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Using density matrix renormalization group numerical calculations, we study the phase diagram of the half
filled Bose-Hubbard system in the sawtooth lattice with strong frustration in the kinetic energy term. We focus in
particular on values of the hopping terms which produce a flat band and show that, in the presence of contact and
near neighbor repulsion, three phases exist: Mott insulator (MI), charge density wave (CDW), and the topological
Haldane insulating (HI) phase which displays edge states and particle imbalance between the two ends of the
system. We find that, even though the entanglement spectrum in the Haldane phase is not doubly degenerate,
it is in excellent agreement with the entanglement spectrum of the Affleck-Kennedy-Lieb-Tasaki (AKLT) state
built in the Wannier basis associated with the flat band. This emphasizes that the absence of degeneracy in the
entanglement spectrum is not necessarily a signature of a nontopological phase, but rather that the (hidden)
protecting symmetry involves nonlocal states. Finally, we also show that the HI phase is stable against small
departure from flatness of the band but is destroyed for larger ones.

DOI: 10.1103/PhysRevB.95.165131

I. INTRODUCTION

Since its introduction by Fisher et al. [1], the bosonic
Hubbard model (BHM) and its variants have attracted a great
deal of attention due to the rich physics and wide variety of
phases and phase transitions it exhibits: incompressible Mott
insulator (MI), superfluid (SF), and Bose glass in the presence
of disorder [1]; charge density wave (CDW), supersolid (SS),
and phase separation in the presence of longer range repulsion
[2–14]. Interest intensified when trapped atomic condensates
were loaded in optical lattices [15] where it was shown that the
system is governed by the BHM [16]. The high tunability of
the interaction strengths, the wide range of lattice geometries
that can be realized, and the ability to perform very detailed
measurements offered access to a very wide range of systems
and tight-binding Hamiltonians of great interest in the study
of strongly correlated systems.

Increasingly, over the last several years, the physics of
strongly correlated quantum systems has focused on the
existence and properties of unconventional phases and phase
transitions. For example, when the extended one-dimensional
Bose Hubbard model (EBH) is at full filling and the contact
interaction dominates, the system is in the MI phase with one
particle per site. As the near neighbor interaction is increased,
quantum fluctuations create holes and doublons, typically lead-
ing to three kinds of sites: empty, singly occupied, and doubly
occupied. One can then approximate the model by the spin-1
Heisenberg chain with Sz = 1,0,−1 for the doubly, singly, and
empty sites. This led to the discovery [17,18] that at full filling,
the one-dimensional extended BHM supports, in addition to
the SF, MI, and CDW phases, a topological phase characterized
by a nonlocal string order parameter and edge states. This
phase, called the Haldane insulator (HI), is closely related to
the Haldane phase [19] appearing in integer spin chains and
realized in the AKLT state [20,21]. The phase diagram of this

model was studied for the single chain [17] and ladder [18]
cases using density matrix renormalization group (DMRG)
calculations. It was also shown [22] that when a perturbation
which breaks bond inversion symmetry is included, the
quantum phase transition between the HI and MI is no longer
sharply defined; one can pass adiabatically from one to the
other while at the same time pumping one boson across the sys-
tem. DMRG was also used to calculate the entanglement spec-
trum (ES) of the EBHM and use it to map out the phase diagram
[23]. Using the ES, these authors found that, at unit filling, this
model exhibits a SS phase in addition to the SF, MI, CDW, and
HI phases. The DMRG phase diagram obtained in Ref. [24]
replaced the SS phase by a CDW phase but was in agreement on
the other phases. Further work using DMRG and QMC [25–27]
mapped out the phase diagram more completely and showed
that the contested phase at unit filling is neither CDW nor SS
but a phase separated mixture of SS and CDW. The entangle-
ment spectrum was also used to study the phase diagram of a
related model [28], namely the EBHM but with the constraint
that the number of bosons on a site not exceed 2. Interestingly,
this occupation constraint expands the HI at the expense of
the SF and eliminates the phase separation region. Another
interesting aspect of this work is that, unlike most DMRG
work, the calculations were done with periodic boundary
conditions as they are also in the QMC simulations [25–27].

