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We present a mixed-dimensional atomic gas system to unambiguously detect and systematically probe mediated
interactions. In our scheme, fermionic atoms are confined in two parallel planes and interact via exchange of
elementary excitations in a three-dimensional background gas. This interaction gives rise to a frequency shift of
the out-of-phase dipole oscillations of the two clouds, which we calculate using a strong-coupling theory taking
the two-body mixed-dimensional scattering into account exactly. The shift is shown to be easily measurable for
strong interactions and can be used as a probe for mediated interactions.

DOI: 10.1103/PhysRevA.95.043643

I. INTRODUCTION

Mediated interactions were originally introduced to provide
a quantum-mechanical explanation for the peculiar “action at
a distance” interactions such as gravity and electromagnetism
and they now constitute a major overarching paradigm in
physics. In particle physics, exchange of gauge bosons is
responsible for the propagation of fundamental interactions
[1]. In condensed matter, the attraction between the elec-
trons in BCS superconductors arises from the exchange of
lattice phonons [2], and it is speculated that the mechanism
behind high-Tc superconductivity lies in the exchange of
spin fluctuations [3]. The concept of mediated interactions
is also important in classical physics, where fluctuations of
classical fields are responsible for phenomena such as the
finite-temperature Casimir effect in electrodynamics [4] and
in biophysics [5].

Ultracold atoms have emerged as a versatile platform for
the investigation of many-body physics, and a host of schemes
have been proposed to explore mediated interactions using
these systems. For instance, mediated interactions lead to the
formation of a p-wave superfluid in spin-imbalanced fermionic
systems [6–9]; they are responsible for the formation of a
topological superfluid with a high critical temperature in 2D
systems [10–12], and in 1D quantum liquids they are shown
to result in Casimir-like forces between impurities [13]. In
most cases, however, the mediated interaction is weak and in
competition with direct interactions between atoms, making
its experimental observation challenging.

In this paper, we apply the mixed-dimensional setup
proposed in [14] and illustrated in Fig. 1 to study mediated
interactions. Specifically we consider two parallel layers
located at z1 = 0 and z2 = d, which contain an equal number
of spin-polarized noninteracting fermions (A species). The
layers are immersed in a uniform 3D gas of interacting
spin-1/2 fermions (B species), which can be tuned through
the BEC-BCS crossover. The presence of the 3D gas induces
a mediated interaction between the A particles: one A particle
will perturb locally the surrounding B particles thereby induc-
ing excitations in the 3D gas, which in turn affects the dynamics
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of a second A particle. If A particles are harmonically
trapped, this mediated coupling leads to a beating between
oscillations in the two planes. Measuring the beating frequency
between the 2D clouds therefore gives access to the strength
of mediated interaction. This scheme is similar to Coulomb
drag experiments in bilayered electronic systems [15] that was
recently generalized to the case of dipolar gases [16].

To analyze the dynamics of this system, we develop a
systematic many-body theory for the mediated interplane
interaction that includes the low-energy mixed-dimensional
A-B scattering exactly. We then derive an expression for the
associated interaction energy between the two planes and
calculate the frequency of the out-of-phase dipole oscillations
of the 2D clouds in the xy plane. In the weak A-B interaction
limit, our results recover the perturbative expression for a me-
diated interaction proportional to the density-density response
function of the 3D gas. In the strong A-B interaction limit,
however, the weak-coupling result breaks down completely. In
the latter case we focus on the BEC regime of the 3D gas and
show that the mediated interaction gives rise to a significant
and easily detectable shift in the out-of-phase dipole oscillation
frequency of the two clouds.

