 2 follows from our choice of signs
for the products μmg̃ and μAt . If both of those products
were positive instead of negative, the threshold correction(
�gsb + �gY

b

)
in Eq. (12) would suppress the MSSM cou-

pling ĝb – as well as the corresponding contributions to the
quartic Higgs coupling and, in turn, to mh – at large values of
tan β. If the two products had opposite signs, the dependence
of mh on tan β would hinge on whether it is �gsb or �gY

b that
prevails in Eq. (12).

3 On the effects of dimension-six operators

In MSSM scenarios with SUSY masses up to a couple of
TeV, the effects suppressed by powers of v2/M2

S – which
are not accounted for when the EFT valid below the SUSY
scale involves only renormalizable operators – might still be
relevant. In the code SusyHD [67,69] the uncertainty of the
prediction for the Higgs mass associated to the omission of
those effects is obtained by multiplying the contribution to
�λ1� from each SUSY particle by a factor6 (1 ± 2 v2/M2

i ) ,
where Mi is that particle’s mass. In a simplified scenario with
tan β = 20, degenerate SUSY masses Mi ≡ MS and “max-
imal” Xt = √

6 MS , the uncertainty arising from missing
O(v2/M2

S) effects was thus estimated in Ref. [67] to be about

6 Note that in this paper we normalize the Higgs vev as v = 〈H0〉, with
v ≈ 174 GeV.
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0.6 GeV for MS = 1 TeV, and to decrease rapidly for larger
MS . The total theoretical uncertainty of the EFT prediction
for mh , including also the effects of missing higher-order
terms in the matching at the SUSY scale and in the SM part
of the calculation, was estimated in Ref. [67] to be less than 2
GeV for MS = 1 TeV, where SusyHD finds mh ≈ 123 GeV.
As mentioned in Sect. 1, in that scenario the predictions for
the Higgs mass of various fixed-order (or hybrid) codes differ
form each other by several GeV, and in general lie outside
the estimated uncertainty of the EFT result. In this section
we aim to improve the EFT calculation of the Higgs mass at
moderate values of MS by including some of the most impor-
tant O(v2/M2

S) effects, and to appraise the existing estimate
of the uncertainty associated to the missing ones.

3.1 Outline of the calculation

In the EFT framework, the effects of O(v2/M2
S) in the pre-

dictions for physical observables such as the Higgs mass arise
from non-renormalizable, dimension-six effective operators.
The most general dimension-six Lagrangian respecting the
field content and symmetries of the SM contains a large num-
ber of operators; see Refs. [85–89] for recent reviews. In
this section we focus on the two operators that induce one-
loop corrections to m2

h proportional to g2
t m

4
t /M

2
S and two-

loop corrections proportional to g2
t g

2
3 m

4
t /M

2
S , i.e. the terms

suppressed by m2
t /M

2
S in what are usually denoted as one-

loop O(αt ) and two-loop O(αtαs) corrections to the Higgs
mass, where αt ≡ g2

t /(4π) and αs ≡ g2
3/(4π). We write the

Lagrangian of the SM extended by dimension-six operators
as

LEFT = LSM − c6 |H |6 +
(
ct |H |2 tR HT ε qL + h.c.

)
, (16)

where qL and tR are third-generation quarks, ε is the antisym-
metric tensor (with ε12 = 1) acting on the SU (2) indices,
and, to fix our notation,

LSM ⊃ −m2
H |H |2−λ

2
|H |4+(

gt tR H
T ε qL + h.c.

)
. (17)

We stress that the choice of considering only the two
dimension-six operators shown in Eq. (16) implies that our
treatment of the O(v2/M2

S) effects is by no means complete,
even when we restrict the calculation to the “gaugeless” limit
g = g′ = 0. Indeed, to account for the terms proportional to
g4
t m

4
t /M

2
S , which are part of the two-loop O(α2

t ) correc-
tions to m2

h already included in most fixed-order codes, we
should include in Eq. (16) also dimension-six operators that
correct the kinetic term of the Higgs doublet.7 Concerning

7 For those operators several definitions are possible. For example, in
Ref. [90] one chose (H†H)�(H†H) and (H†Dμ H)∗(H†Dμ H).

the resummation of the O(v2/M2
S) logarithmic corrections

to m2
h beyond two loops, even to account only for the effects

controlled by the highest powers of g3 – i.e., the (n+1)-
loop terms proportional to g2

t g
2n
3 m4

t /M
2
S lnn(MS/mt ) – we

should include in Eq. (16) a set of dimension-six operators
involving gluons.8 However, it must be kept in mind that the
suppression by a factorm2

t /M
2
S implies that, for those correc-

tions to be relevant, the argument of the resummed logarithms
cannot be too large. As a result, there is no guarantee that the
three-loop (and higher) logarithmic effects ofO(v2/M2

S) that
we could account for via resummation are more important
than other effects that we are neglecting, such as, e.g., non-
logarithmic three-loop corrections unsuppressed by m2

t /M
2
S .