Another situation where unconventional phases may be
encountered is that of strong geometrical frustration, for
example in the particle kinetic energy. If the hopping term in
the Hamiltonian is frustrated in a particular way, the lowest
band can become flat resulting in a huge degeneracy of
states into which the particles may condense. This degeneracy
changes the behavior of the particles when their density is
sufficiently low (or when there is no interaction between them):
The particles are localized in extended geometrical structures
due to interference effects of the hopping terms. What happens
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when interaction is present and the particle filling exceeds
a critical value dictated by the lattice geometry was treated
by several authors [29–31]. A general approach used in
these references is to project the Hamiltonian onto the flat
band resulting in an effective low energy Hamiltonian which
depends only on the interaction. For example, in Ref. [29],
the sawtooth and the kagome lattices were treated in this way.
For the sawtooth lattice, the effective projected Hamiltonian
describes bosons hopping on a one-dimensional lattice and
interacting with each other. The question then arises if, under
certain situations, this model can support a topological phase,
such as the HI, as happens in the extended one-dimensional
BHM mentioned above.

This is the main question which we will address in this
work. We will show, with DMRG calculations, that by adding
an extended interaction term to the model studied in Ref. [29],
and when the system has a flat band and is at half filling,
the charge and neutral gaps behave in a way reminiscent of
the HI. We then show the presence of edge states and imbalance
in the number of particles on the two ends of the system (with
open boundary conditions) which confirms the existence of
the HI. We also show that, contrary to the usual situation, the
entanglement spectrum does not exhibit a doubly degenerate
ground state in the Haldane phase. We then demonstrate that
this behavior persists in a finite interval of geometric frustration
around the flat band but disappears if the frustration is far from
what is needed for flatness.

The paper is organized as follows. In Sec. II we present the
model and review the results of Ref. [29]. In Sec. III we present
our DMRG results for the gaps and density profiles and discuss
the various phases found at half filling. Topological aspects of
the edge states are presented and discussed in Sec. IV while
the entanglement spectrum is discussed in Sec. V. The phase
diagrams when the lowest band is dispersive but still almost
flat are presented in Sec. VI followed by our conclusions in
Sec. VII.

II. MODEL

We will study the BHM on the sawtooth lattice, Fig. 1, and
governed by the Hamiltonian

H =
∑
〈ij〉

|tij |(a†
i aj + H.c) + U

2

∑
i

ni(ni − 1) + V
∑
〈ij〉B

ninj ,

(1)

B

A

+

- -

FIG. 1. The sawtooth lattice. Sites at the bases of the triangles are
denoted B and apex sites are A. The localized state wave function
has positive amplitude on the B sites and negative on the A sites (see
text). The thick (red) lines in the form of V are the states localized
in the flat band. The sites labeled A and B belong to the same unit
cell. Our convention for the lattice names, i.e., AA, BB, and AB,
indicates the type of site at each end of the lattice with open boundary
conditions.

where 〈ij 〉 denotes near neighbors and 〈ij 〉B near neighbors of
the B type; the operators ai and a

†
i are destruction and creation

operators on site i and satisfy the usual bosonic commutation
relations. ni is the number operator on site i and tij is the
hopping parameter between near neighbor sites. We will take
tij=t for hops between two B sites (see Fig. 1) and tij = t ′ for
hops between A and B sites. The contact interaction strength
is U and the near neighbor interaction is V both of which are
taken to be repulsive. Note that the near neighbor repulsion is
only between neighboring B sites for reasons to be discussed
below.

The kinetic part of the Hamiltonian, Eq. (1), can be easily
diagonalized [29] giving the band energies

ε±(k) = t cos(ka) ±
√

t2 cos2(ka) + 2t ′2 cos(ka) + 2t ′2. (2)

When t ′ = √
2t , the lowest band becomes flat and we get

ε±(k) =
{

2t(1 + cos(ka)),
−2t,

(3)

where a is the distance between two B sites.
If a particle is now introduced in the system, it will

be localized on three sites, in the shape of V, due to the
interference effects of frustration. These sites are shown in
thick (red) V-shaped structures in Fig. 1. The localized states
are given by

|Vi〉 = 1
2 (

√
2a

†
B,i − a

†
A,i−1 − a

†
A,i)|0〉, (4)

where, on average, a B site is occupied by 1/2 a particle and
each of the two A sites by 1/4. It is clear from Fig. 1 that even
in the presence of interaction, if the total number of particles is
less than or equal to 1/4 of the number of sites, these localized
states are eigenstates of H . If the particle density exceeds
the critical density of 1/4, the V states will start sharing A

sites and, therefore, interacting. The energy per particle will
no longer be −2t . Figure 1 shows the configuration of V’s for
the case of maximum filling without interacting and exhibits a
CDW of V’s alternately empty and occupied by one particle.