The rest of the paper is organized as follows. In Sec. II,
we derive expressions for the interlayer mediated interaction
for both weak and strong 2D-3D interaction strengths. In the
latter case we focus on the BEC regime for the 3D gas. To
do so, we discuss in detail the determination of the mixed-
dimensional scattering matrix. In Sec. III, the correction to the
thermodynamic potential due to the mediated interaction is
obtained. Furthermore, we use the local density approximation
to generalize our result to the trapped 2D layers. In Sec. IV,
a scheme to probe the mediated interaction is proposed by
means of dipole oscillations of the 2D layers. The shift of
the dipole oscillation frequency due to the presence of the
mediated interaction is calculated using realistic experimental
parameters and the possible outcomes of such a probe are
discussed. Our findings are summarized in Sec. V.

II. MEDIATED INTERACTION

The interaction between the A and B particles is short range
and can be characterized by an effective 2D-3D scattering
length aeff [17]. In terms of the well-known T-matrix ap-
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FIG. 1. We consider A fermions confined in two layers by two
identical harmonic traps with a frequency ωz much larger than any
other energy scale in the system, and trapped in the xy plane by a weak
harmonic potential with frequency ω⊥. The two layers are immersed
in a 3D cloud of spin-1/2 fermions (B atoms), which mediates an
interaction between the two layers. This mediated interaction gives
rise to a frequency shift of the out-of-phase dipole oscillation of the
two A clouds, which depends on the B-B scattering length aBB as
well as on the 2D-3D A-B scattering length aeff . The ranges of aeff

and aBB analyzed in this paper are indicated by the gray regions. The
main focus of our paper is for a strong 2D-3D interaction and on the
BEC side of the 3D gas with a dimer scattering length aB .

proximation, the scattering amplitude TAB satisfies an integral
equation represented diagrammatically in Fig. 2. It can be
shown that TAB only depends on the total momentum and fre-
quency of incoming particles p⊥ = p1⊥ + p2⊥ = p3⊥ + p4⊥
and ων = ωn1 + ων2 = ωn3 + ων4 . Solving the integral equa-
tion yields

TAB(p⊥,iων) = g

1 − g�(p⊥,iων)
, (1)

where g = 2πaeff/
√

mBmr , and mr = mAmB/(mA + mB) is
the reduced mass (h̄ = kB = 1). Here mA denotes the mass of
an A fermion and mB that of the scattering particle in the 3D
gas, namely, the mass of the B fermion (dimer) in the BCS
(BEC) regime. �(p⊥,iων) is the renormalized 2D-3D pair
propagator for the center-of-mass (COM) momentum p⊥ =
(px,py) in the plane, and iων is either a bosonic (BCS regime)
or fermionic (BEC regime) Matsubara frequency. Equation (1)
includes many-body effects in the ladder approximation, and
recovers the correct low-energy 2D-3D scattering matrix in a
vacuum [18].

A. Weak 2D-3D interaction

In order to get a simple physical picture, we first consider the
case of a weak 2D-3D interaction where aeff is much smaller
than the interparticle spacing of the A and B particles. It then
follows from Eq. (1) that TAB(p⊥,iων) � g, and second-order

TAB

p1 p3

p2 p4

=

p1 p3

p2 p4

+ TAB

p1 p3

p4p2

FIG. 2. Scattering T matrix between a 2D fermion and a 3D
particle. The black line represents the 2D fermion propagator and
the red line represents the 3D particle propagator. Here p1 ≡
(p1⊥,iωn1 ), p2 ≡ (p2,iων2 ), p3 ≡ (p3⊥,iωn3 ), and p4 ≡ (p4,iων4 ).

perturbation theory gives

Vmi(q⊥,iων) = g2
∫ ∞

−∞
dqze

iqzdχB(q⊥,qz,iων), (2)

which describes the mediated interaction between two A
particles in different planes. Here (q⊥,iων) = (qx,qy,iων) are
the transferred momentum and frequency and χB(q⊥,qz,iων)
is the density-density response function of the B cloud. The
integration over the momentum qz comes from the fact that it is
not conserved in the 2D-3D scattering. Deep in the BCS limit
where the B fermions form an ideal Fermi gas, the mediated
interaction Eq. (2) is of the form of a Ruderman-Kittel-Kasuya-
Yosida potential [14,19–21]. When the B fermions are deep in
the BEC limit where they form a weakly interacting BEC of
dimers, the mediated interaction takes the form of a Yukawa
potential [22]. At zero frequency, Fourier transforming (2)
back to the real space gives