The sure benefits of extending the SM Lagrangian with the
two dimension-six operators of Eq. (16) are that i) we include
in our calculation of the Higgs mass the O(v2/M2

S) part of
one- and two-loop corrections that are known to be among
the most significant ones, and i i) we can exploit our knowl-
edge of the size of those corrections to estimate the theoretical
uncertainty associated to other O(v2/M2

S) effects that we are
neglecting.

The boundary conditions on the Wilson coefficients c6 and
ct are obtained by matching the EFT Lagrangian with the
full MSSM Lagrangian at a renormalization scale Q ≈ MS .
We start by remarking that those two coefficients receive
contributions already at the tree level, controlled by the EW
gauge couplings and generated when the heavy Higgs doublet
– whose mass we denote by mA – is integrated out of the
MSSM Lagrangian:

ctree
6 = − (g2 + g′ 2)2

64m2
A

sin2 4β,

ctree
t = gt (g2 + g′ 2)

8m2
A

sin 4β cot β. (18)

However, in the limit of large tan β both contributions scale
like 1/ tan2 β. For tan β � 10 , which we require to saturate
the tree-level prediction for mh and allow for stop masses
around one TeV, the resulting suppression makes the tree-
level contributions to c6 and ct numerically comparable with
the one-loop contributions controlled by the EW gauge cou-
plings, which we are not considering in our study. We will
therefore omit the tree-level contributions of Eq. (18) alto-
gether in what follows, and we now move on to summarizing
our calculation of the one- and two-loop matching conditions
relevant to the O(αt ) and O(αtαs) corrections to the Higgs
mass.

Matching of ct: The one-loop matching condition for ct can
be derived by equating the expressions for the pole top-quark

8 Focusing on the CP-even operators, those are f abc Ga
μν G

b
νρ Gc

ρμ ,

|H |2 Ga
μν G

a
μν and tR σμν T a HT ε qL Ga

μν .
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mass computed below and above the matching scale:

Mpole
t = gt v + c1�

t v3 − �1�
t (mt )

EFT,MS

= ĝt v̂ − �1�
t (mt )

MSSM,DR, (19)

where �1�
t (mt ) is the one-loop self energy of the top quark

computed with the external momentum p2 = m2
t , and v

is the Higgs vev in the EFT, while v̂ =
√

v2
1 + v2

2 is the
corresponding quantity in the MSSM. We adopt as usual
the DR scheme for the MSSM calculation and the MS
scheme for the EFT calculation (note, however, that c1�

t is
the same in both schemes). We focus here on the O(g2

3)

and O(g3
t g

2
3) contributions to the matching conditions for

gt and ct , respectively, which are necessary to reproduce the
two-loop O(αtαs) corrections to the Higgs mass. Defining
ĝt (Q) = gt (Q) (1 + �gst ), and considering that the distinc-
tion between v and v̂ does not matter atO(g2

3), we can extract
�gst and c1�

t from the terms of O(v) and O(v3), respectively,
in an expansion of the stop–gluino contribution to the top self
energy in powers of v. Starting from Eq. (B2) of Ref. [22]
for the unexpanded self energy, we find

�gst = − g2
3

(4π)2 CF

[
1 + ln

m2
g̃

Q2

+ F̃6(xQ) + F̃6(xU ) − Xt

mg̃
F̃9(xQ, xU )

]
, (20)

c1�
t (Q) = ĝ3

t g
2
3

(4π)2

CF

m2
g̃

{
11 + x2

Q (2 x2
Q − 7)

6 (x2
Q − 1)3

− 2 ln xQ

(x2
Q − 1)4

+
(
Xt

mg̃
− X2

t

2m2
g̃

)[
x2
Q − 5

2 (x2
Q − 1)2 (x2

U − 1)

− 4 ln xQ

(x2
Q − 1)3 (x2

Q − x2
U )

]

− 2 X3
t

m3
g̃

[
1

(x2
Q − 1) (x2

Q − x2
U )2

− 2 (2 x4
Q − x2

Q − x2
U ) ln xQ

(x2
Q − 1)2 (x2

Q − x2
U )3

] }

+
[
xQ ←→ xU

]
, (21)

where the functions F̃6 and F̃9 can be found in appendix A of
Ref. [66], we defined xQ = mQ3/mg̃ and xU = mU3/mg̃ , and
the term in the last line of Eq. (21) is obtained from the terms
in the first five lines by swapping xQ and xU . We note that the
right-hand side of Eq. (21) does not depend explicitly on the
scale Q. For the simplified choice mQ3 = mU3 = mg̃ = MS ,
the O(g3

t g
2
3) contribution to the matching condition for ct

reduces to

c1�
t (Q) = ĝ3

t g
2
3

(4π)2

CF

12 M2
S

(
6 + 6

Xt

MS
− 3

X2
t

M2
S

− 2
X3
t

M3
S

)
.

