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Abstract

Image reconstruction using ECT sensors rises several drawbacks. Re-

cently, the authors proposed a novel methodology dedicated to a fast

detection of the configuration: size and position, of a single circular form

using basic algebraic operations. However, this technique is efficient when

a single form is present in the sensor cross-section under interest. The

present work proposes two different techniques that determine if the sen-

sor cross-section contains one or two circular shapes. Both methods are

applied to simulated measurements. They operate much differently and

each comes with its own pros and cons.The first method considers that the

sensor signal presents an axis of symmetry if a single circular object lies in

the sensor. Otherwise, the symmetry is broken. It achieves a recognition

rate of 73.9%. In the second method, machine learning techniques are

employed to perform a binary supervised classification. Promising rates

of recognition over 99% are obtained. The present study also reveals that

a 4-electrode sensor leads to the best recognition rates with both methods.

This result was also established by the authors in a different framework

when dealing with physical limitations on spatial resolution in ECT sen-

sors.

1 Introduction

Electrical Capacitance Tomography (ECT) is a well known measurement tech-
nique. It is founded upon the principles of electrostatic [6, 7, 8, 9, 10, 11].
Typically, an ECT sensor can yield information on the spatial configuration of
a non-conducting material whose permittivity is different from that of the en-
vironment. Such situation is common when gas bubbles appear in a fluid. As
a result, ECT is widely used for non destructive control of fluids conveyed in
pipes. Generally, the shapes of typically non conducting bubbles present in a
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fluid are determined by solving an underdetermined set of linear equations using
an iterative optimization [15]. This technique exhibits several drawbacks: the
optimization is time consuming and the result may correspond to a numerical
solution with no physical meaning.
Recently, the authors proposed a novel methodology dedicated to a fast detec-
tion of the configuration: size and position, of a single circular shape using basic
algebraic operations [10, 11]. Instead of dealing with an image reconstruction
founded on inverting an underdetermined set of equations by minimizing a cost
function, the authors assume that a black-box inverse model that predicts the
size and the position of single circular pattern exists and can be designed using
data generated by numerical experiments. The black-box models are imple-
mented using the LS-SVM technique [12]. Since the output of a LS-SVM model
is computed using a set of basic arithmetic operations, this approach allows
an almost instantaneous prediction of the pattern configuration which makes
it highly attractive for a real-time implementation. However, this technique is
efficient when a single shape is present in the sensor cross-section under inter-
est. Its extension to the detection of several shapes is not straightforward. It
is necessary to determine first the number of shapes present in the domain cir-
cumscribed by the sensor.
The present work proposes two different techniques that allow to determine
whether the sensor cross-section contains one or two circular shapes. Both
methods are applied to data obtained by numerical experiments.However, they
operate much differently and each comes with its own pros and cons.
The first method is founded on the analysis of the circular symmetry of the
sensor that is preserved if a single shape is present and often broken when a
second shape with different size and position is also present in the sensor.
The second method proceeds by the implementation of a machine learning tech-
nique to separate the situations with one shape versus situations with two
shapes. The detection of the number of shapes is treated as a classification
problem.
The present paper begins by a recall of the capacitive sensing background and
a presentation of sensors that use the electrical capacitive tomography. There-
after, the problem statement is described. The two methods we propose are then
described and the results obtained with both of them are given and discussed.
The paper ends with a conclusion and a discussion on future work.

We are interested by ECT sensors formed by a set of electrodes arranged
circularly. A typical ECT sensor formed by N electrodes is illustrated on Figure
1. The environment delimited by the sensor is characterized by a permittivity
ε1. A non conducting single circular shape with permittivity ε2 lies in the closed
region circumscribed by the sensor electrodes. This circular shape has unknown
size and position respectively pointed by a radius R and two coordinates: x
and y. The measurement of the capacitances appearing between the sensor
electrodes are performed by polarizing each electrode independently. When a
voltage Vj is applied to electrode j, the measurement of the charge Qi that
appears on electrode i, with a charge transfer circuit for instance [13], when all
others are grounded, allows to determine the capacitive tensor C according to
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The capacitive sensor is symmetric. In addition, the diagonal components of
the capacitive tensor are a linear combination of the other capacitances. As
a result, there are at most 1

2
P (P − 1) independent capacitances. Usually, the

image reconstruction consists in determining the permittivity distribution by
solving an underdetermined set of linear equations obtained by a spatial dis-
retization using the finite element method. Thus, an iterative algorithm [15, 5]
is implemented to find a solution by minimizing a cost function.
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Figure 1: A N-electrode ECT sensor.