The states |Vi〉 are linearly independent and complete in
the flat band subspace but they are not orthogonal. For this
reason, we use Wannier states to define a set of orthogonal
states, forming thus a complete basis. In general, denoting by
wnXp

(x) the Wannier function for the band n exponentially
localized around the position Xp, the Wannier states |wnXp

〉
give rise to an orthogonal basis if and only if the centers Xp are
on a Bravais lattice. In that case, one can express the creation
operators a

†
i as functions of the creation operator W

†
n Xp

, i.e.,
creating a boson in the Wannier state |wnXp

〉:
a
†
i =

∑
nXp

w∗
nXp

(xi)W
†
nXp

, (5)

where xi is the position of the site i. The projection of the
operators on a given band n is made by keeping, in the
preceding sum, the Wannier operators for that band only:
a
†
i ≈ ∑

Xp
w∗

nXp
(xi)W

†
nXp

.
In the present case, the projection on the flat band leads to

a
†
Bi ≈

∑
j

f ∗
B (j − i)W †

fj

(6)
a
†
Ai ≈

∑
j

f ∗
A(j − (i + 1/2))W †

fj ,
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FIG. 2. Density profile of the Wannier function, see Eq. (7), and
of the V-shape, see Eq. (4), centered around the site Bi . The Wannier
function is normalized to one, decaying exponentially away from its
center, with a total density probability 0.58 on the B sites and 0.42
on the A sites.

where the Wannier state |w†
fj 〉 has been chosen to be localized

around the B site at position ja. Later, we will also need
the expression of the Wannier operators as a function of the
operators a

†
Bi and a

†
Ai :

W
†
fj =

∑
i

(fB(j − i)a†
Bi + fA(j − (i + 1/2))a†

Ai). (7)

From the band structure, one can derive the amplitude of the
Wannier function at the B and A sites:

f ∗
B (p) = − 2

π

∫ +π/2

0
dθ

cos(2pθ )√
1 + 2 cos2(θ )

f ∗
A((p − 1/2)) = 2

π

∫ +π/2

0
dθ

√
2 cos((2p − 1)θ ) cos(θ )√

1 + 2 cos2(θ )
.

(8)
The Wannier function on the flat band is plotted in Fig. 2. Note
that our definition of these Wannier states differs somewhat
from that of Ref. [29].

Using DMRG calculations on the original and the effective
Hamiltonians, Ref. [29] showed, for V = 0, that when the
system is doped slightly above the critical density of 1/4,
the CDW melts yielding a SF with a momentum distribution
peaking at a nonzero value which depends on the doping. Here,
we are interested in the phases and phase transitions of this
system at half filling when the near neighbor repulsion V is
included. Specifically, the questions we address here are: Will
the half filled system admit a MI phase of V’s sharing A sites?
Will the system admit a CDW phase with alternating vacant
and doubly occupied V’s? Will the system admit a HI phase
sandwiched in between these two?

III. DMRG: PHASE DIAGRAM AT HALF FILLING

To address the above questions, we use the DMRG codes
in the ALPS [32] library to calculate density profiles and the

neutral and charge energy gaps at half filling. We take t = 1
to fix the energy scale and focus attention on two values of the
contact interaction, U = 1/2,1, and study the system as the
near neighbor repulsion V is varied. Most of our results are for
the flat band case, t ′ = √

2t . The t ′ �= √
2t will be addressed in

Sec. VI. We perform the calculations for several system sizes,
L = 40,80,120,160,200 (number of sites is 2L) with open
boundary conditions and a maximum number of boson per
state Nmax = 3. The neutral gap �n is calculated by targeting
the ground and the first excited states in the DMRG calculation.
We typically keep 300 states in the DMRG calculation and we
have verified that keeping more (up to 600 states) or increasing
Nmax does not change the results. The truncation error was
between 10−10 and 10−11. The charge gaps �c are calculated
using the energies at half filling and at half filling doped with
one particle and doped with one hole,

�c = E(N1/2 + 1) + E(N1/2 − 1) − 2E(N1/2), (9)

where N1/2 is the number of particles at half filling.
Since we use open boundary conditions, our convention

