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ABSTRACT

We propose and study a class-expansion/
innovation/loss model of genome evolution taking
into account biological roles of genes and their con-
stituent domains. In our model, numbers of genes in
different functional categories are coupled to each
other. For example, an increase in the number of
metabolic enzymes in a genome is usually
accompanied by addition of new transcription
factors regulating these enzymes. Such coupling
can be thought of as a proportional ‘recipe’ for
genome composition of the type ‘a spoonful of
sugar for each egg yolk’. The model jointly repro-
duces two known empirical laws: the distribution
of family sizes and the non-linear scaling of the
number of genes in certain functional categories
(e.g. transcription factors) with genome size. In
addition, it allows us to derive a novel relation
between the exponents characterizing these two
scaling laws, establishing a direct quantitative con-
nection between evolutionary and functional
categories. It predicts that functional categories
that grow faster-than-linearly with genome size to
be characterized by flatter-than-average family
size distributions. This relation is confirmed by our
bioinformatics analysis of prokaryotic genomes.
This proves that the joint quantitative trends of func-
tional and evolutionary classes can be understood
in terms of evolutionary growth with proportional
recipes.

INTRODUCTION

Protein-coding genes in genomes can be classified in both
functional categories (e.g. transcription factors or meta-
bolic enzymes) as well as ‘evolutionary categories’ or

families of homologous genes (to avoid confusion, in the
following we will reserve the term ‘category’ to functional
annotations, and we will use the term ‘family’ as a generic
indication of homology classes, or domain families/
superfamilies in domain data, see ‘Materials and
Methods’ section). Functional categories are routinely
composed of a large number of evolutionary ones. This
distinction is illustrated in Figure 1, where genes are
characterized by both shape (functional category) and
color (homology class) with each shape represented by
multiple colors. Understanding the principles connecting
these separate classifications of genomic material is an im-
portant step in order to disentangle the organization of the
content of whole genomes.

More specifically, studies of fully sequenced genomes
revealed that their functional and evolutionary compos-
ition is governed by simple quantitative laws (1,2). In par-
ticular, for prokaryotes the number of genes in individual
functional categories was shown to scale as a power law of
the total number of genes in the genome (2). Depending
on the functional category the exponent of this scaling law
varies from 0 (for fixed sets of housekeeping genes) to 1
(for metabolic enzymes) and all the way up to 2 (for tran-
scription factors and kinases) (2,3). Furthermore, the dis-
tribution of sizes of gene families (called ‘evolutionary
categories’ in our title) has a scale-free distribution with
the exponent inversely correlated with the genome size
(1,4,5). The overall number of gene (or domain) families
represented by at least one member exhibits a slower-
than-linear scaling with the total number of genes in a
genome (6,7). Biologically, the growth of evolutionary
families derives from combined processes of horizontal
gene transfer, gene duplication, gene genesis and gene
loss (8). For prokaryotes, horizontal transfer appears to
dominate gene family expansion (9), and the same process
is presumably very important for the introduction of a
new evolutionary family into an extant genome.

The comprehension of these empirical laws requires to
construct quantitative models that explore different design
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principles, or more prosaically the recipes by which
genomes are built from elementary functional and evolu-
tionary ingredients. In this study we introduce the first
model to jointly explain observed scaling laws for evolu-
tionary families and functional categories.

Several theoretical models have been previously
proposed to explain the observed power-law distribu-
tion of family sizes (5,10–13). Most of these models
are of class-expansion/innovation/loss type, abstractly
mimicking basic evolutionary moves such as horizontal
transfer, duplication, loss. We recently formulated a
related model that in addition to family size distribution
also explains and successfully fits the scaling of the
number of distinct gene families represented in a genome
as a function of genome size (6,14).

On another front, the ‘toolbox model’ of evolution of
metabolic networks and their regulation recently proposed
by one of us (15) offered an explanation for the quadratic
scaling between the number of transcription factors and
the total number of genes in prokaryotes. In this model,
metabolic and regulatory networks of prokaryotes are
shaped by addition of co-regulated metabolic pathways.
The number of added enzymes systematically decreases
with the proportion to which the organism has already
explored the universe of available metabolic reactions,
and thus, indirectly, with the size of its genome. For the
purposes of the present study, a key ingredient of the
toolbox model is that events adding or deleting genes in
multiple functional categories (in this case metabolic

enzymes and transcription factors regulating metabolic
pathways) are tightly correlated with each other. The
concept of coordinated expansion or contraction of func-
tional categories can in principle be extended beyond
enzymes and their regulators.
One should note that this explanation of scaling of func-

tional categories is conceptually different from that based
on ‘evolutionary potentials’ proposed in Ref. (3).
Evolutionary potentials quantify the intrinsic growth
rates of individual categories. This means that in this
model the growth of one functional category is repre-
sented as uncoupled from growth or decline in other func-
tional categories. However, evolutionary potentials could
also be the effective result of the coordinated expansion
of multiple functional categories linked by interactions of
biological and evolutionary origin (e.g. linking membrane
proteins with signal transduction, etc.) On the other hand,
it is clear that models with evolutionary potentials repre-
sent quite well the empirical data on the growth of func-
tional categories, and thus it appears that this must be (at
least) a very good effective description, that any more
detailed model needs to reproduce.
This study brings together the basic ingredients of class-

expansion/innovation/loss models (6,14) and coordinated
growth of functional categories (15). The resulting com-
bination allows us to study the interplay between the
scaling of evolutionary and functional categories. In par-
ticular, we mathematically derive a relation between
the exponents characterizing these two scaling laws.