Recently, the authors proposed a novel approach to predict both size and
position of a single circular shape lying in a ECT sensor using black-box in-
verse models and data generated by numerical experiments [11]. The black-box
models are implemented using the LS-SVM technique. The output of a LS-SVM
model is computed using a set of basic arithmetic operations. Thus, this method
allows a fast prediction of the pattern configuration.
The training of the LS-SVM models was performed using data drawn from sim-
ulation. In fact, the simulation of electric fields is considered as very efficient.
Thus, training sets were built using a knowledge-based model given by a set of
differential equations. The spatial discretization of the sensor is implemented
using the finite element modeling approach with the Gmsh software [3]. The
differential equations were solved using GetDP software [2].
In addition to the fast prediction of the circular shape configuration, the pro-
posed methodology allows to study the influence of the sensor architecture on
the performances. In particular, the authors studied the impact of the number
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and the size of the electrodes. Figure 2 illustrates the prediction errors obtained
with sensors formed by 2, 3, 4, 5, 6, 8 and 12 electrodes respectively. For all of
them, the electrodes occupy 50% of the sensor perimeter as this covering ratio
showed the best sensing performances. The results presented in this figure show
that there is an optimal value for the number of electrodes. It is common for
that kind of sensor [9]. Indeed the sensitivity of the sensor do not varies in the
same way, inside the sensor, whether the object under detection is located close
the the center or close to the electrodes.
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Figure 2: Prediction error for coordinates x and y in percentage of the sensor
radius.

This approach offers satisfactory performances and is promising for real time
applications. However, it also presents drawbacks: (i) it necessitates to form
data sets for the design of nonlinear black box models, (ii) it is designed to
detect a single shape. Thus, one can wonder what happens if more that one
circular shape is present is the sensor domain. Numerical experiments showed
that the method is unable to predict the size or the position neither of the first
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Figure 3: Aspect of the signal with one circular shape positioned as in figure 1 .

shape nor of the second. In order to improve our method and to make it efficient
to predict simultaneously the configuration of two circular shapes, we suggest
to determine first if the closed region circumscribed by the sensor electrodes
contains one or two circular shapes. In the following, we propose a study that
presents two different techniques.

The first method operates by considering that the geometrical figure formed
by the sensor including a single shape possesses an axis of symmetry. However,
when a second circular shape with a different size and at a different position
appears, the symmetry is most of the time broken. The first method aims to de-
termine if an axis of symmetry exists in the signals provided by the capacitances
of relation (1).

The second method, we propose, utilizes machine learning techniques to
implement the detection of the number of shapes as a supervised classification
problem. The capacitances measurements are considered as descriptors and used
as inputs of support vector machines (SVM) classifiers whose binary outputs -1
and 1 point to one circular shape or two circular shapes respectively.

Both methods are not different by essence. They both use the same infor-
mation from the capacitive tensor. The first one requires no learning phase and
is simple. Machine learning techniques are more sophisticated and require a
learning phase. They are known to be as efficient as possible for classification
purposes.

2 Direct symmetry based classification

2.1 Symmetry

Considering figure 1, one can notice that because of the symmetry, and in ab-
sence of a circular shape, no electrode can be distinguished from the other.

Consequently, without measurement noise, if one plots the Cii =
∑i∈{1,..,P}

j 6=i Cij

versus i, a perfectly flat curve is obtained. When there is a circular shape in
the sensor, as soon as it is not perfectly centered, the precedent plot is no longer
flat. The kind of plot that can be obtained is presented in figure 3

In this figure, the cross shaped markers are the measured values, that can
be interpreted as a sampling of the blue plot in the same figure. The blue plot
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that we will refer as “unwound signal” in what follows, is the one that would
be obtained for the considered circular shape by rotating the sensor around its
center. This would be equivalent to shifting right of left the electrodes as in
a logical register but in a continuous way and performing a measurement each
time. The maximal value would be indeed be obtained in most cases depending
of the relative circular shape radius and electrode sizes when there is an electrode
in front of the circular shape[8]. In that case, the plot is no longer flat but
presents a maximal value and the interpolated curve should be symmetrical
considering both sides of its maximal value. The interpolated curve can be
indeed be shifted indifferently right or left of any quantity without changing the
symmetry because of the sensor circular geometry. To summarize, at this point,
with one circular shape, the interpolated curve is whether symmetrical around
its maximal value or a flat one.