Vmi(r) =
{

g2 mB

16π3
2pF r cos 2pF r−sin 2pF r

r4 , BCS limit,

−g2 nBmB

πr
e−√

2r/ξB , BEC limit,
(3)

where pF is the Fermi momentum of the 3D Fermi gas in the
BCS regime, and nB is the density of the 3D BEC of dimers
with coherence length ξB = 1/

√
8πnBaB . Here, aB = 0.6aBB

is the scattering length between the deeply bound dimers of B
fermions [23].

B. Strong 2D-3D interaction

For a strong 2D-3D interaction where aeff is comparable to
or larger than the interparticle spacing, the mediated interaction
between the two layers takes on a more complex form. The
reason is that we need to retain the full COM momentum and
frequency dependence of the 2D-3D scattering matrix TAB

given by Eq. (1).
We shall from now on concentrate on the BEC limit of the

B fermions, namely when they form a weakly interacting BEC
of dimers, which can be treated within Bogoliubov theory. In
principle, the density of the BEC in the vicinity of the 2D
layers will be affected by strong 2D-3D interaction. However,
as we will see later, the mediated interaction is determined
primarily by the bulk properties of the BEC. Thus we shall
neglect any modification of the 3D BEC density due to the
2D-3D interaction in our following treatment. In this case, the
renormalized pair propagator �(p⊥,iων) is given by

�(p⊥,iων) =
∫

d3p′

(2π )3

[
1

β

∑
n

GA
j

(
p−,i

mA

M
ων − iωn

)
GB

0

(
p+,i

mA

M
ων + iωn

)
+ 1

p′2
z

/
2mB + p′2

⊥
/

2mr + i0+

]
, (4)
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where p′ = (p′
⊥,p′

z), p+ ≡ mB

M
p⊥ + p′, p− ≡ mA

M
p⊥ − p′

⊥. Here GA
j (p⊥,iωm) = 1/(iωm − p2

⊥/2mA + μA) is the Green’s func-
tion for the A fermions in the j th layer with μA being the chemical potential and GB

0 (q,iων) = 1/(iων − p2/2mB) is the
noninteracting boson Green’s function. For weakly interacting bosons, it is a good approximation to use the noninteracting boson
Green’s function in place of the the normal boson Green’s function in determining the pair propagator. We find at T = 0

�(p⊥,iων) =
∫

d3p′

(2π )3

[
1 − 	(kF − |mAp⊥/M − p′

⊥|)
iων − (

p2
⊥
/

2M + p′2
⊥
/

2mr + p′2
z

/
2mB

) + μA

+ 1

p′2
z

/
2mB + p′2

⊥
/

2mr + i0+

]
, (5)

where kF = √
2mAμA is the Fermi momentum of the A species and 	(x) is the Heaviside step function. Expressed in terms of

the dimensionless variables, the pair propagator is

�(p⊥,iων) = 2mAkF

∫
d2p′

⊥
(2π )2

∫
dp′

z

2π

[
1 − 	(1 − |p′

⊥ − αAp⊥|)
iων − (

αAp2
⊥ + α−1

B p′2
⊥ + αAα−1

B p′2
z

) + 1
+ 1

αAα−1
B p′2

z + α−1
B p′2

⊥ + i0+

]
, (6)

where αA = mA/M and αB = mB/M . Here the frequency variables are scaled in terms of the chemical potential μA and the
momentum variables in terms of the Fermi momentum kF . We write

