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Abstract

Growth series of Palaeozoic fishes are rare because of the fragility of larval and juvenile

specimens owing to their weak mineralisation and the scarcity of articulated specimens.

This rarity makes it difficult to describe early vertebrate growth patterns and processes in

extinct taxa. Indeed, only a few growth series of complete Palaeozoic fishes are available;

however, they allow the growth of isolated elements to be described and individual growth

from these isolated elements to be inferred. In addition, isolated and in situ scales are gener-

ally abundant and well-preserved, and bring information on (1) their morphology and struc-

ture relevant to phylogenetic relationships and (2) individual growth patterns and processes

relative to species ontogeny. The Late Devonian acanthodian Triazeugacanthus affinis from

the Miguasha Fossil-Lagerstätte preserves one of the best known fossilised ontogenies of

early vertebrates because of the exceptional preservation, the large size range, and the

abundance of complete specimens. Here, we present morphological, histological, and

chemical data on scales from juvenile and adult specimens (scales not being formed in lar-

vae). Histologically, Triazeugacanthus scales are composed of a basal layer of acellular

bone housing Sharpey’s fibers, a mid-layer of mesodentine, and a superficial layer of

ganoine. Developmentally, scales grow first through concentric addition of mesodentine and

bone around a central primordium and then through superposition of ganoine layers. Onto-

genetically, scales form first in the region below the dorsal fin spine, then squamation

spreads anteriorly and posteriorly, and on fin webs. Phylogenetically, Triazeugacanthus

scales show similarities with acanthodians (e.g. “box-in-box” growth), chondrichthyans (e.g.

squamation pattern), and actinopterygians (e.g. ganoine). Scale histology and growth are

interpreted in the light of a new phylogenetic analysis of gnathostomes supporting acantho-

dians as stem chondrichthyans.
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Introduction

Fish fossilised ontogenies are rare, especially in the Palaeozoic record [1] because the preserva-

tion of weakly mineralised skeletal elements of immature specimens requires exceptional fossi-

lisation conditions. In extinct fish taxa, such as placoderms and acanthodians, the paucity of

ontogenies is problematic because only ontogenies have the potential to inform about develop-

mental patterns and processes in the past. Complete and articulated fossil fishes are rare in the

Palaeozoic record, compared to isolated elements, which are abundant. Among these isolated

elements, some, such as scales, record the ontogeny of the individual and thus provide a

unique opportunity to describe their ontogeny [1, 2]. Fossil model organisms, for which both

abundant individual isolated elements and complete specimens are known, are indispensable

to describe the relationship between individual growth of isolated elements and species ontog-

eny [1].

Among early vertebrates, acanthodians have been recovered both from isolated elements

and complete specimens from the Upper Silurian (423–419 million years ago) [3] to the Mid-

dle-Upper Permian (272–252 million years ago) [4]. Acanthodian species known from com-

plete specimens are relatively rare compared to the number of taxa known solely from isolated

scales [5–7]. Furthermore, only a few acanthodian ontogenies based on complete specimens

have been discovered [1, 8]: one possible ischnacanthiform [Nerepisacanthus denisoni [3]], two

diplacanthiforms [Diplacanthus horridus [9] and Uraniacanthus curtus [10]], one “climatii-

form” [Tetanopsyrus breviacanthias [11]], one species of uncertain order Lupopsyrus pygmaeus
[12]], and nine acanthodiforms [Triazeugacanthus affinis [13, 14], Lodeacanthus gaujicus [15–

18], Homalacanthus concinnus [9], Acanthodes bridgei [19], A. bronni [20], A. gracilis [21], A.

lopatini [22], A. ovensi [23]], and an acanthodiform indet. [24]. The rarity of complete speci-

mens of acanthodians has been attributed to the micromeric nature of the dermal skeleton as

well as the poor ossification of the endoskeleton [17, 25].

The micromeric dermal skeleton of acanthodians, composed of minute scales on the head

and body, has been mainly described from adult specimens. Typically, acanthodian body scales

are small, rhombic and composed of two tissue layers: a basal layer of bone and a layer of den-

tine [26, 27]. Some fundamental, histological differences have been reported among acantho-

dian groups such as the presence of osteocytes usually in the basal layer of the “climatiiform”

scales and only sometimes recognizable in ischnacanthiform scales, the presence of vascular

canals in the dentine layer of the ischnacanthiform scales and the presence of a superficial

well-mineralised layer in some “climatiiform” and acanthodiform scales [5, 26, 28]. With

regard to this disparity and based on tissue composition, Valiukevičius [28] defined four main

types of scales characterising the four acanthodian orders; however, the phylogenetic status of

these orders is questionable [29–31]. In addition, these scale types are only defined from adult

specimens and from a few species. The Nostolepis-type (1) characterises “climatiiforms”: a

thick basal plate of cellular bone, a crown of mesodentine, lacking well-mineralised, enamel-

like tissue at the scale surface [32]. The Diplacanthus-type (2) characterises diplacanthiforms: a

thick, vascularised basal plate of acellular bone, a crown of mesodentine, and no enamel-like

tissue at the scale surface. The Poracanthodes-type (3) characterises poracanthid ischnacanthi-

forms: a basal plate of either acellular or cellular bone, a crown composed of either orthoden-

tine, mesodentine or both, with a pore canal system opening superficially and on the neck, and

no enamel-like tissue at the scale surface. Finally, the Acanthodes-type (4) characterises the

acanthodiforms: a basal plate of acellular bone housing narrow vascular canals, a crown of

mesodentine, and a well-mineralised, enamel-like tissue at the scale surface.

The four types of scales share a similar growth process, mainly characterised by the periodic

superposition of bone and dentine layers around a single primordium. This mode of
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concentric growth is known as the “box-in-box” or “onion skin” pattern [5, 27]. With the

exception of this growth process, scale ontogeny is poorly known mainly due to the destructive

nature of histological methods, which explains why only a few adult specimens were analysed

in previous studies. Non-destructive techniques such as nano-CT scanning [33] or synchro-

tron analysis [2, 34] are promising but their availability is still limited [35]. As a result, histo-

logical descriptions are rare and only the general structure of acanthodian scale tissues is

known, including the presence of a basal layer of bone, a middle layer of dentine, with or with-

out a superficial layer of well-mineralised enamel-like tissue. This structure is generalised

among early gnathostomes but the diversity of histological and fine anatomical features and

growth patterns and processes requires further examination. Therefore, ontogenetic data can

be used to compare acanthodian scales to scales described in other early gnathostomes.

Among the well-documented fossilised ontogenies of Acanthodiformes recorded so far, the

best documented is that of the middle Frasnian mesacanthid Triazeugacanthus affinis from the

Escuminac Formation [13, 14], approximately 380 million years old. Phylogenetically, the

Acanthodiformes are considered either as stem osteichthyans within polyphyletic acantho-

dians [30, 31], paraphyletic, as stem chondrichthyans [36], or as a paraphyletic sister-group of

chondrichthyans and some acanthodians [37]. Given the debated phylogenetic position and

status of the Acanthodiformes, new histological and ontogenetic information are, therefore,

pertinent. Recently, the ontogeny of Triazeugacanthus was described from a large number of

specimens [315 complete or almost complete specimens [38]], ranging in size from 4.51 to

52.72 mm, bridging larval, juvenile and adult stages, and showing exceptional preservation

[13, 14]. This ontogeny demonstrates an increasing number of skeletal elements and a progres-

sive extension of the squamation pattern as body size increases [14]. However, all previous

observations on Triazeugacanthus ontogeny dealt with either changes in gross anatomy [9, 14]

or chemical characterisation of anatomical elements [13], leaving the histological ontogenetic

changes undescribed.

Taking advantage of this exceptional growth series of Triazeugacanthus specimens, we

decided to use this species as a model to describe histological changes during ontogeny at the

individual and species (among individuals) levels. The main objectives of this study were to (1)

describe histological and morphological changes of scales during ontogeny, (2) investigate the

relationship between these changes and the individual and species ontogenies, (3) characterise

the squamation pattern during ontogeny, and (4) discuss phylogenetic implications of histo-

logical and ontogenetic changes.

Institutional abbreviations: MHNM, Musée d’Histoire naturelle de Miguasha, Parc national

de Miguasha, Québec, Canada; MNHN, Muséum national d’Histoire naturelle, Paris, France;

UPMC, Université Pierre et Marie Curie, Paris, France; UQAR, Université du Québec à
Rimouski, Québec, Canada.

Materials and methods

Triazeugacanthus affinis comes from the middle Frasnian Escuminac Formation (Miguasha,

Québec, Canada) [39]. The studied material is housed in the MHNM collections and no per-

mits were required for the described study.