(22)

Matching of c6: The matching condition for the Wilson coef-
ficient of the operator |H |6 in Eq. (16) can, in analogy with the
calculation of the matching condition for the quartic Higgs
coupling described in Sect. 2.1, be obtained from the deriva-
tives with respect to the Higgs field of the sfermion contri-
butions to the effective potential of the MSSM. In particular,
the O(g6

t ) contribution to the one-loop coefficient c1�
6 at the

matching scale Q reads

c1�
6 (Q) = 1

36

∂6�V 1�, t̃

∂3H†∂3H

∣∣∣∣∣
H=0

, (23)

where �V 1�, t̃ is the stop contribution to the Coleman–
Weinberg potential of the MSSM,

�V 1�, t̃ = Nc

(4π)2

∑
i=1,2

m4
t̃i

2

(
ln

m2
t̃i

Q2 − 3

2

)
. (24)

As outlined in Section 2.3 of Ref. [66], the derivatives of
�V 1�, t̃ with respect to the Higgs field can easily be computed
after expressing the stop masses m2

t̃i
as functions of the field-

dependent top mass mt = ĝt |H |, leading to

∂6�V 1�, t̃

∂3H†∂3H

∣∣∣∣∣
H=0

= ĝ6
t

[
6 V (3)

t t t + 18m2
t V

(4)
t t t t

+ 9m4
t V

(5)
t t t t t + m6

t V
(6)
t t t t t t

]
mt→0

, (25)

where we used for the derivatives of the one-loop potential
shortcuts analogous to those defined in Eq. (5) for the deriva-
tives of the two-loop potential. Explicitly, we find

c1�
6 (Q) = ĝ6

t

(4π)2

Nc

mQ3mU3

{
1 + x2

t

6 xt
− X̃t

2

+ X̃2
t

[
xt (1 + x2

t )

2 (1 − x2
t )

2
+ 2 x3

t ln xt
(1 − x2

t )
3

]

− X̃3
t

[
x2
t (1 + 10 x2

t + x4
t )

6 (1 − x2
t )

4

+ 2 x4
t (1 + x2

t ) ln xt
(1 − x2

t )
5

]}
, (26)

where, following the notation of Eq. (2), we defined xt =
mQ3/mU3 and X̃t = X2

t /(mQ3mU3). Eq. (26) agrees with the
corresponding results in Refs. [91,92],9 which employed the
method known as “covariant derivative expansion” [93–95]

9 In Ref. [92] there is a misprint in the last line of Eq. (D.4): the loga-
rithmic term should come with a minus sign.
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to compute the one-loop matching conditions for all bosonic
dimension-six operators induced by integrating the squarks
out of the MSSM Lagrangian. In the limit of degenerate
squark masses mQ3 = mU3 = MS , the O(g6

t ) contribution
to c1�

6 reduces to

c1�
6 (Q) = ĝ6

t

(4π)2

Nc

M2
S

(
1

3
− X2

t

2 M2
S

+ X4
t

6 M4
S

− X6
t

60 M6
S

)
,

(27)

in agreement with the result presented long ago in Ref. [53].
The O(g6

t g
2
3) contribution to the two-loop coefficient c2�

6
at the matching scale Q reads

c2�
6 (Q) = 1

36

∂6�V 2�, t̃

∂3H†∂3H

∣∣∣∣∣
H=0

− δcEFT
6 + δcshift, t̃

6 , (28)

where �V 2�, t̃ denotes the contribution to the MSSM scalar
potential from two-loop diagrams involving the strong gauge
interactions of the stop squarks, given e.g. in Eq. (28) of
Ref. [66]. The derivatives of �V 2�, t̃ are again obtained
from Eq. (25) after expressing the stop masses and mixing
angle as functions of the field-dependent top mass. As in
the case of the two-loop matching condition for the quartic
Higgs coupling discussed in Sect. 2.1, in the derivatives of
the two-loop scalar potential we find terms proportional to
ln(m2

t /Q
2), which would diverge in the limit of vanishing

top mass. Those terms, however, cancel against analogous
terms in δcEFT

6 , which represents the one-loop contribution of
the dimension-six operators to the Wilson coefficient of |H |6
as computed in the EFT. In particular, the contribution rele-
vant at O(g6

t g
2
3) arises from a box diagram with a top-quark

loop, three regular Yukawa vertices and one dimension-six
vertex. We find

δcEFT
6 = − Nc

(4π)2 g3
t c

1�
t (Q)