for the lattice names, i.e., AA, BB, and AB, indicates the
type of site at each end of the lattice and since the lattice is
frustrated, special care must be taken in order to observe the
various phases. More precisely, in the following, we will show
that, at half filling, the system exhibits three types of insulating
phases: Mott, Haldane, and CDW phases. In order to compute
the gap values, one needs to be able to lift the degeneracy
among the different ground states. As for the EBH on a 1D
chain, this is done by adding a chemical potential at each edge,
but, since the “natural” local states after projection on the flat
band are the V-shaped structures (or the Wannier function), the
boundary conditions must be matched in terms of these local
states. In particular, adding a large positive chemical potential
on a B site at one edge (and on the neighboring A site, if the
lattice ends with an A site) more or less amounts to imposing
a vanishing density on the V shape localized on that B site;
on the other hand, adding a large negative chemical potential
on either ending B (and on the neighboring A) site does not
correspond to getting a fixed number of bosons in the V shape
localized on this B site. In other words, we do not have a
simple way to impose on the ground state to be in a Fock state
in the V-shape (or Wannier) basis at the edge. This is in a
sharp contrast with the EBH on a 1D chain, for which a large
negative chemical potential on a given site amounts to fixing
the state on that site to a Fock state with Nmax bosons.

From that point of view, our strategy was to compare
the results for the densities, gap values, and correlation
functions for different lattice types, i.e., AA, BB, and AB

and different boundary conditions, i.e., adding or not a large
chemical potential at each edge. In what follows, we adopt the
following conventions: A lattice size L always means a lattice
with (L + 1) B sites, an AA lattice has then (L + 2) A sites
whereas a BB lattice has LA sites. Then, it turns out that,
for the different phases, the proper choices of the lattice type,
boundary conditions, and the number of bosons that give the
correct charge and neutral gaps are follows:

(1) MI phase (single ground state): AA lattice with L + 1
bosons and no additional chemical potential.

165131-3
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FIG. 3. DMRG results for the charge, �c and neutral, �n, gaps
as functions of the near neighbor repulsion V for U = 1/2, t ′ = √

2t

(flat band) at half filling. The vertical lines show the locations of
the MI-HI (V ≈ 0.13) and the HI-CDW (V = 0.256) transitions (see
text). All the data were obtained on BB lattices except as indicated
in the label.

(2) CDW insulating phase (two degenerate ground states):
BB lattice with L bosons, L even and one large additional
chemical potential on both the first and last B sites.

(3) HI phase (four degenerate ground states): BB lattice
with L bosons and one large additional chemical potential on
both the first and last B sites.

We confirmed that the preceding situations yield correct
values for the gaps by comparing with the gap values obtained
with DMRG, for L = 40, under periodic boundary conditions
where the above issues do not arise. Larger sizes with periodic
boundary conditions do not converge properly with DMRG.
We note that PBC were used to map in detail the phase diagram
of the EBHM on a chain by studying the gaps and the nonlocal
order parameter [25,26].

Figure 3 shows, for several lattice sizes, �c and �n as
functions of V for U = 1/2 and t ′ = √

2 at half filling.
For V < 0.13,�c = �n and both gaps vanish at V ≈ 0.13
indicating a quantum phase transition at that point. This
behavior of the gaps is indicative of the incompressible MI
phase [17]. For V > 0.13, the gaps first increase together,
then at V ≈ 0.175,�n starts to decrease while �c continues
increasing. �n then reaches another minimum, which ap-
proaches zero as L increases, then starts to increase again
tending toward �c. This behavior of �n suggests the presence
of the HI phase between its two minima. The second minimum
of �n is sensitive to finite size effects. We show in Fig. 4
how the critical value of V is obtained by extrapolating the
value of the minimum to L → ∞. This yields Vcrit = 0.256.
Therefore, for 0.13 � V � 0.256 the system is in the Haldane
insulating phase. To confirm that this is indeed a HI phase, one
could calculate the string order parameter [17,18,24–27] by
using the Wannier operators as the “site” operators. However,
the extended nature (albeit exponentially localized) of the
Wannier states leads to extremely complicated expressions
in terms of the local operators ai , which makes it impractical
to compute this Wannier-string order parameter. Instead, we

FIG. 4. The location of the minimum of �n is sensitive to finite
size effects. The value of V where �n reaches its minimum is
extrapolated to 1/L → 0 to obtain the HI-CDW transition value.

will confirm below the nature of this HI phase by studying
topological properties such as the presence of edge states and
the entanglement spectrum. For V > 0.256 the system is in the
CDW phase as we will see by examining the density profiles
below. Figure 5 shows similar behavior to Fig. 3 but for U = 1.