Gross scale morphology was observed with a binocular microscope Leica MZ9.5 under

water immersion, drawn using a camera lucida, and photographed with a Nikon D300. Sam-

ples for scanning electron microscopy (SEM) observations (six juveniles and one adult: S1

Table) were cleaned with 5% acetic acid, dried, glued on an aluminum stub and either sput-

ter-coated with a thin layer of gold or not, according to the type of SEM analyses. Images

were obtained with a Cambridge Instruments Stereoscan 260 SEM (Leica, Cambridge, UK)
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at UPMC. Elemental composition analysis was performed on two specimens [one juvenile

(MHNM 03-398) and one adult (MHNM 03-1497); S1 Table] using an INCA X-sight

(Oxford Instruments) energy dispersive X-ray spectrometer coupled to a JEOL 6460LV

SEM at UQAR. Each spectrum was acquired for 100 seconds of lifetime (process time 5,

spectrum range 0–20 keV, 2000 channels) at an accelerating voltage of 20 kV. Quantitative

optimisation of the system was done using copper as a standard. Elements were automati-

cally identified and quantified in weight by the INCA software and results were normalised

to 100%.

Scale histology was analysed on 17 complete specimens: two early juveniles, in which squa-

mation covers the region below the dorsal fin without extension to the pelvic fins (Fig 1A, 1B,

1F1 and 1F2), 11 late juveniles with incomplete squamation reaching the pectoral and pelvic

fins (Fig 1C, 1D and 1F3), and four adults (Fig 1E and 1F5) (Table 1). The ontogenetic stages

are defined following the criteria established by [14] (Table 1 and S1 Table). Blocks were

restricted to the specimens using a BROT 380V diamond saw, embedded in stratyl resin con-

taining 2% Luperox K1 catalyst, and sectioned into ca. 2-mm thick sections from the head to

the caudal fin, i.e. perpendicular to the antero-posterior body axis, with a Leica 1600 saw

microtome. These transverse ground sections (n = 207, with an average of 12 sections per spec-

imens) were reduced to a final thickness of 150–200 μm using abrasive disks, and then pol-

ished on both sides using alumina powder. Sections were glued with Araldite 2020 on glass

slides and mounted with cover glass (Petropoxy 154 or Araldite 2020). Thin sections were

observed under natural and polarised light with a binocular microscope (either Nikon Eclipse

E600 POL or Leika DM LB2) and photographed with a microscope digital camera AmScope

10MP.

The size and shape of juvenile and adult body scales of Triazeugacanthus (Figs 1–4) were

measured on SEM and ground section images using Adobe Photoshop 14.0 (Fig 5A and S2

Table). Linear regressions between log10-transformed measurements of scale thickness and

width were calculated for 74 juvenile (from two early and three late juveniles) and 144 adult

scales (from three specimens). Mean thickness/width ratio of scales was compared between

juveniles and adults as well as among body regions of juveniles and adults separately. Four

body regions are defined based on previous descriptions of body regions in acanthodiforms

[18, 19]. In Triazeugacanthus, they are delimited by fin positions, which allowed similar mea-

surements among specimens (Fig 2A). The trunk region extends from the pectoral to the anal

fins, the dorsal-anal region extends from the anterior limit of the anal fin to the posterior limit

of the dorsal fin, the post-dorsal region extends from the posterior limit of the dorsal fin to the

mid-length of the ventral web of the caudal fin and the caudal region extends from there to the

posterior extremity of the caudal lobe. Comparisons of scales parameters among body regions

were performed using the non-parametric Kruskal-Wallis test and the Tukey’s multiple com-

parisons test in R 3.0.2. Non-parametric tests were used because of the non-normality of the

data.

The number of growth zones [“Wachstumszones” sensu [26]] in adult scales was recorded

from images of ground sections. Data were taken in the dorsal-anal (region in which the squa-

mation is initiated), post-dorsal and caudal regions. A Spearman correlation coefficient

between the number of growth zones and the total length (TL) of specimens was calculated

with R 3.0.2. The distances between two successive growth zones were measured in 16 adult

scales from four adult specimens. Inter-growth zone distances have been plotted showing the

growth variations among scales for “box-in-box” and superficial growth.

The data used to determine the squamation pattern (i.e. progression of scale coverage dur-

ing growth) were collected from 188 specimens of Triazeugacanthus, with no or minimal taph-

onomic bias [14].

Scale histology and growth of a basal stem chondrichthyan
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Phylogenetic analysis

We included Triazeugacanthus and Lodeacanthus in a revised version of the data matrix

recently published by Burrow et al. [37]. Burrow et al. [37]’s data matrix included 262 charac-

ters: 253 characters from Zhu et al. [36], two characters from Dupret et al. [40], and six original

Fig 1. Development of the squamation pattern in Triazeugacanthus affinis. A-E: Ontogenetic stages with the corresponding

squamation pattern schematically represented in F (1 to 5), respectively. A: Early juvenile MHNM 03-401. B: Early juvenile MHNM 03-2684.

C: Late juvenile MHNM 03-259. D: Late juvenile MHNM 03-435. E: Adult MHNM 03-1497. F: Development of the squamation (grey zones) in

relation to size ranges (not to scale). Dashed lines indicate the presence of median ridge scales. Arrows indicate the direction of the

squamation progression along the body and in the fin webs. Dashed lines indicate the development of the median ridge scales. Arrows

indicate the direction of the squamation progression along the body and fin webs. Scale bars: A-D = 1 mm; E = 10 mm.

https://doi.org/10.1371/journal.pone.0174655.g001
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characters (including one uninformative character). The data matrix of Zhu et al. [36] included

much of the data from Davis et al. [31] and Brazeau [30]. Our data matrix included the 261

characters used by Burrow et al. [37] plus six new characters (see S1 Appendix for the lists of

characters and taxa as well as the data matrix). Twenty-nine characters and character states

have either been rephrased, redefined, or repolarised (Characters 7–9, 11, 13, 18, 19, 26, 31, 51,

81, 104, 149, 160, 167, 177, 182, 190, 191, 195, 196, 209, 241, 242, 246, 252, 257, 258, and 260).

Numerous modifications have been done throughout the matrix and more specifically on

characters related to scales and histological features (Characters 8, 9, 11, 13, 260, 263–266);

changes are given in the list of characters (S1 Appendix) and highlighted in the matrix (S1

File). Coding has been validated for numerous taxa with a special emphasis on Homalacanthus
(M.C. and R.C., pers. observ., and S1 Fig), Cheirolepis [M.C. and R.C., pers. observ., S2 Fig and

[41, 42]], Miguashaia (R.C., pers. observ.), Gogonasus (John A. Long, pers. comm.), and

Eusthenopteron [R.C., pers. observ. and [43]]. Lodeacanthus has been coded based on [17] and

[18] as well as direct observation on the material in the Latvian Museum of Natural History

(Riga) (M.C., pers. observ.). Unknown data (“?”) represent 38.6% of the matrix, whereas not

applicable codings (“-”) represent 18.5% of the total characters coded.

The data matrix (79 taxa and 267 characters) was analysed with PAUP version 4.0b10 [44].

The matrix was rooted on two outgroups (Galeaspida and Osteostraci). All characters were

unordered and unweighted. We used a heuristic search; the branch-and-bound search did not

yielded trees. Maxtrees was set at 100,000. ACCTRAN and DELTRAN options were used. We

performed 1,000 bootstrap replicates using heuristic searches. We set the maximum number

of trees saved for each random sequence addition to 50,000.

Results

Scale morphology

Body scale width ranges from ca. 0.08 mm (12 scales/mm; juveniles) to 0.20 mm (5 scales/mm;

adults), and scale thickness ranges from ca. 30 μm (juveniles) to 60 μm (adults). Ventral scales

are broader than trunk scales (Fig 2B).

Body scales are organised into oblique rows (Fig 2C and 2D) and are imbricated at one fifth

of their length. The anterior region of a scale is overlapped by the elongated, posterior region

of the preceding scale. The dorsal and ventral margins are anteriorly overlapped by the neigh-

bour lateral scales, while they overlap the latter posteriorly (Fig 3A and 3B).

Trunk scales have a diamond-shape crown with a rounded angular anterior margin and a

pointed posterior process. Such morphology is observed in juveniles and adults (Fig 2). The

crown and the base, delimited by a poorly-developed neck (Figs 3, 4A, 4C and 5A), are of

equal depth in juveniles and adults (Fig 3D–3F). The base is flat in juveniles and weakly convex

in adults (Fig 3). The crown surface is flat in juveniles and adults (Fig 3D–3H). In juvenile

specimens, the upper surface is smooth and homogeneous. In some ground sections of juve-

nile specimens (e.g. MHNM 03-210), this surface seems to be cover by a thin organic dark

Table 1. Characteristics of the ontogenetic stages of the acanthodian Triazeugacanthus affinis based on [14].