�(p⊥,iων) = �0(p⊥,iων) + ��(p⊥,iων), (7)

where

�0(p⊥,iων) ≡ 2mAkF

∫
d2p′

⊥
(2π )2

∫
dp′

z

2π

[
1

iων − (
αAp2

⊥ + α−1
B p′2

⊥ + αAα−1
B p′2

z

) + 1
+ 1

αAα−1
B p′2

z + α−1
B p′2

⊥ + i0+

]

= −i
mAkF

2παA
1/2α

−3/2
B

√
iων + 1 − αAp2

⊥ (8)

is the pair propagator in vacuum and

��(p⊥,iων) ≡ −2mAkF

∫
d2p′

⊥
(2π )2

∫
dp′

z

2π

	(1 − |p′
⊥ − αAp⊥|)

iων − (
αAp2

⊥ + α−1
B p′2

⊥ + αAα−1
B p′2

z

) + 1

= i
mAkF√
αAα−1

B

∫
d2p′

⊥
(2π )2

	(1 − |p′
⊥ − αAp⊥|)√

iων + 1 − αAp2
⊥ − α−1

B p′2
⊥

(9)

is the medium correction due to the presence of the Fermi sea. Here
√

z always denotes the root of the complex number z that
lies in the upper half plane.

From Eqs. (8) and (9) we find

�(p⊥,iων) = −i
mAkF

2π2αA
1/2α

−3/2
B

∫ π/2

0
dθ (

√
iων − γ+(θ,p⊥) −

√
iων − γ−(θ,p⊥)) (10)

for αAp⊥ � 1. Here and in the following

γ±(θ,p⊥) ≡ α−1
B p2

±(θ ) + αAp2
⊥ − 1, (11)

where p±(θ ) = ±αAp⊥ cos θ +
√

1 − α2
Ap2

⊥ sin2 θ . For αAp⊥ > 1 we find

�(p⊥,iων) = − i
mAkF

2π2αA
1/2α

−3/2
B

[√
iων − (αAp2

⊥ − 1) + 1

π

∫ θ0

0
dθ (

√
iων − γ+(θ,p⊥) −

√
iων − γ−(θ,p⊥))

]
, (12)

where θ0 = sin−1(1/αAp⊥). Equations (10) and (12) can be used in Eq. (1) to determine the scattering amplitude between the
2D fermion and the 3D boson for arbitrary 2D-3D interaction strength.

With this expression of TAB , we proceed to the derivation of the mediated interaction Vmi. The mediated interaction between
the A particles is calculated including all processes where a single Bogoliubov phonon in the BEC is exchanged between the two
layers. In a diagrammatic language, these processes are shown in Fig. 3(a).

Summing up the contributions from the four terms in Fig. 3(a) gives

Vmi(p1,p2; q) = nBTAB(p1 + q)TAB(p2)ḠB
11(q⊥,iων) + nBTAB(p1)TAB(p2 − q)ḠB

11(−q⊥, − iων)

+ nBTAB(p1 + q)TAB(p2 − q)ḠB
12(q⊥,iων) + nBTAB(p1)TAB(p2)ḠB

21(q⊥,iων), (13)
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FIG. 3. (a) The mediated interaction Vmi between fermions in
layers 1 and 2 coming from the exchange of one Bogoliubov mode.
The box represents the 2D-3D scattering amplitude TAB , the dashed
red line represents bosons emitted or absorbed by the condensate, and
the red thick line with one arrow and two arrows represents the normal
GB

11 and anomalous Green’s functions GB
12 (or GB

21), respectively.
(b) The leading correction to the thermodynamic potential due to the
mediated interaction between the two planes. The thin solid lines
represent the Fermi propagators in the two planes.

where p1 ≡ (p1⊥,iωm1 ), p2 ≡ (p2⊥,iωm2 ), and q ≡ (q⊥,iων).
Here ωm = (2m + 1)π/β and ων = 2νπ/β are Fermi and
Bose Matsubara frequencies, respectively, where β = 1/T is
the inverse temperature and m and ν are integers. In Eq. (13),
the Green’s functions of the BEC are integrated over the z

component of the momentum as

ḠB
αβ(q⊥,iων) ≡

∫ ∞

−∞

dqz

2π
GB

αβ(q⊥,qz,iων)eiqzd . (14)