(
4 ln

m2
t

Q2 + 32

3

)
, (29)

where for c1�
t (Q) we use the O(g3

t g
2
3) contribution to the

matching condition given in Eq. (21). Finally, the third term
on the right-hand side of Eq. (28) arises from the fact that, in
analogy with our two-loop calculation of the quartic Higgs
coupling, we choose to express the one-loop stop contribution
to c1�

6 in terms of the MS-renormalized top Yukawa coupling
of the EFT, i.e. gt , as opposed to the DR-renormalized cou-
pling of the MSSM, i.e. the ĝt entering Eqs. (25)–(27).10 The
resulting O(g6

t g
2
3) shift in c2�

6 reads

δcshift, t̃
6 = 6 �gst c

1�
6 (Q), (30)

10 On the other hand, in the two-loop corrections the distinction
between gt and ĝt amounts to a higher-order effect.

where�gst is given in Eq. (20) and c1�
6 (Q) is given in Eq. (26).

The analytic formula for c2�
6 (Q) for generic stop and

gluino masses is too lengthy to be printed, and we make
it available on request in electronic form. For the simplified
choice mQ3 = mU3 = mg̃ = MS , we obtain

c2�
6 (Q) = − ĝ6

t g
2
3

(4π)4

CF Nc

M2
S

[
2

3
− 4 Xt

MS
+ X2

t

M2
S

+ 14 X3
t

3 M3
S

+ X4
t

6 M4
S

− 13 X5
t

10 M5
S

− 19 X6
t

180 M6
S

+ X7
t

10 M7
S

+
(

8

3
+ 2 Xt

MS
− 4 X2

t

M2
S

− 2 X3
t

M3
S

+ X4
t

M4
S

+ 2 X5
t

5 M5
S

− X6
t

30 M6
S

)
ln

M2
S

Q2

]
. (31)

We also remark that c2�
6 (Q) contains terms enhanced by pow-

ers of the ratios between the gluino mass and the stop masses.
In particular, in the simplified scenario where mQ3 = mU3 =
MS , Xt = ±√

6 MS and mg̃ � MS we find

c2�
6 (Q) = − ĝ6

t g
2
3

(4π)4

4CF Nc

15 M2
S

[
1 − 18 ln

M2
S

Q2 + 13 ln
m2

g̃

M2
S

− mg̃

MS

(
± 9

√
6 + 31

mg̃

MS

)(
1 − ln

m2
g̃

Q2

)

+O
(
MS

mg̃

) ]
, (32)

where the sign of the first term within round brackets corre-
sponds to the sign of Xt . The presence of power-enhanced
terms in the heavy-gluino limit is a well-known consequence
of the DR renormalization of the parameters in the stop sec-
tor, as discussed in Ref. [22] for the fixed-order calculation
of the MSSM Higgs masses and in Ref. [67] for the EFT
calculation. Those terms would be removed from the two-
loop part of c6 if we interpreted the soft SUSY-breaking stop
masses mQ3 and mU3 and the stop mixing Xt entering the
one-loop part as “on-shell”-renormalized parameters.

Comparison with the fixed-order calculation of m2
h: We

now discuss how the inclusion in the EFT Lagrangian of
the dimension-six operators shown in Eq. (16) allows us to
reproduce the O(m2

t /M
2
S) terms in the O(αt ) and O(αtαs)

corrections to m2
h . Expanding the neutral component of the

Higgs doublet as H0 = v + (h + i G)/
√

2 , and exploiting
the minimum condition of the scalar potential to remove the
mass parameter m2

H , we can write the Higgs-boson mass as

m2
h = 2 λ v2 + 12 c6 v4 + �m2

h, (33)

where �m2
h contains the radiative corrections to the tree-level

prediction for the Higgs mass, as computed in the EFT. To
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avoid the occurrence of large logarithms in these corrections,
the couplings λ and c6 in Eq. (33) should be computed at a
renormalization scale QEW of the order of the masses of the
particles running in the loops. Focusing on the one- and two-
loop terms that account for the desired O(αt ) and O(αtαs)

corrections, we find

�m2
h = Nc

(4π)2

[
−4 g4

t v2 ln
g2
t v2

Q2
EW

+ 8 gt ct v
2 m2

t

(
1 − 6 ln

m2
t

Q2
EW

)]