Larvae Early juvenile Late juvenile Adult

Total length range (mm) 4.5–20.3 12.72–24.5 20.59–38.64 28.36–52.72

Squamation cover no scale dorsal fin region from pectoral fins to caudal complete

Squamation extent (% of total length) 0 <30 30–90 90–100

Cumulative number of skeletal elements at maximum size 13 16 21 23

Number of specimens 31 26 52 79

https://doi.org/10.1371/journal.pone.0174655.t001
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Fig 2. Variation of squamation along the body of Triazeugacanthus affinis. A: Schematic representation of an adult Triazeugacanthus

affinis with position of the four body regions. Regions outlined in squares are detailed in B, C and D. B: MHNM 03-1550, detail of ventral

scales. C: MHNM 03-1819, SEM showing scale alignment in the region below the dorsal fin (2). D: MHNM 03-1497, scale alignment in the

caudal region whiten with ammonium chloride. E: juvenile MHNM 03-2631, SEM showing the organic layer (“epidermal cover”) covering the

trunk scale ornamentation. F: juvenile MHNM 03-1819, SEM of a trunk scale. Arrows point forward. l.l, lateral line; body region 1, trunk; 2,

dorsal-anal; 3, post-dorsal; 4, caudal. Scale bars: A = 5 mm; C = 500 μm; D = 1 mm; E = 250 μm; E (close-up), F = 100 μm.

https://doi.org/10.1371/journal.pone.0174655.g002
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layer. Superficially, this layer covers scale boundaries (Fig 2E unlike in Fig 2F). We interpret

this feature as potential remains of the epidermal cover (Fig 2E). In adult scales, the surface is

ornamented with irregularly spaced microtubercles as revealed by SEM (Fig 4D and 4F).

Scale histology

In juvenile 30 μm-thick scales, ground sections reveal a homogeneous tissue composition (Fig

3H). Cell lacuna and tubules were not identified in the main tissue; these features characterize

either acellular bone or dentine (Fig 3H). The upper surface is not covered with a well-miner-

alised tissue.

Fig 3. Transverse ground sections of Triazeugacanthus affinis scales in natural light. A-B: MHNM 03-2620, scale arrangement on

both sides of the specimen showing the antero-posterior and lateral overlapping of the scales. B: MHNM 03-2620, interpretative drawing of

A. The grey dashed line indicates the boundary between both sides; dark dotted lines indicate dentine tubules; dashed lines indicate the

boundary between the crown and the basal plate. C: Diagram showing position of ground sections D-G in a body scale. D-F: Ground

sections through the anterior, middle, and posterior levels of the scale and their interpretative drawings. D: MHNM 03-1817, the anterior

region of the scale is mostly composed of acellular bone with embedded Sharpey’s fibers, a small, centrally located mesodentine layer, and

thin layers of well-mineralised ganoine. E: MHNM 03-2620, the central region of the scale shows a basal plate of acellular bone, a thick

middle region housing numerous ascending tubules and branched tubules, characteristic of the mesodentine, and a ganoine covering best

visible in lateral regions, showing the growth zones. F: MHNM 03-1817, the posterior region of the scale is organised similarly to the anterior

region of the scale. G: MHNM 03-2620, central region of the scale showing three dentine layers delimited by odontocyte cavities and

tubules; each layer corresponds to a growth zone. H: juvenile MHNM 03-701, transverse section through the scales of a juvenile specimen

showing a homogeneous histological composition. bb, bony base; dt. t, dentine ascending canals and tubules; g, ganoine layer; GZ, growth

zone; m, mesodentine; odont., odontocytic cavities; Sh. f, Sharpey’s fibers. Scale bars: A-G, I = 100 μm; G = 20 μm; H = 10 μm.

https://doi.org/10.1371/journal.pone.0174655.g003
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In contrast to juveniles, ground sections in adult 60 μm-thick scales reveal three distinct tis-

sues (Fig 3D–3G). The following three tissues are found from the deeper to the upper surface:

a fibrillar and homogeneous tissue resembling acellular bone (= type 1), a fibrillar, thick and

well-mineralised tissue (= type 2), and a thin, well-mineralised homogeneous tissue, organised

into several, thin, superimposed layers (= type 3) (Fig 3D). None of the sections showed vascu-

lar canals. Type 1 tissue represents the main tissue forming the so-called basal plate. Neither

osteocyte lacunae nor tubules are observed. This bone-like tissue is found at the base of the

scale, and in the peripheral parts of the scale. In the lateral and posterior parts of the scales, lon-

gitudinal fibers oriented perpendicularly to the scale margin are similar to the Sharpey’s fibers

and are therefore interpreted as collagen bundles (Fig 3D–3F). Type 2 tissue occupies mainly

the central part of the scale, above the basal plate and is less developed in the anterior and pos-

terior regions (Fig 3D, 3E and 3G). It is characterised by the presence of numerous tubules,

often branched and running mostly perpendicular to the upper and lateral surfaces of the

scales. The proximal extremity of the tubule exhibits cell lacuna. These tubules, interpreted as

dentine tubules and cell lacunae, represent the space where odontocyt bodies were located in

the scale. This tissue organisation with ascending tubules, putative horizontal connecting

tubules and isolated odontoblasts is interpreted as mesodentine (Fig 3E and 3G). Up to three

levels of mesodentine cells (i.e., odontocyt cavities and tubules) have been observed in some

adult scales; each level corresponding to a growth zone (Fig 3G). There is a clear boundary

between Type 2 and Type 3 tissues (Fig 4A–4C). Type 3 tissue, covering the upper surface of

the scale, is well-mineralised and organised into several, thin, superimposed layers (Figs 3F

and 4B). This tissue is birefringent and lacks cell lacuna and tubules. SEM observations reveal

that this superficial layer is composed of parallel crystallites oriented perpendicularly to the

scale surface forming rod-like structure (Fig 4E); this organisation suggests that collagen fibers

are absent from the matrix. Microtubercles (ca. 2.5 μm in diameter) of various shapes are irreg-

ularly distributed on the surface of this tissue (Fig 4D and 4F). Individual crystallites are too

small to be clearly recognisable. The mineral of the scale tissues is chemically composed of car-

bonate-fluorapatite (calcium, phosphorus and fluorine; S3 Fig).

Scale ontogeny

Triazeugacanthus scales show two distinct growth patterns: “box-in-box” and superpositional.

The box-in-box” pattern is recognizable in the central part of the scales. It is composed of acel-

lular bone and mesodentine, and reveals concentric addition of layers of bone and dentine

matrix from the primordium towards the periphery, that are interpreted as growth zones (Fig

3D–3G). Growth zones appear as addition of thin dark and thick light layers (Fig 4B and 4C).

This incremental pattern is clearer in the periphery (Fig 3E) than in the centre of the scales.

Added to the “box-in-box” growth of the bony and dentine tissues, we observe the deposition

of a well-mineralised tissue (superficial dark layer) at the upper surface of the scales (Fig 4B)

with intervening dentine (superficial clear layers).

The relationship between the thickness and width of scales differs between juvenile and

adult Triazeugacanthus (Fig 5B). Linear regressions are significant but have a weak coefficient

of determination (R2 = 0.29, p-value = 3.489e−7 in juveniles; R2 = 0.17, p-value = 1.93e−7 in

adults) revealing a high degree of intra- and inter-individual variation (Fig 5C). This difference

is visible in ground sections, reflecting an ontogenetic change in the shape of the basal plate of

the scales (Figs 3 and 5A). The thickness/width ratio differs significantly between juveniles and

adults (Fig 5C: K = 49.96, p-value = 1.57e−12) and among body regions in juveniles (Fig 5D:

K = 9.53, p-value = 0.02), whereas it is similar among body regions in adults (Fig 5E: K = 1.45,

p-value = 0.48). Pairwise comparisons of this ratio among body regions of juveniles show

Scale histology and growth of a basal stem chondrichthyan

PLOS ONE | https://doi.org/10.1371/journal.pone.0174655 April 12, 2017 9 / 31

https://doi.org/10.1371/journal.pone.0174655


significant differences between the trunk and caudal regions (p-value = 0.007) and between

the dorsal-anal and caudal regions (p-value = 0.04) (Fig 5D).