The Green’s functions of the 3D BEC are as usual

GB
11 = u2

k

iων − Ek
− v2

k

iων + Ek
, GB

12 = gBnB

ω2
ν + E2

k

, (15)

where k = (k⊥,kz) and GB
21(k,iων) = GB

12(k,iων). We
have defined u2

k,v
2
k = 1

2 [(εk + gBnB)/Ek ± 1], Ek =√
εk(εk + 2gBnB) is the Bogoliubov spectrum with

εk = k2/2mB , and gB = 4πaB/mB . Note that the mediated
interaction Eq. (13) depends on both p1 and p2 as well as q due
to the momentum and frequency dependence of the 2D-3D
scattering. In fact, in the weak-interaction limit TAB � g, one
recovers Eq. (2) from the more general expression Eq. (13).

III. THERMODYNAMICAL POTENTIAL

A. Uniform 2D layers

We now derive an expression for the correction to the
thermodynamic potential � due to the mediated interaction

between the two planes for a general strength of the 2D-3D
interaction. The dominant contribution is the Hartree term
illustrated in Fig. 3(b). For a homogeneous system, this term
gives the correction per unit area as (for the rest of the paper
the ⊥ subscript will be dropped in the vector notation and all
boldface letters now denote in-plane 2D vectors)

�̄mi = 1

β2

∑
m1m2

∫
d2p1

(2π )2

d2p2

(2π )2
Vmi(p1,p2; 0)

×GA
1 (p1,iωm1 )GA

2 (p2,iωm2 ), (16)

where GA
j (p,iωm) = 1/(iωm − p2/2mA + μA) is the Green’s

function for the A fermions in the j th layer. Using
Eq. (13) together with the identity 2Ḡ11(0,0) + 2Ḡ12(0,0) =
−√

2nBmBξB exp(−√
2d/ξB) yields

�̄mi = −
√

2mBξBnBe−√
2d/ξB �̄1�̄2, (17)

where

�̄j = 1

β

∑
m

∫
d2p

(2π )2
TAB(p,iωm)GA

j (p,iωm). (18)

The Matsubara frequency summation in the above expression
can in fact be performed analytically, which greatly simplifies
the numerical calculation of thermodynamic potential density.
Substituting Eq. (1) in Eq. (18) and using the dimensionless
momenta and frequencies introduced earlier, we obtain

�̄j= 2
gmA

β

∑
m

∫
d2p

(2π )2

1

[1 − g�(p,iωm)][iωm − (p2 − 1)]

= gmA

πβ

∑
m

∫ ∞

0
dp

1

[1 − g�(p,iωm)][iωm − (p2 − 1)]
.

(19)

Inserting Eqs. (10) and (12) into Eq. (19), and performing the
Matsubara frequency summation, we find for negative 2D-3D
scattering length aeff < 0 and in the zero-temperature limit
β → ∞

�̄j = 2aeffα
1/2
A α−1

B μA

∫ 1

0
dpS(p), (20)

where

S(p) = 1

1 − kF aeff
√

αB
1
π

∫ π/2
0 dθ [

√
1 − p2 + γ+(θ,p) +

√
1 − p2 + γ−(θ,p)]

. (21)

B. Trapped 2D layers: Local-density approximation

Using the local-density approximation, we can generalize Eq. (16), which was derived assuming a homogeneous system, to
the case of trapped 2D Fermi clouds. This yields

�mi(ε1 − ε2) =
∫

d2r1d
2r2

[
2ḠB

11(r1 − r2,0) + 2ḠB
12(r1 − r2,0)