+ CF Nc

(4π)4 8 g2
t g

2
3 m

2
t

(
3 ln2 m2

t

Q2
EW

+ ln
m2

t

Q2
EW

)
,

(34)

where the first two lines are the contribution of one-loop dia-
grams involving top quarks, the third line is the contribution
of two-loop diagrams involving top quarks and gluons com-
puted in the MS scheme (the latter was given, e.g., in Ref.
[96]), and we can typically take QEW ≈ mt . Since for the
purpose of this calculation the coefficient ct is first generated
at one loop, in the first two lines of Eq. (34) we have exploited
the relation mt = gt v + ct v3 and retained11 only terms lin-
ear in ct (note that in those terms, as well as in those of the
third line, the difference between m2

t and g2
t v2 amounts to a

higher-order effect). Collecting all the terms in Eq. (33) that
involve the coefficients of dimension-six operators, we thus
find for the one- and two-loop O(m2

t /M
2
S) terms

(
m2

h

)O(αt )

dim6
= 12 v4 c1�

6 (Q), (35)

(
m2

h

)O(αtαs )

dim6
= 12 v4

[
c2�

6 (Q) + dc6

d ln Q2

∣∣∣∣
g3
t ct

ln
Q2

EW

Q2

]

+ Nc

(4π)2 8 gt ct v
2 m2

t

(
1 − 6 ln

m2
t

Q2
EW

)
,

(36)

where the one-loop beta function of c6 entering the squared
brackets in Eq. (36) accounts, at the two-loop level, for the
fact that in Eq. (33) the coefficient c6 should be computed at
the low scale QEW. Isolating the relevant terms in the RGEs
for the dimension-six operators given in Refs. [97–100], we
have

11 Before the expansion in ct the one-loop contribution to �m2
h involv-

ing top quarks reads, in our EFT,

(�m2
h)

1�, t = Nc

(4π)2

[
2m2

t

(
gt + 3 ct v

2
)2

(
1 − 3 ln

m2
t

Q2
EW

)

− 2
m3

t

v

(
gt − 3 ct v

2
) (

1 − ln
m2

t

Q2
EW

) ]
.

dc6

d ln Q2 ⊃ − 4 Nc
g3
t ct

(4π)2 ,
dct

d ln Q2 ⊃ − 3CF
g2

3 ct
(4π)2 .

(37)

However, for the coefficient ct entering Eq. (36) we can use
directly the value obtained at the matching scale, see Eq. (21),
because its scale dependence amounts to a three-loop effect
in m2

h . We thus obtain
(
m2

h

)O(αtαs )

dim6
= 12 v4 c2�

6 (Q)

+ Nc

(4π)2 8 gt c
1�
t (Q) v2 m2

t

(
1 − 6 ln

m2
t

Q2

)
.

(38)

Expanding in powers of m2
t the analytic results of Ref. [22]

for the O(αt ) and O(αtαs) corrections to m2
h in the MSSM,

we checked that Eqs. (35) and (38) do indeed reproduce
the one- and two-loop O(m2

t /M
2
S) terms of those correc-

tions, respectively. To this purpose, it is necessary to take
into account that in Ref. [22] the top mass and Yukawa cou-
pling entering the one-loop part of the corrections to m2

h are
assumed to be MSSM parameters renormalized in the DR
scheme, whereas, as discussed earlier, we choose to express
c1�

6 (Q) in terms of the EFT coupling gt renormalized in the
MS scheme. To perform the comparison with the fixed-order

calculation of m2
h we must therefore omit the term δcshift, t̃

6
in our formula for c2�

6 (Q); see Eqs. (28) and (30).

3.2 Impact of dimension-six operators on the Higgs-mass
prediction

In this section we illustrate the numerical impact of the
dimension-six operators of Eq. (16) on the EFT prediction
for the Higgs mass. We modified the code HSSUSY [72],
implementing the matching conditions for c6 and ct at the
SUSY scale, their evolution down to the EW scale through
the RGEs of Eq. (37),12 and their effects at the EW scale, both
on the calculation of m2

h – see Eqs. (33) and (34) – and on
the determination of the top Yukawa coupling. In particular,
the latter becomes

gt (QEW) = mt

v
− ct v

2, (39)

where mt denotes the MS-renormalized top mass, extracted
at the scale QEW from Mpole

t with SM formulas, and we neglect
the effects of dimension-six operators that do not contribute
at O(g2

3). We note that the ct -induced shift on the match-
ing condition for the top Yukawa coupling, Eq. (39) above,

12 Note that we neglect additional terms in those RGEs, as well as
the contributions of the dimension-six operators to the RGEs of the
SM couplings [98], because they do not contribute to the O(αt ) and
O(αtαs) corrections to m2

h .
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affects all corrections controlled by gt to the quartic Higgs
coupling – namely, the threshold corrections at the SUSY
scale and the renormalization-group evolution down to the
EW scale – as well as the top-quark contributions to �m2

h
given in Eq. (34). This results in an “indirect” contribution
of a dimension-six operator to the EFT prediction for m2

h ,
which combines with the “direct” contributions controlled
by c6 and ct in Eqs. (33) and (34).