In the case there are two circular shapes as in the situation depicted in fig-
ure 4, the symmetry around the maximal value is broken. Note that it is broken
even if the two circular shapes are the same and positioned in a symmetrical
way with respect to the electrodes. In that case, there are two identical bumps
in the unwound signal. There is indeed an axis of symmetry but it is not the
axis that corresponds to one of maximal values
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Figure 4: Aspect of the signal with two circular shapes.

2.2 Criteria

As presented in the precedent section, the symmetry around its maximal value
of the sensor unwound signal yields information about the presence of a second
circular shape in the sensor. There are two things to do at this point. Firstly
obtain the unwound signal, secondly determine whether it is symmetrical around
its maximal value.

The simplest way to estimate the unwound signal consists in the linear inter-
polation of the the measured signal. This method is simple enough but results
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in an unwound signal that will not be perfectly symmetrical even with one cir-
cular shape as in figure 3. In this example the unwound signal maximal value
will appear in front of the jth electrode when it should be located a little bit on
its left. Further more its derivative is not a continuous function which can be
a drawback with some mathematical methods. To avoid this late impediment,
it is also possible to use more sophisticated interpolation such as the so called
cubic interpolation that respect the first order derivative continuity.

As a matter of fact, because of the circular geometry of the sensor, the un-
wound signal is periodical. Its period correspond to a full rotation of the sensor.
Consequently, by duplicating the unwound signal, one obtains the periodic ver-
sion of the unwound signal. Considering this property, using the FFT algorithm
to interpolate the unwound signal seems a good candidate. This can be easily
performed by padding zeros up to the required number of points in the FFT of
the measured signal before going back to the unwound signal by calculating the
inverse FFT.

In this work we have considered two criteria to estimate the symmetry of the
unwound signal. The first one consists in using the FFT algorithm to estimate
the symmetry of the unwound signal. Indeed considering the oddity property
of the Fourier transform F :

F
(

F
(

f(x)
)

)

= f(−x) (2)

one must have :

{x1, ..., xN−1}⊖ FFT
{

FFT {x1, ..., xN−1}
}

= {0, ..., 0} (3)

In this equation the ⊖ sign refers to the element wise subtraction, and
{x1, ..., xN−1} is the sampled version of f(x). The FFT acronym refers to an
implementation of the Fast Fourier Transform algorithm where a 1√

N
normaliz-

ing factor is included, thus avoiding additional normalization. The mean value
of the left value in this equation defines K1 the FFT symmetry criterion.

Finally K1the first criterion is calculated as:

K1 = 〈{C11, ..., CPP }⊖ FFT (FFT {C11, ..., CPP }}〉 (4)

In this equation, the 〈X〉 denotes the average value of the components of
vector X . Averaging renders the criterion somehow less dependent on the num-
ber of electrodes by allowing to yield comparable signal levels whatever this
number. It is useful for instance when using a threshold with various number
of electrodes.

In order to improve the performances of the detection of the two circular
shapes situation, we used as an additional criterion which is the distance to the
center of the “centroid” of the signal. The coordinates of the centroid {xc, yc}
can be calculated as:
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xc =

P
∑

1

xiCii/

P
∑

1

xi

yc =
P
∑

1

yiCii/
P
∑

1

yi

K2 =
√

x2
c + y2c (5)

Where {xi, yi} are the coordinates of the center of electrode i. This criterion
brings some additional information about the system. Indeed a symmetrical,
with respect to the center of the sensor, distribution of circular shapes will yield
a null K2 criterion which is not the general case.