]
�̄1(r1 − ε1x̂)�̄2(r2 − ε2x̂), (22)

where ḠB
ij (r,0) is the 2D Fourier transform of ḠB

ij (p,0) back to real 2D space, and �̄i(r) is given by Eq. (18) using a local
chemical potential μA(r) = μA + mAω2

⊥r2/2. In Eq. (22), we have allowed the two A clouds to be rigidly displaced distances of
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ε1 and ε2 along the x axis in order to analyze their coupled
dipole oscillations; see Fig. 1. Since ḠB

ij already contains a
Fourier transform with respect to z momentum, see Eq. (14),
the bosonic Green’s functions entering Eq. (22) now simply
add up to the density-density correlation function of the BEC
evaluated at the 3D real-space distance r = |r1 − r2 + d ẑ|.
Using this, we finally obtain

�mi(ε1 − ε2) = − mBnB

π

∫
d2r1d

2r2
e−√

2r/ξB

r

× �̄1(r1 − ε1x̂)�̄2(r2 − ε2x̂). (23)

Equation (23) can be understood as follows. Consider two area
elements of the 2D gases, one located at r1 − ε1x̂ in layer 1 and
the other at r2 − ε2x̂ in layer 2. The contribution to �mi from
these two elements can be approximated by the expression in
Eq. (17) in which the relative distance is taken to be r instead
of d. Equation (23) then sums up all such contributions in the
two clouds.

For weak interaction, we see from Eq. (18) that �̄j (rj −
εj x̂) = gnj (rj − εj x̂), where nj (rj − εj x̂) denotes the equi-
librium fermion density in layer j rigidly displaced the
distance εj along the x axis. Equation (23) then simplifies
to

�mi(ε1 − ε2) = − g2 mBnB

π

∫
d2r1d

2r2
e−√

2r/ξB

r

× n1(r1 − ε1x̂)n2(r2 − ε2x̂), (24)

which is the usual Hartree approximation for the interaction
energy between the two planes mediated by a Yukawa
interaction.

IV. COUPLED DIPOLE OSCILLATIONS

Consider now the situation where the two clouds perform
dipole oscillations around their equilibrium positions, see
Fig. 1. For small displacements ε1 and ε2, the COM velocities
and the beating frequencies are small compared to the speed of
sound in the 3D gas and the trapping frequencies, respectively,
yielding rigid and undamped oscillations of the 2D clouds [24].
The COM dynamics is then determined by the energy increase
δE associated with the displacements of the clouds. For
rigid displacements, we have δE = �mi(ε1 − ε2) − �mi(0) +
[μA(ε1) + μA(ε2) − 2μA]NA, which gives

δE(ε1,ε2) = 1
2NAmAω2

⊥
(
ε2

1 + ε2
2

) + �mi(ε1 − ε2) − �mi(0),

(25)

where NA is the number of fermions in each layer. Taylor
expanding �mi(ε1 − ε2) to second order in ε1 − ε2, we readily
see that the motion of the two clouds separates into an in-phase
oscillation with frequency ω⊥ and an out-of-phase oscillation
with frequency

ωr = ω⊥
√

1 + 2I/NAmAω2
⊥, (26)

where

I = ∂2

∂ε2
1

�mi(ε1 − ε2)|ε1−ε2=0. (27)

-6 -4 -2 0
1/(kFaeff)

1

1.2

1.4

1.6

ω
r
/ω

^

FIG. 4. The frequency ratio ωr/ω⊥ of the out-of-phase dipole
oscillation as a function of 1/(kF aeff ). The solid line is the full strong-
coupling result whereas the dashed line is determined by the second-
order perturbation theory.

The microscopic expression for ωr for arbitrary strength of
the 2D-3D interaction in terms of Eqs. (18), (23), (26), and
(27) is the main result of this paper and it explicitly shows
how the mediated interaction can be probed by measuring the
frequency of the out-of-phase dipole oscillations of the two
clouds.