Individual and species ontogeny

Individual ontogeny, i.e. the growth of a single individual, is recorded from the growth zones

observed in scale sections. The bony tissues display zones with relatively fast (clear) and slow

(dark) growth (Fig 3D–3F). Two growth zones are already present in the scales of the smallest

(youngest) available juvenile specimen MHNM 03-701 (33.18 mm TL; Fig 3H). In all adult

scales studied, the number of growth zones range from three to eleven clear zones (Fig 3D–

3F). The strong positive correlation (rs = 0.85, p-value = 0.008) between the number of growth

zones in scales and the total length of the adult specimens reveals a clear relationship between

Fig 4. Superficial hypermineralised tissue of Trizeugacanthus affinis scales. A, C: MHNM 03-1817, ground section in natural (A) and

polarised (C) light. B: MHNM 03-1817, close-up of the superficial multi-layered ganoine. D, F: MHNM 03-1460, SEM of the microtubercles of

the ganoine surface. E: MHNM 03-1699, SEM showing the ganoine crystallites (arrows). Sl, superficial layer. Scale bars: A-C = 100 μm; D

and F = 20 μm; E = 2 μm.

https://doi.org/10.1371/journal.pone.0174655.g004
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Fig 5. Individual and species ontogeny of Triazeugacanthus affinis. A: adult MHNM 03-1817, scale section of an adult specimen with

superimposition (white lines) of the contours of a sectioned scale from a juvenile specimen (MHNM 03-701) [S2 Table for measurements

(grey and white arrows)]. B: Scale thickness/width relationship in juvenile and adult specimens. C: Side-by-side boxplot showing thickness to

width scale ratio in juvenile and adult specimens. D, E: Side-by-side boxplot showing thickness to width scale ratio in various body regions of

juvenile D and adult E specimens. F: Number of growth zones per scale in function of the total length in various body regions of adult

specimens. The regions from which measurements were taken are shown in Fig 2A. Asterisks refer to significant differences between two

groups. Scale bar: A = 100 μm.

https://doi.org/10.1371/journal.pone.0174655.g005
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individual growth (number of growth zones) and species growth (body size of specimens) (Fig

5F). Variation in the thickness of growth zones associated with the “box-in-box” growth indi-

cates non proportional deposition of these tissues, even within individuals (S4 Fig). In contrast,

growth of superficial layers is more constant and displays weaker variation in the thickness of

successive layers than observed in the scale thickness (S4 Fig).

Squamation pattern

Data from 188 complete Triazeugacanthus specimens of various sizes and ontogenetic stages

allowed accurate description of the squamation pattern (Fig 1). From 12.72 to 19.58 mm TL,

juvenile specimens possess a single, small patch of scales on the body, located below the dorsal

fin spine, suggesting that scales initiate first in this region (Fig 1A and 1F1). This patch devel-

ops at the mid-height of the body, but precise position in earliest stages of squamation is diffi-

cult to assess because the body outlines are poorly defined (Fig 1A). Simultaneously, scales of

the dorsal fin web and of the caudal lobe start to develop; scales are added proximo-distally

and organised in multiple rows along the base of the fins. Anteriorly to the progression of this

main body squamation, there is a median row of paired small scales that developed on the dor-

sal edge of the body from posterior to anterior forming a dorsal mid-line. Their position

clearly anterior to the anterior edge of the main squamation and their shape show that they

likely develop earlier than the scales from the main squamation (Fig 1 dashed line and S5 Fig).

In juvenile individuals between 17.90 and 24.50 mm TL, scales cover most of the posterior half

of the trunk, which indicates that squamation extends anteriorly and posteriorly from the ini-

tial region (Fig 1B and 1F2). The squamation progresses first dorsally then ventrally. In 20.59

to 29.57 mm TL specimens, the squamation has expanded anteriorly towards the head, dor-

sally towards the dorsal fin web and posteriorly towards the caudal lobe (Fig 1C and 1F3). In

individuals between 28.13 and 38.64 mm TL, the caudal fin and the posterodorsal part of the

head region are scaled (Fig 1D and 1F4). In adult specimens from 28.36 to 52.72 mm TL, the

squamation is complete on the body, covers the head dorsally, and scales are present on the

pelvic, anal, dorsal and caudal fin webs (Fig 1E and 1F5). None of the adult specimens, even

the largest one (52.72 mm-TL, MHNM 03-1107), display scales associated with the pectoral

and intermediate spines. Dorsal mid-line scales show a ridge at the mid-width of the scale (S5

Fig) suggesting that the paired small scales may have fused during development to form a dor-

sal mid-line of median ridge scales as observed in some basal osteichthyans [45–47].

In adult Triazeugacanthus, 114 scales are counted on the longitudinal row at mid-height of

the body, along the antero-posterior axis from the scapula to the posterior extremity of the

caudal fin. At the deepest part of the body (i.e. between the dorsal and anal fins) a total of 15,

17 and 21 scale rows are present in early juveniles (incomplete squamation), late juveniles

(nearly complete squamation) and adults, respectively.

Phylogenetic analysis

Burrow et al. [37] published the most recent phylogenetic analysis to investigate the phyloge-

netic status of acanthodians in relation to gnathostome interrelationships. Our phylogenetic

analysis of the revised data matrix (see S1 Appendix and S1 File) provided 100,000 equally par-

simonious trees at 711 steps (CI = 0.3952; RI = 0.7949; rescaled CI = 0.3142). Interrelationships

among acanthodian taxa as well as the phylogenetic position of acanthodians among gnathos-

tomes are recovered in the strict (S6 Fig), Adams (S6 Fig) and 50% majority rule consensus

(Fig 6) trees; uncertainties in the topologies come primarily from placoderm and basal

osteichthyan interrelationships (Fig 6, S6 Fig).
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Fig 6. Phylogenetic relationships among early gnathostomes. 50% majority rule consensus tree based on

10,000 trees at 711 steps (79 taxa, 267 characters). Numbers on branches show percentage bootstrap support.

https://doi.org/10.1371/journal.pone.0174655.g006
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As proposed by Brazeau [30], Davis et al. [31] and Burrow et al. [37], the “Acanthodii” are

considered to be paraphyletic with respect to the Chondrichthyes. Ischnacanthiformes and

Diplacanthiformes are basal stem taxa. Triazeugacanthus is considered as the sister-group of

Lodeacanthus in a monophyletic Acanthodiformes. The incertae Euthacanthus, the incertae
gnathostome Ptomacanthus, climatiids, the Lockhovian MOTH Lupopsyrus, the so-called

“putative stem chondrichthyan” Obtusacanthus and Kathemacanthus, the Lockhovian MOTH

Brochoadmones, and the Early Carboniferous Gyracanthides are considered as stem chon-

drichthyans. It takes 22 supplementary steps to move the acanthodiforms, ischnacanthiforms

and diplacanthiforms as stem-osteichthyans in a topology similar to that proposed by Davis

et al. [31].

Discussion

Previous to this study, the scale structure of Triazeugacanthus was poorly known. Here, owing

to the large number of Triazeugacanthus scales sectioned we provide accurate description of

the histology and spatial organisation of the scale tissues and their changes during ontogeny.

The growth series of Triazeugacanthus affinis shows clearly that (1) the histological composi-

tion of the scales increases in complexity during ontogeny from a single, homogeneous tissue

in juveniles to three tissues in adults including the well-mineralised superficial layer, (2) the

central part of the scale grows according to a “box-in-box” pattern and the superficial part

grows by superposition of well-mineralised layers, (3) the shape of the scales varies among

body regions and ontogenetic stages, (4) the number of growth zones in scales is positively cor-

related with the total length, and (5) the squamation is initiated in the mid-body region, at the

level of the dorsal fin, then spreads bidirectionally. In addition, this histological investigation

of Triazeugacanthus contributed to the reinterpretation of certain scale characteristics

included in a revision of the phylogenetic analysis of gnathostomes with a special emphasis on

acanthodians.

In order to discuss the histological characters observed in Triazeugacanthus, we will first

discuss some of the major results from the phylogenetic analysis (S1 Appendix). The original

objective of this re-analysis was to include two new taxa in Burrow et al. [37]’s data matrix,

Triazeugacanthus and Lodeacanthus [a species suggested as closely related to Triazeuga-
canthus [12, 18]], in order to discuss the histological observations in a phylogenetic context

(S1 Appendix). As a result of our modifications, the new consensus topology differs slightly

from Burrow et al. [37] but agrees with the overwhelming tendency to consider acanthodians

as paraphyletic.

Only four recent phylogenetic analyses addressed specifically the phylogenetic status of

acanthodians [12, 30, 31, 37]. In three of these analyses, acanthodians are recognised paraphy-

letic; the acanthodian paraphyly is also recognised in studies focusing on gnathostome interre-

lationships with a special emphasis on placoderms [36, 48]. In both Brazeau [30] and Davis

et al. [31], some acanthodians are considered as stem gnathostomes and stem chondrichthyans

while acanthodiforms are stem osteichthyans. Burrow et al. [37] proposed that acanthodians

are solely stem chondrichthyans; this conclusion had already been reached in part prior to the

phylogenetic analysis in Zhu [36] and Burrow and Rudkin [3]. Burrow and Rudkin [3] had

suggested that acanthodians were either stem chondrichthyans or the monophyletic sister-

group of chondrichthyans. Chondrichthyan affinities were also suggested by Brazeau and

Friedman [49] and Giles et al. [50]. On the other hand, Hanke and Davis [12] suggested a

monophyletic Acanthodii sister-group to osteichthyans and Dupret et al. [40] suggested a

monophyletic Acanthodii sister-group to chondrichthyans; the monophyly had repeatedly

been suggested for more than 40 years (e.g. [25, 29, 51, 52]).
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The main differences between our topology and that reported by Burrow et al. [37] come

from the order of “acanthodian” taxa along the stem. In our topology, climatiids are closer to

putative chondrichthyans (i.e. Brochoadmones, Kathemacanthus, Obtusacanthus, and Lypop-
syrus) rather than being at the base of the clade [37]. Furthermore, as suggested by Brazeau

and Friedman [49], Ptomacanthus is closer to the chondrichthyans than the main acanthodian

clade.