In Fig. 3 we show the deviation induced in the EFT pre-
diction for the Higgs mass by the presence of the dimension-
six operators of Eq. (16). The SM parameters used as input
for HSSUSY are the same as those listed at the beginning
of Sect. 2.2. We consider a simplified MSSM scenario with
tan β = 20 and all soft SUSY-breaking masses of sfermions
and EW gauginos, as well as the heavy Higgs-doublet mass
mA and the higgsino mass μ, set equal to a common SUSY
scale MS ; the trilinear Higgs-stop coupling At is fixed by
the maximal mixing condition At − μ cot β = √

6 MS , and
Ab = Aτ = At ; finally, the gluino mass is set to mg̃ = MS

in the left plot and to mg̃ = 2 MS in the right plot. We
vary the common SUSY scale between MS = 500 GeV
and MS = 1 TeV, and interpret the soft SUSY-breaking stop
masses and At as DR-renormalized parameters at the match-
ing scale Q = MS . We remark that, in the considered range
of MS , the prediction ofHSSUSY formh (before the introduc-
tion of the dimension-six operators) varies between 120.2 and
123 GeV in the left plot and between 118.7 and 121.9 GeV in
the right plot, always several GeV below the value measured
at the LHC. Therefore, rather than depicting fully realistic
scenarios, the figure is meant to illustrate the relative impor-
tance of the different effects induced by dimension-six oper-
ators, and how those effects get suppressed by an increase in
the SUSY scale.

The dashed blue lines in the plots of Fig. 3 represent the
inclusion of the sole operator |H |6, with the coefficient c6

computed at one loop and “frozen” at the matching scale
Q = MS . This accounts for theO(m2

t /M
2
S) part of theO(αt )

corrections to the Higgs mass, as given in Eq. (35). We see
that, in these scenarios, the corresponding shift in mh is neg-
ative and rather modest, decreasing from about 470 MeV for
MS = 500 GeV to about 90 MeV for MS = 1 TeV.

The solid red lines in the plots of Fig. 3 represent instead
the inclusion of both of the operators of Eq. (16), with coeffi-
cients c6 and ct computed at two loops and one loop, respec-
tively, and evolved between the scales MS and QEW with
the RGEs of Eq. (37). This accounts also for the O(m2

t /M
2
S)

part of theO(αtαs) corrections to the Higgs mass, as given in
Eq. (38). In the scenario shown in the left plot, corresponding
to mg̃ = MS , the two-loop O(m2

t /M
2
S) corrections appear to

be rather small, never reaching even±100 MeV in the consid-
ered range of MS . However, we must take into account that
the difference between the dashed blue and solid red lines
results from the combination of several effects, namely: (i)

the ct -induced shift in the value of gt used in the whole calcu-
lation, see Eq. (39), whose “indirect” effects on mh we show
for illustration as the dot-dashed green lines; (ii) the inclu-
sion of the two-loop part of the matching condition for c6 at
the SUSY scale; (iii) the evolution of c6 (and of ct ) between
the SUSY scale and the EW scale; (iv) the terms controlled
by ct in the radiative corrections to the Higgs mass at the EW
scale; see Eq. (34). In the scenario of the left plot, the first
three of these effects shift mh by several hundred MeV each
for MS = 500 GeV, but they undergo significant cancella-
tions, whereas the fourth effect is considerably less impor-
tant. On the other hand, in the scenario shown in the right
plot, corresponding to mg̃ = 2 MS , the “indirect” effects of
the shift in gt are reduced due to a smaller value of ct , and
the two-loop contribution to the matching of c6 at the SUSY
scale doubles in size and changes sign, with the result that the
combined effects of the two-loop O(m2

t /M
2
S) corrections are

much more significant than in the left plot, further decreasing
the prediction for mh by about 600 MeV for MS = 500 GeV
and about 130 MeV for MS = 1 TeV.

To assess the relevance of the O(m2
t /M

2
S) logarithmic

effects beyond two loops, we removed from the EFT pre-
diction for the Higgs mass the higher-order terms that are
picked up by solving numerically the RGEs of the Wilson
coefficients in Eq. (37). In practice, we compared our results
for mh with those obtained by “freezing” ct at the SUSY
scale and truncating the evolution of c6 to the first order
in the perturbative expansion – see the terms within square
brackets in Eq. (36). We found that these higher-order log-
arithmic effects are very small in the considered scenarios:
even in the one with mg̃ = MS , characterized by a larger
value of ct and hence a stronger scale dependence of both ct
and c6, the resulting shift in mh reaches a maximum of about
20 MeV for MS ≈ 600 GeV, then decreases for larger MS