The density profiles give additional information on the
various phases. In order to show the density profile of the
sawtooth lattice as a two-dimensional plot, we assigned integer
(half odd integer) labels to the B (A) sites. Figure 6 shows the
density profile ni in the MI phase for U = 1/2 and V = 0.11.
We see that in the bulk, i.e., away from the ends of the system,
the average filling of an A site is 〈nA〉 = 0.59 while for a B site
it is 〈nB〉 = 0.41. As V is decreased, 〈nA〉 and 〈nB〉 approach
1/2. This is easy to understand if one recalls the basic localized
structure discussed above. In such a localized state, the B site
has an average occupation 1/2 and the A site has 1/4. At half

FIG. 5. DMRG results for the charge, �c and neutral, �n, gaps
as functions of the near neighbor repulsion V for U = 1, t ′ = √

2t

(flat band) at half filling. The vertical lines show the locations of
the MI-HI (V ≈ 0.2) and the HI-CDW (V = 0.571) transitions (see
text).
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FIG. 6. Density profile in the MI phase. The B sites are labeled
by integer valued site index i while the A sites are labeled by half
odd integer. Away from the boundaries, average B-site occupation is
0.41 while that of A sites is 0.59.

filling (the case we are considering here) the system is full of
touching V’s, so now the average A filling is 1/2 too. The near
neighbor repulsion between B sites disfavors B occupation
thus pushing 〈nB〉 down while the value of 〈nA〉 increases.
This will be discussed further in Sec. V.

Figure 7 shows the density profile in the HI phase, between
the two minima of �n. In the bulk, away from the ends of the
system, 〈nA〉 = 0.6 and 〈nB〉 = 0.4. Closer to the ends of the
system we see evidence of edge states both in the B-site and
the A-site density profiles. In this figure, the edge states extend
around 40 sites into the system. This penetration depends on
V ; it decreases as V is taken closer to the MI-HI transition and
increases when V is taken closer to the HI-CDW transition.
This will be discussed in more detail in Secs. IV and V. The
presence of the edge states is added confirmation that the phase
between the two minima of �n is indeed HI.

FIG. 7. The density profile in the HI phase. In the bulk, away
from the ends of the system, 〈nA〉 = 0.6 and 〈nB〉 = 0.4. Near its
ends, the system exhibits evidence of edge states whose penetration
into the system depends on the value of V . See text.

FIG. 8. The density profile in the CDW phase. 〈nA〉 ≈ 0.55
while 〈nB〉 alternates between almost empty sites, 〈nB〉 ≈ 0.022, and
〈nB〉 ≈ 0.88 indicating a CDW of V structures (see Fig. 1).

For V > 0.256, the system is in the CDW phase: A sites
have a constant occupation while B sites alternate between
high and low filling. In Fig. 8, V = 0.4, we have 〈nA〉 ≈ 0.55
and 〈nB〉 alternates between almost empty sites 〈nB〉 ≈ 0.022
and 〈nB〉 ≈ 0.88. As V increases, the occupation of the low-
filling B sites decreases further. Roughly speaking, this can
be understood in terms alternating doubly occupied V’s, in
analogy with the alternating doubly occupied sites in the CDW
phase of the one-dimensional BHM on a simple chain.

As explained above, the gap behavior and the density
profiles are very reminiscent of the MI-HI-CDW transitions in
the usual EBH model [17,18,24–27]. To emphasize this point,
we have used Eq. (7) to compute the average density in the
Wannier states. More precisely, we have computed 〈W †

f iWf i〉
where i represents the center of the Wannier state, see Fig. 2.
The corresponding density profiles in the MI, HI, and CDW
phases are shown in Figs. 9, 10, and 11, respectively. As
expected, in the MI the density profile is flat with unit filling,
whereas in the HI, the profile exhibits nice edge states at the

0 20 40 60 80
i

0

0.2

0.4

0.6

0.8

1

<W
+ f i

W
f i

>

FIG. 9. Wannier basis density profile in the MI phase, U =
0.5,V = 0.05. The average density is equal to 1. The small oscil-
lations at both ends reflect the truncation of the Wannier function due
to the boundary.
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0 50 100
i

0

0.5
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2
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+ f i
W

f i
>

FIG. 10. Wannier basis density profile in the HI phase U =
0.5,V = 0.17. In the bulk, away from the ends of the system, the
average density is one. Near its ends, the system exhibits clear
evidence of edge states whose penetration into the system depends
on the value of V . Due to the boundary conditions (see text), the
effective charge of each edge state is −1/2.