In addition to the phylogenetic characters, we compiled S4 Table from previously described

scales in 43 acanthodians (including putative chondrichthyans), four early chondrichthyans

and four early osteichthyans.

Morphology and histology of acanthodian scales

Typically, acanthodian scales are rhombic with overlapping of neighbour scales, and organized

in oblique rows [character 14(1)]. Each scale being attached to the neighbour scales and to the

underlying dermis by Sharpey’s fibers [5]. Their crown surface is often ornamented and their

neck is clearly constricted [5] [character 11(1)]. In contrast to the general condition, the scales

of Triazeugacanthus are diamond-shaped, they only slightly overlap, the crown surface is

smooth with subtle microtubercles, the neck is poorly developed and the base is convex [in

contrast to the flat base reported by Burrow and Young [7]] [characters 12(1), 13 (0)]. The

number of flank scales per millimetre in Triazeugacanthus fits within the acanthodiform range

(2–16 scales/mm) which is higher than in most other acanthodians (S4 Table).

Acanthodian scales are commonly described as composed of two tissues: a deep basal plate

formed either by acellular or cellular bone and a crown region composed of multiple layers of

dentine (S4 Table) [53] (character 4). In most acanthodians, the basal plate is primarily acellu-

lar or occasionally cellular, whereas the crown is composed of mesodentine with a few excep-

tions in which it is composed of orthodentine (S4 Table). In previous descriptions (S4 Table),

the composition of the crown was frequently referred simply as dentine. The distinction

between the two types of dentine found in acanthodians (orthodentine and mesodentine; the

semidentine being restricted to placoderms; character 5) takes into account the relative posi-

tion of the cell bodies or odontoblasts. Mesodentine is characterized by cell bodies embedded

within the dentine matrix, whereas in orthodentine all cell bodies are located at the matrix sur-

face, along the walls of vascular canals or pulp cavities [53]. The crown of Triazeugacanthus
scales is clearly composed of mesodentine. Narrow vascular canals, even if they are absent in

the crown, could be present in the basal plate of some acanthodiforms. In Acanthodes bronni,
the scale structure is characterised by the presence of dentine tubules in the crown and cell

processes in the basal plate [54], with a clear boundary between the two zones [26]. However,

in acanthodiforms (in which scales are small in comparison to other acanthodians), the canal

network at the base is reduced to thin tubules where remnants of a vascular plexus are present

in the centre of the scale (such as in Halimacanthodes) [55]. This absence of nutrient supply

through vascularisation could explain the presence of mesodentine, with a rich network of

long tubules. Triazeugacanthus shows the typical Acanthodes-type defined by Valiukevičius

[28]; this condition could be considered derived among acanthodians.

Based on the topology, there seems to be no strong phylogenetic signal associated with the

presence of the different types of dentine among acanthodian taxa. This is in contrast to Davis

et al. [31] who suggested that mesodentine was found at the base of a large clade [“acantho-

dians” + [[“acanthodians” + chondrichthyans] + [“acanthodians” + osteichthyans]]], and also

Brazeau [30], who suggested that mesodentine was only characteristic of the clade [“acantho-

dians” + osteichthyans]. The type of dentine might be phylogenetically informative at a higher

phylogenetic level, but the coding of this character is certainly in need of revision.
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Among acanthodians, the scale surface is either smooth (unornamented) or ornamented

with longitudinal or radiating ridges, which cover either the complete surface of the scales or

are limited to the anterior edge. At the base of the chondrichthyan total-group, scales have pri-

marily a ridged crown surface as the main condition in ischnacanthiforms (some species do

have a smooth surface S4 Table) and diplacanthiforms. Based on our topology, the smooth sur-

face is most likely independently derived in acanthodiforms; the smooth surface also occurs in

some climatiids and early ischnacanthids [56]. With the exception of Lupopsyrus, so-called

putative chondrichthyans and Gyracanthides have an ornamented scale surface owing to their

polyodontode condition [character 8(0)].

The smooth scales of acanthodians are occasionally covered by minute superficial microtu-

bercles [55, 57, 58]. Such microtubercles are also present on the scale surface of some osteichth-

yans (e.g. Polypterus and Lepisosteus) [58–60]. In adult Triazeugacanthus, the crown surface is

ornamented with microtubercles, similar to those described on the crown surface of the scales

in three acanthodiform taxa [i.e. Acanthodes sp., acanthodiform indet. [61] and Halima-
canthodes ahlbergi [55]] (S4 Table). The presence of these microtubercles has been considered

as characteristic of ganoine [27, 58, 60, 62–65]. However, in order to conclusively show the

presence of ganoine in Triazeugacanthus histological and SEM investigations were necessary.

The crown surface of acanthodian scales is generally covered by a hypermineralised tissue

(S4 Table) (characters 264, 265, and 266). The identification of this hypermineralised tissue is

still controversial since it was interpreted either as enamel, enameloid or ganoine [60, 65, 66].

Enamel is a homogeneous tissue that does not include collagen fibrils nor cells during its devel-

opment [65]. The mature enameloid differs from the enamel by the presence of a loose net-

work of collagen fibres resulting in less ordered mineral crystals [53]. The mature ganoine is a

non-collagenous tissue and differs from dental enamel by the presence of multiple layers [53,

65]; single-layered ganoine is accepted by some authors [60]. Ganoine is considered as homol-

ogous to enamel by some others [42, 67, 68]. Ganoine is known unambiguously in early acti-

nopterygians [42, 60, 69] as well as extinct and extant polypterids and lepisosteids [53, 60]. As

a result, the presence of ganoine has been frequently considered as an actinopterygian synapo-

morphy [64, 65, 70, 71]. However, the identification of ganoine in acanthodians has been sug-

gested to invalidate this character as an actinopterygian synapomorphy [60, 66]. Only few

reports have suggested the presence of ganoine in acanthodians, and its proper identification

remains questionable. In one species of acanthodians, referred to Acanthodes sp. 4 [61],

ganoine was identified solely on the presence of superficial microtubercules. Burrow et al. [55]

identified the presence of birefringent enameloid in the scales of Halimacanthodes ahlbergi
based on both the presence of superficial microtubercules and the multi-layered nature of the

tissue, a description that corresponds to ganoine rather than to enameloid as the latter is not

layered [65]. Richter and Smith [60] suggested the presence of enamel-like ganoine in a scale

identified as “Cheiracanthoides” sp. based on the multi-layered superficial tissue which lacked

the microtubercules. In adult Triazeugacanthus scales, the superficial layer consists of crystal-

lites organised perpendicularly to the scale surface. However, these crystallites were too small

to be clearly recognisable, a condition similar to that observed in the Late Silurian “Cheira-
canthoides” sp. [60]. Richter and Smith [56] mentioned that an unclear or non-existent

boundary between the dentine and the superficial hypermineralized layer seems to be the com-

monest condition in acanthodian scales. This unclear boundary is an additional argument that

these authors used to question the clear identification of ganoine in acanthodians. However,

the boundary between the mesodentine and the hypermineralised tissue in the scales of Tria-
zeugacanthus is clear and distinct. Therefore, we interpret the superficial hypermineralised tis-

sue on the body scales of Triazeugacanthus as ganoine based on the presence of microtubercles

at the crown surface, the multi-layered structure, the perpendicular orientation of the mineral
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crystallites to the scale surface suggesting that collagen fibers are not present in the matrix

[72], and the clear boundary with the mesodentine. As far as we know, this makes it the first

unambiguous identification of ganoine in an acanthodian.

As proposed by Valiukevičius [28] and Valiukevičius and Burrow [32], various groups of

acanthodians shared histological similarities of their scales. These similarities led to the recog-

nition of four types of scales: the Nostolepis-type (1) (in “climatiiforms”), the Diplacanthus-
type (2) (in diplacanthiforms), the Poracanthodes-type (3) (in ischnacanthiforms), and the

Acanthodes-type (4) (in acanthodiforms). Based on our topology, a sequence of Pora-
canthodes-type—Diplacanthus-type—Acanthodes-type—Nostolepis-type would form a trans-

formation series precursor to the polyodontode scales found in putative chondrichthyans

Gyracanthides and chondrichthyans. However, the phylogenetic distribution of some of the

different characteristics (acellular or cellular base, vascularised or avascularised base, ortho-

dentine or mesodentine, presence or absence of enamel-like tissue) defining these four types is

not congruent with our topology. The distribution of dentine and hypermineralized tissue

types is homoplastic; thus suggesting that these scale types might be informative to identify

acanthodian groups but are poorly informative phylogenetically.