as the suppression by a factor m2
t /M

2
S begins to prevail over

the logarithmic enhancement.
Finally, the dotted black lines in the plots of Fig. 3 rep-

resent a naive estimate of the overall size of the O(v2/M2
S)

corrections to the Higgs mass, corresponding to the “EFT
uncertainty” implemented in the code SusyHD. Following
Ref. [67], we obtain that estimate by multiplying the contri-
bution to �λ1� from each SUSY particle with mass Mi by a
factor13 (1 ± 2 v2/M2

i ). It appears that, even in the scenario
of the right plot where the computed O(m2

t /M
2
S) corrections

to the Higgs mass are more significant, the SusyHD estimate
of those effects is larger by about a factor of three. There-
fore, even if the one- and two-loop O(v2/M2

S) corrections
to m2

h that are not included in our analysis – such as, e.g.,

13 To be conservative, we adjust the signs in the rescaling factors for
scalars and EW-inos so that the resulting shifts in �λ1� add up. The
upper edge of the uncertainty band, not shown in the plots, can be
obtained by reversing all signs.
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Fig. 3 Effects of dimension-six operators on the EFT prediction for
the Higgs mass, as a function of a common stop mass scale MS , for
Xt = √

6 MS . In the left plot we take mg̃ = MS , whereas in the right

plot we take mg̃ = 2 MS . The meaning of the different curves and the
values of the remaining MSSM parameters are described in the text
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Fig. 4 Effects of dimension-six operators on the EFT prediction for
the Higgs mass, as a function of the ratio Xt/MS , for a common stop
mass scale MS = 1 TeV. In the left plot we take mg̃ = 1 TeV, whereas
in the right plot we take mg̃ = 2 TeV. The thin vertical lines in the two

plots mark the condition Xt/MS = √
6 . The meaning of the different

curves and the values of the remaining MSSM parameters are the same
as in Fig. 3, as described in the text

the two-loop corrections proportional to g4
t m

4
t /M

2
S – were

as large as the ones that we did compute and had the same
sign, the estimate of the “EFT uncertainty” implemented in
SusyHD would turn out to be sufficiently conservative in the
considered scenarios.

It is legitimate to wonder whether the relatively small size
of theO(m2

t /M
2
S) corrections found in the scenarios of Fig. 3

is just an accident, perhaps related to the choice Xt = √
6 MS

made to ensure a near-maximal prediction for the Higgs mass.
To answer this question, in Fig. 4 we show again the deviation
induced in the EFT prediction for the Higgs mass by the
presence of the dimension-six operators of Eq. (16), this time
as a function of the ratio Xt/MS . We set MS = 1 TeV, and
take all of the remaining MSSM parameters as in the two

scenarios of Fig. 3. In particular, we take mg̃ = 1 TeV in the
left plot and mg̃ = 2 TeV in the right plot. The thin vertical
lines in the two plots of Fig. 4 mark the condition Xt/MS =√

6, i.e. they map the right edge of the corresponding plots in
Fig. 3. The meaning of all other lines is the same as in Fig. 3.

Figure 4 shows that, for a given value of MS , the impact
of the O(m2

t /M
2
S) corrections to the Higgs mass can indeed

be larger than the one found when Xt/MS = √
6 . This hap-

pens in particular for Xt ≈ 0, or for values of |Xt/MS| larger
than

√
6. The figure also shows that for Xt ≈ 0 the SusyHD

estimate of the “EFT uncertainty” falls short of the computed
O(m2

t /M
2
S) corrections to the Higgs mass. Indeed, the main

contribution to the SusyHD estimate is the one from stops,
which – being proportional to the corresponding contribu-
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tion to �λ1�, see Eq. (2) – is maximized for |Xt/MS| = √
6

and vanishes for Xt = 0 (the small non-zero value of the
“EFT uncertainty” visible in the plots at Xt = 0 is due to
the contributions of EW gauginos and higgsinos). In con-
trast, Eq. (27) shows that the one-loop stop contribution to c6

does not vanish for Xt = 0, yielding a shift in mh of about
130 MeV. However, we must recall that moving away from
the “maximal mixing” condition on Xt results in a significant
decrease in the EFT prediction for the Higgs mass, e.g. for
Xt = 0 we would findmh ≈ 110.8 GeV. In order to recover a
prediction for mh within a few GeV from the observed value,
we would need to raise the SUSY scale MS to several TeV,
strongly suppressing all effects of dimension-six operators.
Therefore, the SusyHD estimate of the “EFT uncertainty”
happens to be at its most conservative precisely in the region
of the MSSM parameter space where the O(m2

t /M
2
S) effects

discussed in this section have a chance to be numerically
relevant.