boundaries and a uniform density in the bulk (unit filling). On
the contrary, in the CDW, the density alternates between almost
empty sites, 〈nB〉 ≈ 0.18 and 〈nB〉 ≈ 1.82. Even though the
density profile looks very simple in the MI phase, it is not
just given by a naive mean-field ansatz consisting of the tensor
product of singly occupied Wannier functions:

|MI〉 = ⊗L
i=1|1,i〉, (10)

where |n,i〉 is the Fock state having n bosons in the Wannier
state centered around the B site i. Indeed, using Eq. (7) one can
compute the average local densities, 〈MI|n̂A|MI〉 on A sites and
〈MI|n̂B |MI〉 on B sites. This yields 〈nA〉 ≈ 0.42 and 〈nB〉 ≈
0.58. These values actually correspond to the total probability
density on A and B sites of a single Wannier function and are
very different from the ones computed from the ground state,

0 50 100
i

0

0.5

1

1.5

2

<W
+ f i

W
f i

>

FIG. 11. Wannier basis density profile in the CDW phase U =
0.5,V = 0.4. The density alternates between almost empty sites
(〈nB〉 ≈ 0.18 and 〈nB〉 ≈ 1.82) indicating a clear CDW in the
Wannier states.

i.e., 〈nA〉 = 0.59 and 〈nB〉 = 0.41. This strong discrepancy
between the ground state of the system and the mean-field
ansatz given by Eq. (10) emphasizes that the doublon-holon
states (in the Wannier basis) actually have a large contribution
to the ground state in the MI phase.

IV. EDGE STATES

A feature of the topological Haldane phase, as typified
by the AKLT state, is the appearance of edge states when
the system has open boundaries. Depending on the boundary
conditions, the edge states that appear in the usual EBH on
a 1D chain can exhibit either an excess or a deficit of half a
boson compared to the total number of sites occupied by the
edge states.

In the sawtooth lattice case, calculating the number of
particles on the left and right halves of the system in Figs. 6
and 8 we find balanced populations and, therefore, no
topological effects in the MI and CDW phases. However, the
situation is different in the case of Fig. 7 where we find 59.8
particles on the left side and 60.2 on the right. We verified this
is not a finite size effect by doing the same calculations for
L = 160,200 and for several V values and also keeping more
states in the DMRG calculation. In all cases we found the same
imbalance by ±0.2 particles relative to half filling. This value
of 0.2 agrees very well with 〈nB〉/2, i.e. as if half the system
loses half the occupation of a single B site which goes to the
other half of the system.

This becomes even clearer by examining the edge states
directly in the Wannier basis, i.e., using Eq. (7) to compute
〈W †

f iWf i〉, where i represents the center of the Wannier state
as plotted in Fig. 10, which resembles very closely the usual
EBH on a 1D chain. More precisely, as explained in Sec. II, the
BB lattice in our simulations amounts to imposing a vanishing
density on both B sites, which is then analogous to the usual
EBH on a 1D chain with vanishing densities at the end. In that
situation, the HI ground state is obtained when the number of
bosons is one less than the total number of sites, such that,
after splitting the system in two parts, each edge state contains
a half boson less than the number of sites in their respective
parts. Indeed, in our case, the total number of Wannier
“sites”, is 121, but the total number of bosons N = 120,
because of the vanishing densities at both boundaries. Actually,
the total density in the Wannier states is 119.74 because of the
truncation of the Wannier function at the boundaries. When
splitting the system in two parts, say the left one with 61 sites
and the right one with 60 sites, the total number of bosons is
60.37 to the left and is 59.37 to the right. As one can readily
verify, the 0.74 boson has been split in two between the left
and the right parts. Finally, since the average density in the
bulk is equal to unity, changing the splitting point would only
change these numbers by integer values without affecting the
fractional part. This analysis shows the HI phase which we
have found in our model genuinely exhibits edge states with a
fractional filling.

In order to bring out more clearly these edge states in our
DMRG results, we subtract the bulk values of 〈nA〉 and 〈nB〉
from the occupations of the A and B sites in the density profiles
in the HI phase. In other words, for all integer sites (i.e., B sites)
we subtract the bulk value of 〈nB〉, and for all half odd integer

165131-6



HALDANE PHASE ON THE SAWTOOTH LATTICE: EDGE . . . PHYSICAL REVIEW B 95, 165131 (2017)

FIG. 12. The shifted density profiles 〈ni〉′ in the HI phase
(see text) for L = 120, U = 1/2. The extent of the edge state into the
system increases as V approaches the HI-CDW transition value. The
envelope is exponential.

sites (i.e., A sites) we subtract the bulk value of 〈nA〉. This
yields the shifted density profiles in Fig. 12. The figure, which
resembles Fig. 10, shows that close to the MI-HI transition
(V = 0.135) the edge states extend a few sites into the system
on each side. As V increases and the system approaches the
HI-CDW transition, the edge states extension increases until,
for a fixed system size L the two edge states start to overlap.
When this happens, a larger system is needed to get precise
results. When the HI-CDW transition point is reached, �n

vanishes and the system makes the transition to the CDW
phase.