2.3 Supervised classification

Support Vector Machines (SVM) classification is a machine learning technique
used to find an optimal separation between two classes: the maximum margin
hyperplane [1]. The set of examples that are sufficient to determine the maxi-
mum margin hyperplane are called the support vectors. If the data are linearly
separable, a linear SVM classifier is sufficient. Otherwise, if the data are not
linearly separable, SVM classification proceeds by projecting the input vectors
in a high dimensional space called the feature space then a linear separation is
possible. In practice, this data conversion leads to the use of a kernel function.
To be a SVM kernel, a function has to verify a set of conditions listed in [1]. An
SVM discriminant function is given by:

f(x) =

M
∑

i=1

αiyik(x,xi) + b, (6)

where: k is the kernel function, xi are the support vectors, yi are the corre-
sponding class labels (±1) and M is the number of support vectors. αi and b
are the classifier parameters. They are adjusted during the training process.
As showed by relation 6, Support Vector Machines are linear-in-their-parameters
models. This desirable property allow the training algorithm to converge to a
unique solution. In addition, SVM come with a built-in regularization mecha-
nism that confers to them the ability to design classifiers with good generaliza-
tion capabilities. Thus, they consist of promising candidates to build efficient
classifiers. In addition to SVM classifiers, two other data separation techniques
were implemented in this study: the traditional Least Squares (LS) method,
and the K-Nearest Neighbor algorithm (K-NN) [4].

3 How data was generated

The axis of symmetry method as well as the design of classifiers work on data.
The data can be generated using either a real experimental setup or numerical
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experiments. Since a large number of real experiments is complicated to carry
out, we preferred the numerical alternative. Indeed, the simulation of electric
fields is considered as very efficient. As mentioned before, both the number and
the size of electrodes are considered as relevant parameters of the the sensor
architecture. In [9, 11] it was proved that ECT sensors with electrodes covering
50% of their perimeter show better spatial resolution. Thus, in our simulations,
data was generated using ECT sensors formed by 2 to 6 electrodes covering 50%
of the sensor perimeter. For every sensor architecture, 1000 different situations
were randomly drawn. In each situation, 2 circular shapes lie inside the sensor.
The shapes radii are pulled in the range [0.1; 0.45]. The coordinates x and y
of the shapes centers are pulled in the range [−0.8; 0.8]. When a situation is
generated, it is first verified if it corresponds to a realistic configuration. In par-
ticular, the circular shapes must be totally inside the sensor and should not be
contiguous. If a situation is not compatible with theses conditions, it is rejected
and another is drawn. For all the satisfactory situations, the capacitances are
calculated by polarizing each electrode to 1 V when the others are grounded.
Note that each situation corresponds to a different mesh from the FEM point
of view. We considered circular forms of air with relative permittivity ε2 = 1 in
an oil flow having a relative permittivity ε1 = 3.

4 Results

4.1 Results with the axis of symmetry method

Figure 5 presents the distribution of the one and two bubbles situations in the
K1K2 data space. The results presented where obtained with a simple linear
interpolation to obtain the unwound signal. One can see that the one circular
shapes situation leads to K1 criterion most of the time below 0.1. unfortunately,
the two circular shapes do not lead systematically lead to greater values of this
criterion which does not allow to completely distinguish the two situations. The
efficiency of the center of mass criterion is not better. We do not pretend at
this point that the criterion proposed is the best that can be obtained, but it
well illustrates the kind of criterion that can be thought of when using physical
considerations. The overall classification efficiency of this method is about 80%.

At this point, one may think of refining the criterion to obtain better result.
Indeed the known sensitivity map of the kind of sensors [8] along with this
analysis of the “fail” cases yields new hints and ideas. By doing so, better
results can indeed be obtained but it consist in blind try and test work. In this
work we present instead, as a comparison, a more systematic method based on
supervised classification.