As an example, we now calculate the frequency ωr for
a realistic cold-atom system consisting of NA = 1000 40K
atoms trapped in each plane, immersed in a 3D BEC of
6Li dimers. The transverse trapping frequency for the 40K
clouds is ω⊥ = 2π × 380 Hz, the density of the BEC is
nB = 1018 m−3, and the coherence length is ξB = 2.7 μm.
We furthermore assume that the temperature is zero. In
Fig. 4, we show the frequency ωr/ω⊥ as a function of the
2D-3D interaction strength 1/kF aeff at a fixed interlayer
distance d = 0.4 μm. The frequency increases monotonically
as aeff increases. For weak interaction, it agrees with the
second-order result (dashed line). For stronger interaction,
the full frequency and momentum dependence of the 2D-3D
scattering is important, and the perturbative result deviates
significantly from the full strong-coupling theory. In particular,
whereas the perturbative result diverges for 1/kF aeff → 0, the
strong-coupling theory predicts a finite frequency saturating
at ωr � 1.48 ω⊥. Importantly, the frequency shift becomes
significant for −2 � 1/kF aeff � 0, which includes a region
sufficiently far from unitarity so that the predicted three-body
loss is small [25]. This demonstrates the usefulness of our
proposal to detect mediated interactions. Note that this result
can only be obtained using a strong-coupling theory, since the
perturbative result is only accurate for weak interactions where
the frequency shift is minute.

In Fig. 5, we plot ωr/ω⊥ as a function of the ratio
of the interparticle distances n

1/3
B /n

1/2
F (keeping nF fixed)

with 1/kF aeff = −0.1 and all other physical parameters the
same as for Fig. 4(a). The density of the BEC enters the
mediated interaction in two ways, which is most clearly
seen in the weak-coupling limit given by Eq. (3): First, the
strength of the interaction is proportional to nB ; second, the
range of the interaction is determined by the BEC coherence
length ξB ∝ 1/

√
nB . Thus, increasing the density increases

the strength but reduces the range of the mediated interaction,
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FIG. 5. The frequency ratio ωr/ω⊥ as a function of the ratio of the
interparticle distances n

1/3
B /n

1/2
F (keeping nF fixed) for 1/(kF aeff ) =

−0.1 and all other parameters as in Fig. 3. Here nF is the fermion
density at the center of the cloud.

and it is not a priori obvious what the net effect on the
frequency shift will be. From Fig. 5, we see that for the chosen
parameters, ωr in fact increases monotonically with increasing
BEC density. Finally we point out that we have restricted
all calculations to negative values of the 2D-3D scattering
length. Indeed for 1/kF aeff > 0, a 2D fermion can form a
bound-dimer state with a 3D boson. The frequency shift in
this region therefore depends on whether the system forms
these dimers, or whether it is on the so-called repulsive branch
where the effective 2D-3D interaction is repulsive. This more
complicated situation will be investigated in future studies.

V. CONCLUDING REMARKS

In this paper, we demonstrated that a mixed-dimensional
setup consisting of two layers of identical fermions immersed
in a 3D background gas is a powerful probe to investigate
mediated interactions systematically. The mediated interaction
between the two layers modifies the out-of-phase dipole
oscillation frequency of the 2D clouds, and we calculate this
shift using a strong-coupling theory taking into account the
low-energy scattering between the 2D and 3D particles. Using
this theory, we showed that for strong 2D-3D coupling, the
resulting frequency shift is clearly measurable.

Finally we note that the advantages of our proposal are
twofold. First, if the 2D trapping is realized using optical
potentials, the distance between planes is a few hundred
nanometers, which is much larger than the range of interatomic
interactions. Any observed coupling between the two planes is
therefore solely due to a mediated interaction via the 3D gas.
Second, the shift of the center-of-mass oscillation frequency
is a very precise spectroscopic tool that can be used as a probe
of weak interactions, as demonstrated recently in [24,26].
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