The envelopes of the edge states decay exponentially as
is shown in Fig. 13. The exponent decreases as V increases

toward the HI-CDW transition and the edge states penetrate
deeper into the system.

V. ENTANGLEMENT SPECTRUM
AND WANNIER FUNCTIONS

Since the density profiles and the gaps agree very well
with a Haldane-like topological phase, we have also looked
at the properties of the entanglement spectrum in the different
phases using DMRG and imaginary time TEBD. Interestingly,
and contrary to the usual EBH model, we found no degeneracy
in the entanglement spectrum. At first glance, the absence of
degeneracy may appear puzzling. However, it turns out that
this feature does not mean that the phase is not topological; in
fact it is the consequence of the extended nature of the Wannier
state. Indeed it also appears in the AKLT-like matrix product
state built on the Wannier states rather than the local states.
More precisely, we consider the following family of states:[|�−+〉 |�++〉

|�−−〉 |�+−〉
]

= ⊗L
i=1

[
cos θ |1,i〉 sin θ |2,i〉
sin θ |0,i〉 cos θ |1,i〉

]
, (11)

where |n,i〉 denotes the Fock state having n bosons in the
Wannier state centered around the B site i. Each of the four
preceding states has unit average density and a doubly de-
generate entanglement spectrum when computing the density
matrix in the Wannier basis. Expanding the Wannier states in
the local states [see Eq. (7)], one can, in principle, compute
the expression of |�±±〉 in the local Fock states:

|�±±〉 =
∑

{nA,nB }
C±±

{nA,nB }|{nA,nB}〉, (12)

where {nA,nB} is a shorthand notation for a particular
configuration of the occupation numbers in the different
sawtooth lattice sites, i.e., (· · ·, nAi

,nBi
, · · · ), and |{nA,nB}〉

FIG. 13. The absolute value of the shifted density profile for the left half of the system at four values of V . The semi-log plot shows that
the envelope of the edge states is exponential and that the exponent decreases as the HI-CDW transition is approached.
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FIG. 14. Density profile of the AKLT-like state |�−−〉. Away
from the boundaries, the average density on the A site is 0.61 and
0.39 on the B site; these values are extremely close to the DMRG
ground state ones in the HI phase. In addition, the edge states contain
a fractional number of bosons, the imbalance being ±0.2 like for the
ground state of our model.

is the Fock state corresponding to this configuration. Actually,
since the number of coefficients grows exponentially, exact
numerical values can only be obtained for rather small
sizes L ≈ 10. On the other hand, it is very simple to build
the matrix product state (MPS) with fixed bond dimension
(in the local Fock states |{nA,nB}〉) associated with these
AKLT-like states. We have verified that for small system size,
the MPS approximation has the same properties (density) as
the exact expression given by Eq. (12). For the values cos θ =
1/

√
3 and sin(θ ) = √

2/3, the density profile of the state |�−−〉
is given in Fig. 14 for L = 50. Away from the boundaries, the
average density on the A site is 0.61 and 0.39 on the B site;
these values are extremely close to the DMRG ground state
ones in the HI phase, see Fig. 7. More saliently, we find that
the entanglement spectrum obtained by splitting the state in
the left and right parts in the local basis is uniform and the
largest eigenvalues are: (0.69,0.24,0.051,0.014). Obviously,
the spectrum is not degenerate which emphasizes the impact of
the extended nature of the Wannier function on the properties
of the entanglement [33]. In addition, the values found for the
AKLT-like state are extremely close to the ground state ones in
the HI phase (0.69,0.23,0.046,0.02), which indirectly proves
that for U = 0.5 and 0.13 < V < 0.256, the system does ex-
hibit a Haldane phase, but built on the Wannier states. Finally,
one can compute the number of bosons of the left and right
edge states of these AKLT states, as in Sec. IV for the ground
state. Here again, one finds that the left part has 25.2 particles
and the right side has 24.8 particles, the imbalance is ±0.2
bosons, exactly as for the DMRG ground state. Therefore, the
comparison between the ground state properties and the AKLT
state built on the Wannier states, leads us to conclude that the
present HI is a symmetry protected topological phase, with
the underlying symmetry being among the Wannier states.
In addition, this also shows that if one could compute the
entanglement spectrum with the system split in the Wannier
Fock states, this spectrum would exhibit the usual degeneracy
expected for a symmetry protected topological phase.