4.2 Results with the supervised classification

As mentioned above, 1000 different situations were simulated. The whole avail-
able data was divided into two sets: a training set formed by 700 examples and
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Figure 5: Distribution of the 1 or two circular shapes situation using the crite-
rions

a validation set formed by 300 examples. Thus, for all the classification methods
we implemented, the classifiers were selected using a validation procedure that
consisted in using a single validation set. Table 1 illustrates the recognition
rates in percentage obtained on the validation set for the five different sensor
architecture we consider. Sensors formed by 2 or 3 electrodes do not provide
sufficient information to recognize if one or two circular shapes are present in
the sensor environment. A comparison of the results obtained with both Least
Squares and Linear SVM methods suggest that data is no linearly separable.
Indeed, the performances do not improve whatever the sensor architecture. Sen-
sors formed by 4 electrodes or more allow the design of efficient classifiers with
other techniques. In particular, the 1-NN method permits to obtain a recog-
nition rate of 86.2% on the validation set using a 5-electrode sensor and the
Nonlinear SVM method allows a performance of 99.5%.

Technical classification Number of electrodes
2 3 4 5 6

1-NN 57.3 62.3 82.3 86.2 85.3
K-NN (K) 64 (25) 69.8 (15) 82.5 (3) 86.2 (1) 85.3 (1)

Least Squares 52.7 49.2 66.8 63.3 66.7
Linear SVM 55.5 52.2 69 67.5 66.5

Nonlinear SVM 65.5 71.8 98.8 98.5 99.5

Table 1: Recognition rates in percentage on the validation set.

Overall, classifiers designed with nonlinear support vector machines show
promising performances. Whereas the recognition rate is close to 100%, this
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Noise level 0% 5% 10% 15% 20%

Recognition rate 99.5 98.8 97.7 96 93.9

Table 2: Recognition rates in percentage of the validation set in presence of
noise.

goal can not be considered as realistic. Indeed, in a real world implementation,
a noise may act on the measurements of the capacitances. Consequently, the
performance may degrade slightly. Figure 6 illustrates graphically the recogni-
tion rates detailed on Table 1.
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Figure 6: Recognition rates achieved by the 3 methods: Linear SVM, Nonlinear
SVM and K-Nearest Neighbor.

5 Noise robustness

The results presented above were obtained using noise free data. If data was
drawn from real measurements, it would be sullied by noise. This may lead to a
decrease in the recognition rates. One can wonder how does the presence of noise
in the data affect the performance of the supervised classification techniques
implemented in this study. Several numerical experiments were conducted. A
time and space varying noise was introduced in the validation set as realizations
of a uniformly distributed random variable in the interval [−a, a]. Four different
noise levels were considered corresponding to four different values of a: 5%,
10%, 15% and 20% of the average signal amplitude. These noise levels are those
encountered at the laboratory on equivalent ECT systems [14].

Table 2 illustrates the recognition rates obtained on the same validation set of
Table 1 with classifiers implemented using Nonlinear SVM. This technique was
selected since it leads to the best performance. Since the noise is a realization
of a uniformly distributed random variable, its effect varies from a realization
to another. Thus, for every noise level, one hundred different realizations were
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Figure 7: Recognition rates and their domains of variation for 100

different realizations of noise.

performed. The circles on Figure 7 correspond to the rate means over the 100
experiments also given on Table 2. The intervals give the domain covered by
the obtained 100 rates.

As expected, the recognition rate goes down when a noise acts on data. For a
noise level corresponding to of 10% the average signal or less, the decrease in the
classifier performance remains moderate. Such a noise level can be considered
as realistic. For noise levels beyond 10%, the loss in the performance becomes
significant. However, one can consider those levels as quite exceptionally. Note
that the worst recognition rate obtained with a noise level of 20% is 91.3%.
It remains much better than all those obtained with the other classification
techniques even with noise free data.

6 Conclusion

Two different approaches to determine whether one or two circular shapes are
lying in an ECT sensor were implemented. Both approaches use capacitance
measurements drawn from numerical experiments.

The first approach is founded on the search of an axis of symmetry. It is
a direct method in the sense that it does not require the design of a filter. It
possesses the advantage of flexibility and achieves a recognition rate of about
80 %.

The second approach consists in designing supervised classifiers using ma-
chine learning techniques. It is an indirect approach in the sense that it necessi-
tates the availability of data and the design of classifiers. Several classification
methods were implemented. Results show that data is not linearly separable
and nonlinear Support Vector Machines achieved promising recognition rates
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up to 99%.
This work illustrates, on an example, the efficiency of machine learning tech-

niques with capacitive sensors to take advantages of data as soon as more “phys-
ically based” techniques do not yield straightforwardly the expected results.
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