One would expect that closely related species are more likely to share similar histological

composition. Triazeugacanthus is considered as the sister-group of Lodeacanthus [12, 15, 18

this study] which is reflected in part by some histological similarities (e.g. mesodentine and

acellular bony base) (S4 Table) [18]. However, major histological differences are also observed:

Lodeacanthus scales show the presence of vascular canals in the crown and a layer of hypermi-

neralised superficial tissue, while Triazeugacanthus scales lack vascular canals but have multi-

layered ganoine.

At a higher phylogenetic level, a few histological scale characters are suggestive of phyloge-

netic affinities. For example, the presence of ganoine in Triazeugacanthus would suggest a phy-

logenetic affinity with actinopterygians. However, as we have demonstrated it would require

minimally 22 steps to place the acanthodiforms [and related taxa as suggested by Brazeau [30]

and Davis et al. [31]] as the sister-group to osteichthyans, while it would require either 26 or

39 additional steps to place Triazeugacanthus alone as the sister-group of actinopterygians or

basal osteichthyans, respectively. The presence of ganoine alone cannot support a close rela-

tionship between some acanthodians and actinopterygians. An additional character shared by

Triazeugacanthus [14, 73], numerous acanthodiforms, and osteichthyans is the presence of

three pairs of otoliths [74, 75]. Schultze [74, 75] considered the presence of three pairs of oto-

liths as a synapomorphy shared by acanthodians (acanthodiforms) and osteichthyans. How-

ever, the rarity of information concerning the presence of this character would not have an

impact on the resolution of the tree. For instance, none of the osteichthyan taxa used in this

phylogenetic analysis could be coded for the presence of otoliths while Triazeugacanthus,
Homalacanthus, Mesacanthus, and Acanthodes would have been coded as sharing three pairs

of otoliths [75]. Similarly the paucity of endochondral information for acanthodian taxa limits

potentially our phylogenetic resolution of this group [76].

Assessment of individual and species ontogeny from scale growth

pattern

The abundant material of Triazeugacanthus allowed us to evaluate both ontogenetic changes

within a single individual by looking at scale growth, and ontogenetic changes among individ-

uals by comparing morphology and histology along a size series. Individual growth of Triazeu-
gacanthus had already been alluded by Gagnier [77] who mentioned two distinct orders of

growth lines in a saccular otolith. On the other hand, Triazeugacanthus ontogeny had already
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been evaluated among individuals by looking at body shape changes [9], size changes [14],

squamation pattern [14], and mineralisation pattern [13]. In the present investigation, we

intended to combine all ontogenetic information.

Scale growth process varies among acanthodians. Most acanthodian scales grow by addition

of concentric layers of mesodentine (or orthodentine) forming growth zones which results in

the classical “box-in-box” (or concentric “onion skin”) pattern [5] [character 9 (1)]. This “box-

in-box” pattern has been reported in the acanthodids Acanthodes bridgei, A. lopatini, and A.

lundi, the cheiracanthid Homalacanthus concinnus (S1 Fig), all mesacanthids, some Dipla-

canthiformes, Climatiiformes and Ischnacanthiformes [5, 19] (S4 Table). In addition to this

“box-in-box” growth, the superficial region of the scale might thicken by the superimposition

of ganoine layers as described in Triazeugacanthus. In living polypterid and lepisosteid acti-

nopterygians, the first layer of ganoine matrix is deposited on the scale surface only when the

basal layer cells of the epidermis become in close contact with the upper layer of either the den-

tine (polypterids) or bone (lepisosteids) matrix [67, 68, 78]. In lepisosteids and polypterids, the

epidermal cells partially retract periodically from the scale surface allowing the mesenchymal

cells to invade the space left free between the epidermal basal cells and the scale, in particular

in the lateral parts. We observed the same growth pattern at the surface of Triazeugacanthus
scales. Therefore, Triazeugacanthus scales show two growth modes: (1) the “box-in-box”

growth for mesodentine and basal bone and (2) the superpositional growth for ganoine.

The “box-in-box” growth pattern has frequently been considered as an acanthodian syn-

apomorphy [5, 25, 79] or defining a sub-inclusive acanthodian clade [76]. Although the

“box-in-box” pattern is recognised by most authors as a generalised condition among

acanthodians, there are some disagreements in terms of recognising this growth pattern as

either characteristic of monodontode (monoodontode) or polyodontode scales. Monodon-

tode scales represent scales composed of a single unit, the odontode (vascular supply takes

place through basal canals and/or neck canals) [80]; they either grow, or not, by concentric

addition of dentine and bone layer. On the other hand, polyodontode scales correspond to a

complex of fused or apposed odontodes (i.e. independent single units) lying on a bony basal

plate and showing areal or appositional growth [2, 80–85]. Considering the “box-in-box” of

acanthodians, Ørvig [80] referred to these scales as odontocomplex without mentioning if

they were either monodontode or polyodontode. The “box-in-box” scales of acanthodians

and early actinopterygians (e.g. Cheirolepis canadensis S2 Fig) are considered as monodon-

tode (contra [30, 31, 37]) because of the presence of a single primordium per scale and the

non-independence of individual growth layers. We suggest that each layer does not represent

a single, separate unit (i.e. each layer is not a separate odontode) but rather an accretion

around an initial unit; however, 3D microanatomical and histological data would be neces-

sary to clarify this issue (see [2]). Based on our topology, the “box-in-box” growth pattern,

occurring at the base of the total-group chondrichthyan, was replaced by polyodontode

scales growing through appositional and areal growth in putative chondrichthyans [12, 29,

86, 87] and chondrichthyans [83, 88]. However, the polyodontode growth was already pres-

ent prior to the origin of the total-group chondrichthyans since it is present in osteostracans

[89, 90], in placoderms [91] and also in basal osteichthyans [2]. Furthermore, even in basal

stem chondrichthyans, such as the Silurian ischnacanthiform Nerepisacanthus denisoni,
“box-in-box” scales are present on the body and areal-growth polyodontode scales are pres-

ent on the cheek region (S4 Table) [3]. Such polyodontode-type tesserae and Nostolepis-type

scales are also found in the Early Devonian ischnacanthiform Acritolepis ushakovi [92].

Therefore, the “box-in-box” growth represents an evolutionary novelty at the base of the

total-group chondrichthyans, but the presence of polyodontode scales (or the potential of

forming polyodontode scales) remained present.
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It is also likely that the so-called polyodontode condition regroups different and similar but

non-homologous growth patterns. We agree with Qu et al. [2] who concluded that a complete

revision of paleohistology of early vertebrates is needed.

Scale ontogeny is described from a single element, and then individual ontogeny is inferred.

We showed that scale ontogeny reflects the individual ontogeny in Triazeugacanthus. For

example, ganoine has not been observed in ground sections of juvenile Triazeugacanthus,
whereas it was unambiguously present in adults. This ontogenetic difference suggests that

ganoine develops later in ontogeny when mesodentine and bone are well developed. One

could suggest that the ganoine layer could have been abraded during the fossilisation process,

however, the outer surface of juvenile scales is covered with tissues interpreted as skin rem-

nants (epidermis and mesenchyme) (Fig 2E). Thus, this difference reflects a true ontogenetic

change rather than a taphonomic bias. The condition observed in Triazeugacanthus shows

similarities with that found in the living Polypterus senegalus. In this basal actinopterygian, the

scales extend first in surface area then in thickness and subsequently the ganoine layer is

deposited only when the upper dentine layer is well developed in late juveniles [59, 67, 68].

Therefore, the late ontogenetic formation of ganoine in Triazeugacanthus is similar to what is

described for the ganoine deposition in lepisosteid and polypterid scales [68, 93].