FIG. 15. DMRG results for the charge, �c, and neutral, �n, gaps
as functions of the near neighbor repulsion V for U = 1/2, t ′ = 1.4t

at half filling. The vertical lines show the locations of the MI-HI
(V ≈ 0.136) and the HI-CDW (V = 0.2) transitions.

VI. NEARLY FLAT BAND

So far, we have studied the system only in the flat band
case, t ′ = √

2t . The questions we address now are: Does the
phase diagram, in particular the HI phase, survive for any
value of t ′? Does the HI we observe here connect adiabatically
with the HI in the EBHM? To this end, we studied in detail
the phase diagram for two values, t ′ = 1.4 (i.e., smaller than√

2) and t ′ = 1.43 (i.e., larger than
√

2). The results, Figs. 15
and 16, show that the gaps behave in a very similar manner
to the t ′ = √

2 case, in particular the behavior of �n indicates
that the HI phase persists. Furthermore, we verified that the
edge states are present and behave as for the case of t ′ = √

2t .
However, it is clear from Fig. 15 and Fig. 3 that the HI phase

gets narrower with the smaller value of t ′. In fact, the HI phase
does not exist for t ′ = 1.3. We also started with the EBHM in
the HI phase and added a small hopping to the A sites (t ′ = 0.1)

FIG. 16. DMRG results for the charge, �c and neutral, �n, gaps
as functions of the near neighbor repulsion V for U = 1/2, t ′ = 1.43t

at half filling. The vertical lines show the locations of the MI-HI
(V ≈ 0.128) and the HI-CDW (V = 0.322) transitions.

165131-8



HALDANE PHASE ON THE SAWTOOTH LATTICE: EDGE . . . PHYSICAL REVIEW B 95, 165131 (2017)

but found that the HI disappears already at this small value.
This suggests that the HI phase on the sawtooth lattice does
not connect in a simple way to the HI in the EBHM. It may
be possible to connect the two phases by a more roundabout
path in parameter space; for example by changing t ′ and U

and/or V at the same time. We have not investigated this. On
the other hand, Fig. 16 shows that the HI phase expands for
the larger value of t ′. Even though the neutral gap seems finite
in Fig. 16, one can see that the position and the value of the
minimum of the neutral gap slowly evolve with the system
size. A proper finite-size analysis shows that the value of the
neutral gap extrapolate to zero in the thermodynamic limit.
The HI and the CDW are thus well separated phase. We have
checked that for t ′ values up to 1.5t , the HI phase is still
present, well separated from the CDW phase by a vanishing
neutral gap. It would be interesting to study much larger values
of t ′ to determine the eventual fate of the HI and CDW phases.

All in all, this shows that the phase diagram, in particular
the presence of the topological HI phase, is robust and persists
in a finite (but narrow) range of values of t ′ centered at the
flat band value, t ′ = √

2t . We also observed the same behavior
for U = 1.

VII. CONCLUSION AND OUTLOOK

In summary, we have studied the phase diagram of the
half-filled Bose-Hubbard system in the sawtooth lattice in the
situation where the geometric frustration in the hopping term
produces a flat band. We have shown that, in the presence
of contact and near neighbor repulsion, three phases exist:

Mott insulator (MI), charge density wave (CDW), and the
topological Haldane insulating (HI) phase. In particular, we
have shown that in the HI phase, even though the entanglement
spectrum is not doubly degenerate, it is in excellent agreement
with the entanglement spectrum of the Affleck-Kennedy-Lieb-
Tasaki (AKLT) state built in the Wannier basis associated with
the flat band. This emphasizes that the absence of degeneracy
in the entanglement spectrum is not necessarily a signature of
a nontopological phase, but rather that the (hidden) protecting
symmetry involves nonlocal states. Finally, we have also
shown that, at fixed interactions, the HI phase is stable against
small departure from flatness of the band but is destroyed as
the band dispersion becomes stronger.

For future work, it would be interesting to find an efficient
way to compute the string order in the Wannier basis and to
show that it vanishes at the MI-HI transition. In addition, as
explained above, it would be interesting to check whether one
could connect the HI phases of the EBHM on a 1D chain to
the one in the sawtooth lattice by tuning a few parameters
at the same time. This would certainly shed more light on
the properties of the present HI phase. Finally, it would be
illuminating to study the excitations of the system, and, along
the preceding line, to show that the elementary excitations
correspond to domain walls in the string order.
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