4 Conclusions

If the MSSM is realized in nature, both the measured value of
the Higgs mass and the (so far) negative results of the searches
for superparticles at the LHC suggest some degree of sepa-
ration between the SUSY scale MS and the EW scale. In this
scenario the MSSM prediction for the Higgs mass is sub-
ject to potentially large logarithmic corrections, which can
be resummed to all orders in an EFT approach. Over the past
few years this has stimulated a considerable amount of activ-
ity, aimed, on one hand, at refining the EFT calculation of the
MSSM Higgs mass [65–67], and, on the other hand, at com-
bining it with the fixed-order calculations implemented in
public codes for the determination of the MSSM mass spec-
trum [64,73,75,76]. Here we contributed to these efforts by
providing a complete determination of the two-loop thresh-
old corrections to the quartic Higgs coupling in the limit of
vanishing EW gauge (and first-two-generation Yukawa) cou-
plings, for generic values of all the relevant SUSY-breaking
parameters. We also studied a class of one- and two-loop cor-
rections to the Higgs mass suppressed by m2

t /M
2
S , extending

the SM Lagrangian with appropriate dimension-six opera-
tors. All of our results are available upon request in electronic
form, and they were also implemented in modified versions
of the codes SusyHD [69] and HSSUSY [72].

The numerical impact of the various corrections computed
in this paper turns out to be small, typically below one GeV in
regions of the MSSM parameter space where the prediction
for the Higgs mass is within a few GeV from the observed
value. We stress that this is in fact a desirable feature of
the EFT calculation of the Higgs mass: while the logarithmi-
cally enhanced corrections are accounted for by the evolution
of the parameters between the matching scale and the EW

scale, and high-precision calculations at the EW scale can
be borrowed from the SM, the small impact of the two-loop
corrections computed at the matching scale suggests that the
“SUSY uncertainty” associated to uncomputed higher-order
terms should be well under control. In principle, the advan-
tages of an EFT approach are less clear-cut when there is
only a moderate separation between the SUSY scale and the
EW scale, so that the omission of O(v2/M2

S) effects in the
calculation of the Higgs mass is not warranted. However, our
study of the dimension-six operators suggests that the naive
estimate of the theoretical uncertainty associated to missing
O(v2/M2

S) effects (or “EFT uncertainty”) implemented in
the code SusyHD is indeed sufficiently conservative in the
relevant regions of the MSSM parameter space. The EFT
approach also becomes more complicated when some of the
new particles are much lighter than the rest. For example,
while our results for the two-loop corrections to the quartic
Higgs coupling can be directly applied to the standard split-
SUSY scenario by taking the limit of vanishing gluino and
higgsino masses, scenarios in which both Higgs doublets are
light require a dedicated calculation, in which the effective
theory valid below the SUSY scale is a THDM (see, e.g.,
Ref. [71]).

Finally, we recall that the accuracy of the measurement of
the Higgs mass at the LHC has already reached the level of
a few hundred MeV – i.e., comparable to the effects of the
corrections discussed in this paper – and will improve further
when more data become available. If SUSY shows up at last,
the mass and the couplings of the SM-like Higgs boson will
serve as precision observables to constrain MSSM parame-
ters that might not be directly accessible by experiment, espe-
cially in scenarios where some of the superparticle masses
are in the multi-TeV range. To this purpose, the accuracy of
the theoretical predictions will have to match the experimen-
tal one, making a full inclusion of two-loop effects in the
Higgs-mass calculation unavoidable. Our results should be
regarded as necessary steps in that direction.
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Appendix

We present here the one-loop scalar contributions to the
matching condition for the quartic Higgs coupling, including
all terms controlled by third-family Yukawa couplings:
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2
b

[
ĝ2
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ĝ2
f N

f
c X̃ f

{
2 ĝ2
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, (A1)

where the compact notation used in the sum over the sfermion
species f = t, b, τ is described after Eq. (2), and all loop
functions F̃i are defined in Appendix A of Ref. [66]. In addi-
tion, Q f is the electric charge and T 3

fL
is the third component

of the weak isospin of the “left” sfermion of each species.
We recall that Eq. (A1) assumes that the tree-level part of
the matching condition for λ , see Eq. (1), be expressed in
terms of the EW gauge couplings of the SM and of an angle
β defined as in Sect. 2.2 of Ref. [66]. We also remark that
the third-family Yukawa couplings ĝ f entering Eq. (A1) are
the MSSM ones. As discussed in Sect. 2.1, our choice of
using instead the top and tau Yukawa couplings of the SM
(denoted as gt and gτ ) in the one-loop part of the thresh-
old correction to the quartic Higgs coupling induces shifts in
the two-loop part of the correction; see Eq. (11). Finally, we
note that Eq. (A1) differs from Eq. (11) of Ref. [67] by the
presence of the terms in the third to sixth lines.
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