Different scale shapes have been reported along the body (and head) of acanthodians [6, 7,

18, 37, 94–96]. One of these changes reported in various acanthodians (e.g. Climatius, Ptoma-
canthus, Lodeacanthus) is the presence of flat-based scales anteriorly and bulging-based scales

posteriorly [18, 96]. In Lodeacanthus, Upeniece [18] described two types of scale bases in juve-

niles: fully-developed conical (or bulging) bases (type 1) and incompletely-developed flat bases

with a deep ventral pit (type 2) from the ventral and dorso-lateral areas of the prepectoral

region. Based on our findings on the bidirectional pattern of squamation from a relatively pos-

terior origin in Triazeugacanthus, anterior scales would develop later in ontogeny than poste-

rior scales, and thus would exhibit a younger phenotype. We suggest that type 2 (flat base) of

Lodeacanthus corrresponds to younger scales (as in juvenile Triazeugacanthus), whereas type 1

(convex base) of Lodeacanthus corresponds to older scales (as in adult Triazeugacanthus) (Fig

7A and 7B). The allometry of the thickness/width ratio in Triazeugacanthus scales indicates

that body scales grow first in area then in thickness (as already mentioned for Polypterus). This

thickness change is reflected morphologically by the change in the shape of the basal layer

from a flat surface in juveniles to a convex surface in adults. Retention of flat-based scales in

the anterior part of body in adults (such as in Ptomacanthus) could suggest a heterochronic

shift showing a juvenile feature in the last scales to develop. This presence of anterior flat-base

scales has also been mentioned for scales attributed to chondrichthyans [96].

Growth zones are recognised in extant fish scales and are generally related to periodic

changes of environmental conditions (seasonal or annual cycles) promoting the intake of

nutritive elements [97–99]. Such variations, revealed by the alternation of short dark zones

(rest zones) and large light zones (growth zones), occurred also during Triazeugacanthus life

(Fig 3). Based on the growth of complete Triazeugacanthus specimens and that of isolated ele-

ments, we showed that the individual growth of scales is correlated to species ontogeny as sug-

gested by Zidek [19] and Karatajute-Talimaa [88]; this is in contrast to Valiukevičius [32] who

mentioned that the number of growth lamellae do not reflect the developmental stage of the

animal. “box-in-box” growing scales are reliable proxies of species growth.

Squamation pattern

In acanthodians, the squamation pattern has only been described in some acanthodiforms (S4

Table). Based on the literature, the general acanthodiform pattern of squamation is
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characterised by an initiation in the caudal region and an anterior progression following ini-

tially the lateral line trajectory [18, 19, 100] (Fig 7). Such pattern was described in various spe-

cies [i.e. Acanthodes bridgei [8], A. bronni [20], A. gracilis [21], A. ovensi [23], Lodeacanthus
gaujicus [18]] and is shared with some early actinopterygians [1, 101] and many extant teleost

fish [102, 103] (Fig 7). This observed caudal-rostral progression differs from the hypothesized

direction suggested by Hanke and Wilson [29]. In their phylogenetic analysis of acanthodians,

Hanke and Wilson [29] coded for a character (their character 21) that takes into account the

scale growth origin (or initiation). The 20 acanthodian taxa, with the exception of Obtusa-
canthus and Lupopsyroides (which they used as out-groups), were coded as having the first

scales develop below the second dorsal fin (assuming that dorsal fin of the single-dorsal-fin

taxa correspond to the second dorsal fin). They used the larger size of the scales as a proxy of

the first formed scales.

Fig 7. Development of the squamation pattern in various acanthodiformes (A-F) and actinopterygians (G-H). A: Triazeugacanthus

affinis. B: Lodeacanthus gaujicus [modified from [18]]. C: Acanthodes bronni [modified from [20]]. D: Acanthodes ovensi [modified from [23]].

E: Acanthodes gracilis [modified from [21]. F: Acanthodes bridgei [modified from [8]]. G: Elonichthys peltigerus [modified from [1]]. H: Danio

rerio [modified from [104]]. Estimated total length is given in A to G, whereas standard length is given in H.

https://doi.org/10.1371/journal.pone.0174655.g007
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In Triazeugacanthus, we found a pattern of squamation similar to that suggested by Hanke

and Wilson [29] rather than that described from growth series in the literature. Based on the

progression of the squamation from the size series and scale proportions, the squamation of

Triazeugacanthus is initiated in the posterior region of the body, below the dorsal fin and pro-

gresses bidirectionally; the postero-anterior direction is predominant over the antero-posterior

direction because of the relatively posterior position of the site of initiation. As a result the

number of rows as well as the number of scales per row increases during the ontogeny of Tria-
zeugacanthus. This information refutes the hypothesis suggested by Karatajute-Talimaa [88]

that the number of scales remained stable during the ontogeny of acanthodians.

General conditions of squamation have already been described in different taxonomic

groups. The squamation of the heterostracan Dinaspidella elizabethae developed first ventrally

and dorsally following an antero-posterior direction [105]. Such an antero-posterior pattern is

also described for the thelodonts Lanarkia horrida [106], Loganellia scotica [107] and Thelodus
laevis [108]. There is only few information relative to the direction of squamation for placo-

derms [i.e., ontogeny of Asterolepis ornata [18]]. Although the information is sparse for jawless

vertebrates and early gnathostomes (and not necessarily representative of the complete phylo-

genetic diversity), an antero-posterior patterning of body scales is suggested to be plesio-

morphic for vertebrates.

The scarce information available in Palaeozoic chondrichthyans indicates that scales are

present first along the lateral line [109–111]. In extant chondrichthyans, scale development is

generally considered to differ from other gnathostomes because head and body scales do not

form sequentially but rather simultaneously and in a non-regular pattern [104, 112–114].

However, Johanson et al. [113, 114] described an initiation of primary scale (or patterned tail

scales) development on the extremity of the caudal fin progressing anteriorly along the caudal

peduncle, then followed by a more irregular origin and arrangement of body scales, from ante-

rior to posterior, to cover the ventral and dorsal lobes of the caudal fin; the initial sequential

caudal scales are subsequently lost during ontogeny. Johanson et al. [113, 114] suggested that

this regulated and sequential development of the caudal primary scales retained in early ontog-

eny may represent the plesiomorphic condition for chondrichthyans.

In the living basal actinopterygian Polypterus senegalus, there are two sites of squamation

initiation which start almost simultaneously [115]: an anterior site located just behind the

pectoral girdle, and a second site in the caudal region. In both sites, scales form close to the

lateral line. Thus, in Polypterus, scales develop antero-posteriorly from the anterior site and

bidirectionally from the caudal site. In the Carboniferous actinopterygian Elonichthys pelti-
gerus [1, 116] and the Triassic Brookvalia gracilis [111], scales initiate in the anterior region

of the body near the lateral line and progress posteriorly (Fig 7G). This antero-posterior pat-

terning is also conserved in the living Amia calva, where the first scales form on the lateral

line just behind the pectoral girdle then the squamation extends posteriorly along the lateral

line [117, 118]. In the living Lepisosteus oculatus and L. osseus, the first scales appear along

the lateral line in the tail region, then the squamation spreads anteriorly [119, 120]. Sire and

Akimenko [104] reported that the main generalised condition of scale development in tele-

osts (Fig 7H) is the initiation of the first scales along the midline row at the level of the cau-

dal peduncle, followed by a rapid progression of the squamation anteriorly and posteriorly

along this row, while new rows are added ventrally and dorsally. Although further informa-

tion relative to the squamation patterning in actinopterygians are needed, it seems that the

plesiomorphic condition for the group is the antero-posterior direction, and that a postero-

anterior direction (similar to the acanthodian pattern) would have occurred near the base of

the neopterygians; however, as reported in Polypterus, both patterns are present in some

species.
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Independently of the direction of progression, Johanson et al. [113] considered that the

presence of scale patterning maintained through ontogeny might be a synapomorphy of

crown group gnathostomes. Our data on acanthodian scale patterning through ontogeny cor-

roborates this hypothesis. The bidirectional pattern of squamation in juvenile Triazeuga-
canthus is similar to the pattern reported in most acanthodian [29] and teleost fish [102], while

a unidirectional development seems to be restricted to some acanthodiforms and living chon-

drichthyans during early ontogeny solely. The difference between the pattern described for

Triazeugacanthus and that reported for acanthodiforms might be biased by the greater number

of specimens observed, the availability of younger developmental stages and the exceptional

state of preservation allowing the fossilisation of soft and weakly mineralised tissues such as

developing scales. The squamation pattern observed in acanthodians might well represent a

precursor condition to that of chondrichthyans which would also corroborate the stem-group

position of acanthodians.

Three hypotheses, mainly based on scale development in teleost fish, are given concerning

the region of first scale development: (1) gene expression patterns, (2) lateral line induction,

and (3) mechanical constraints imposed to the fish skin during swimming [102]. The first

hypothesis suggests a role of Shh and/or ScShh which is known to be involved in the positional

specification along the antero-posterior axis in vertebrates [114, 121]. Shh expression is

involved in the control of epidermal-dermal interactions but seems not essential for scale initi-

ation and patterning of squamation [104]. The second hypothesis proposes that the develop-

ment of the lateral line neuromasts during the embryonic phase of fish ontogeny could induce

the formation of the first scales notably because whatever the portion of the body from which

the scale initiate (anterior or posterior), their development follows the lateral line in several

actinopterygians [122–124]. However, Wada et al. [125] have shown that the final position of

each terminal neuromast coincided with the position of a scale in the proximal region of the

caudal fin in zebrafish. They suggested that the prospective scale region may emit chemoat-

tractive factors that regulate neuromast migration. Thus, scale patterning would in part regu-

late lateral line patterning rather than the opposite. The third hypothesis is suggested by the

flexibility of the body in the mobile posterior region, which has been proposed as a possible

factor triggering early scale formation in this region [102, 103]; however, the anterior site of

initiation would not be subject to special mechanical epigenetic constraint. In extant teleosts,

opposite directions of squamation development are observed in closely related species such as

in two cyprinids (posterior-anterior in Danio rerio versus anterior-posterior in Cyprinus car-
pio) and were related to swimming mode in juveniles prior to scale formation [102, 103]. Our

data on Triazeugacanthus squamation do not allow us to choose among the three hypotheses.

However, the progression seems to be following grossly the trajectory of the lateral line system

and most likely the body shape of Triazeugacanthus would suggest some type of undulatory

locomotion with greater amplitude of movement in the dorsal-caudal region. On the other

hand, the conservatism of patterning among acanthodians as well as the relative conservatism

in other groups would rather suggest the importance of fundamental developmental pattern

under the control of gene expression.

Conclusion

The fossilised ontogeny of the Late Devonian acanthodian Triazeugacanthus allowed us to

describe a scale structure similar to the Acanthodes-type scale and to define a bidirectional pat-

tern of squamation. We identified three tissues composing the scales (i.e. a basal layer of acellu-

lar bone, a middle layer of mesodentine and a superficial layer of ganoine). Ontogenetic data

(thickness/width ratio, growth zone distances, and squamation pattern) allowed us to
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recognize two types of growth (i.e. the “box-in-box” growth of mesodentine and basal bone

and the subsequent superimpositional growth of the well-mineralised ganoine layer). Triazeu-
gacanthus scales show similarities with acanthodians (e.g. “box-in-box” growth), chondrichth-

yans (e.g. squamation pattern), and actinopterygians (e.g. ganoine), which phylogenetically are

interpreted considering acanthodians as stem chondrichthyans. The usage of scales as proxies

to study developmental patterns and processes in extinct groups [1, 2], such as acanthodians,

opens the possibility to not only determine phylogenetic relationships but infer developmental

novelties important during the evolutionary history of early vertebrates.
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S1 Table. Triazeugacanthus affinis specimens used for either histology or SEM-EDS X-ray

analyses. Squamation cover and extent (as percentage of total length) are measured from head

to tail.
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S2 Table. Data for linear regressions and ANOVA analysis related to ontogenetic stages of

Triazeugacanthus affinis. Thickness and width values obtained from transverse ground sec-

tions of scales are given in log10 and μm, except for thickness/width where values were

log10(x + 1)-transformed.

(PDF)

S3 Table. Results from successive deletion of characters pertaining to the histology, mor-

phology and growth of scales and two spine characters. Only the characters relevant to

acanthodian taxa have been deleted. For each analysis the length of the trees, the number of

trees, as well as the resulting phylogenetic status of the acanthodians and the identification of

the taxa at the base of either the monophyletic acanthodians or the total-group chondrichth-

yans have been recorded.

(PDF)

S4 Table. Comparison of scale composition in various early gnathostomes. A, anterior; GZ,

growth zone; P, posterior.

(PDF)

S1 Appendix. Phylogenetic analysis. List of characters, coding matrix and results.

(PDF)

S1 File. Data matrix for phylogenetic analyses of gnathostomes.

(NEX)

S1 Fig. Scales of the Frasnian acanthodiform Homalacanthus concinnus, Escuminac For-

mation, Miguasha, Quebec, Canada. A-D: MHNM 03-2215. A: SEM of the body squamation

showing the alignment. B: Details from two scales showing the superficial ridges. C: SEM

observations of a transverse section. D: Transverse ground section under polarised light. b,

acellular bone; m, mesodentine; en, well-mineralised layer; l.l, lateral line; ne, neck; ri, superfi-

cial ridge; Sh, Sharpey’s fibers. Scale bar = 1 mm in A, 200 μm in B, 100 μm in C, 50 μm in D.

(TIF)

S2 Fig. Scales of the Frasnian actinopterygian Cheirolepis canadensis, Escuminac Forma-

tion, Miguasha, Quebec, Canada. A: MHNM 05-53, SEM of the body squamation. B:

MHNM 05-53, details showing the ridged scale surface and the broad base. C: MHNM 05-152,

SEM of lepidotrichial segments showing the ornamentation. D: Transverse ground section of a

scale under polarised light. cb, cellular bone; m, mesodentine; g, ganoine; le, lepidotrichium;

Scale histology and growth of a basal stem chondrichthyan

PLOS ONE | https://doi.org/10.1371/journal.pone.0174655 April 12, 2017 23 / 31

http://www.plosone.org/article/fetchSingleRepresentation.action?uri=info:doi/10.1371/journal.pone.0174655.s001
http://www.plosone.org/article/fetchSingleRepresentation.action?uri=info:doi/10.1371/journal.pone.0174655.s002
http://www.plosone.org/article/fetchSingleRepresentation.action?uri=info:doi/10.1371/journal.pone.0174655.s003
http://www.plosone.org/article/fetchSingleRepresentation.action?uri=info:doi/10.1371/journal.pone.0174655.s004
http://www.plosone.org/article/fetchSingleRepresentation.action?uri=info:doi/10.1371/journal.pone.0174655.s005
http://www.plosone.org/article/fetchSingleRepresentation.action?uri=info:doi/10.1371/journal.pone.0174655.s006
http://www.plosone.org/article/fetchSingleRepresentation.action?uri=info:doi/10.1371/journal.pone.0174655.s007
http://www.plosone.org/article/fetchSingleRepresentation.action?uri=info:doi/10.1371/journal.pone.0174655.s008
https://doi.org/10.1371/journal.pone.0174655


ri, superficial ridge. Scale bar = 2 mm in A, 200 μm in B, 500 μm in C, 50 μm in D.

(TIF)

S3 Fig. Representative spectra of Triazeugacanthus affinis samples using EDX punctual

microanalysis of MHNM 03-1497 scales. A: MHNM 03-1497, location of spectra for EDX

analyses. Note that the oxygen peak is non-significant and depends essentially on the vacuum

level in the chamber of the environmental SEM. Scale bar: A = 1 mm.

(TIF)

S4 Fig. Distances between growth lines in the scales of four adult specimens of Triazeuga-
canthus affinis. Circles are for the ganoine layers (superimpositional growth), squares for

mesodentine and bone layers (“box-in-box” growth). The “box-in-box” patttern of growth is

more irregular than the superimpositional growth of the multi-layered ganoine. Growth zones

are numbered by the two growth lines that delimit the zone. Each coloured line represents one

scale.

(TIF)

S5 Fig. Triazeugacanthus affinis median ridge scales. A: Early juvenile, MHNM 03-1252.

Dorsal mid-line scales develop before trunk scales; the latter are only present in the posterior

region (red rectangle). B: Adult, MHNM 03-1497. Dorsal scale showing the presence of a

median ridge (white arrow). C: Late juvenile, MHNM 03-2684. Two parallel scale rows (white

arrows) are present anterior to trunk scales (red rectangle). Scale bars: A = 2 mm, B, C = 1mm.

(TIF)

S6 Fig. Trees generated in the phylogenetic analysis of selected early gnathostomes (79

taxa, 267 characters). A: Strict consensus of 10,000 most parsimonious trees (711 steps). B:

Adams consensus of 10,000 most parsimonious trees (711 steps).

(JPG)

S7 Fig. Trees generated in the phylogenetic analysis of selected early gnathostomes (79

taxa, 266 characters). Each analysis is realized with the exclusion of one scale-related charac-

ter.

(JPG)

S8 Fig. Trees generated in the phylogenetic analysis of selected early gnathostomes (79

taxa, 266 characters). Each analysis is realized with the exclusion of one scale-related charac-

ter.

(JPG)

S9 Fig. Trees generated in the phylogenetic analysis of selected early gnathostomes (79

taxa, 266 characters). Each analysis is realized with the exclusion of one scale-related charac-

ter.

(JPG)

S10 Fig. Trees generated in the phylogenetic analysis of selected early gnathostomes (79

taxa, 266 characters). Each analysis is realized with the exclusion of one scale-related charac-

ter.

(JPG)

S11 Fig. Trees generated in the phylogenetic analysis of selected early gnathostomes (79

taxa, 266 characters). Each analysis is realized with the exclusion of one scale-related charac-

ter.

(JPG)
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S12 Fig. Tree generated in the phylogenetic analysis of selected early gnathostomes (79

taxa, 266 characters). The analysis is realized with the exclusion of one scale-related character.

(JPG)
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