A

B

C

Figure 1. Scaling laws in joint functional/evolutionary partitioning of genomes. Genomes are partitioned into families of homologous genes (colors)
and functional categories (shapes). (A) The number of unique evolutionary categories (domain families) (y-axis) scales sub-linearly with the genome
size (x-axis.) (B) Cumulative histograms of domain family size (Figure 4). (C) The number of transcriptional regulators (red), metabolic enzymes
(blue) and housekeeping genes responsible for translation (green) plotted as a function of the genome size measured by the total number of domains.
Symbols in all the plots are empirical data for protein domains in 753 fully sequenced bacterial genomes.
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It predicts that functional categories that grow faster-
than-linearly with genome size are characterized by
flatter-than-average family size distributions. This predic-
tion of our model is subsequently verified by our analysis
of functional and evolutionary scaling in empirical data on
sequenced prokaryotic genomes. Finally, we analyze and
discuss the alternative combination of a class-expansion/
innovation/loss model with growth of functional
categories dictated by evolutionary potentials.

MATERIALS AND METHODS

Models

The model represents a genome as a list of genes, which
is partitioned in homology families and functional
categories. Genome evolution is modeled as a stochastic
process where the elementary moves can be any of two
types: (i) a ‘family expansion’ or ‘duplication’ move in
which a new domain is placed in an evolutionary
category (family of homologous domains) already
present in the genome or (ii) an ‘innovation’ move in
which a new family with just one domain appears in a
genome (e.g. by the virtue of horizontal gene transfer).
We would like to emphasize that in the tradition

established in ‘duplication-innovation-loss’ models,
which we follow, the family expansion move is custom-
arily labeled as duplication. In reality this move can
come either by the virtue of gene duplication or by
horizontal gene transfer, which appears to be the
dominant class-expansion mechanism in bacteria (9).
The overall family size in all genomes might be
generating an effective ‘preferential attachment’ for
HGT events [see Refs. (3,16) and open comments by
referees therein].
Although genes are natural objects of this kind of de-

scription, it is not simple to use genes as central units in
the analysis of empirical data, mainly due to the fact that

gene dynamics is complex and may contain events of gene
fusion, splitting and internal rearrangements. Thus, as in
some previous analyses, we will compare the models with
data on protein domains (3,6), which have the important
property that they cannot be split into smaller units (17).
Domains are modular building blocks of proteins and it
has been argued that they effectively work as the natural
atomic elements in genome evolution (4). Concerning the
scaling laws, domains appear to have the same qualitative
behaviour as genes. Throughout the article, we will be
comparing the models with data on 753 bacteria from
the SUPERFAMILY database (18). The models will be
formulated for abstract atomic elements that could be
genes or domains, and possible relevant issues when
dealing empirically with genes will be addressed in the
discussion. In describing the models we will generally
refer to these units as genes.

Technically, in order to compare with the protein
domain data we rely on simplifying assumptions on the
domain composition of proteins. Obviously the situation
is more complex than this. We have verified in the data
that the number of TF domains is linear in the number of
TF genes (Supplementary Figure S5), with slope 1.09
(average number of TF domains in a TF gene). A
second assumption is that the number of families belong-
ing to a functional category is linear in the total number of
families. This assumption is in accordance with data
(Figure 2 and Supplementary Figure S1). In particular,
we observed this trend for the number of transcription
factor superfamilies (Supplementary Figure S2).

Standard Chinese restaurant process. The starting point is
a class-expansion/innovation process for the homology
families that reproduces qualitatively the empirical
scaling laws (6). This process [known in mathematical lit-
erature as ‘Chinese Restaurant Process’ or CRP (19)]
defines a growth dynamics for the partitioning of a set
of elements (genes or domains) based on two basic
growth moves. Traditionally the CRP model is defined
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Figure 2. The number of evolutionary (domain) families belonging to a functional category follows a linear law in empirical data, denoting a
possible invariant of genome composition. The left panel plots the data for the number of families fc in the 10 largest functional categories on all
genomes, following the trend fc=Ac+�c f, where f is the total number of families on the genome. Symbols are empirical data for 753 fully sequenced
bacterial genomes. The offset Ac is large only for the ‘translation’ category. The right panel is a plot of the coefficients �c obtained from the same
data (subtracting the offset Ac obtained from a linear fit), as a function of genome size in domains, n. See also Supplementary Table S1.
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by two parameters a and y constrained by 0� a� 1 and
y>�a. The moves are quantified and defined by two
probabilities pO and pN of duplication and innovation
respectively.

. The class-expansion probability piO of a domain family
i is proportional to the number of family members ni
currently in the genome offset by a: piO � ni � �
(Table 1).

. The innovation probability pN is the probability of
adding a new domain family with one member. It cor-
responds to a new domain family appearing in a
genome by de novo evolution or horizontal gene
transfer. The CRP model assumes pN � af+y, where
f is the total number of domain families present in the
genome.

The normalization condition pN þ
P

i p
i
O ¼ 1 deter-

mines the pre-factor in both equations to be 1/(n+y).
A gene loss move does not seem to be essential for
the basic qualitative results. Indeed, if stochastic
(uniform) gene loss is incorporated into the model
it results only in renormalization of parameters pO and
pN (14).

We explore the model by direct simulation and by
solving continuous ‘mean-field’ equations (6,14) that
describe the mean behaviour of the number of homology
families and functional categories, and the statistics of the
population of families and categories.

CRP model incorporating functional categories. In order
to introduce functional categories into the CRP, one has
to specify pO and pN for different categories. We first
assume that the probability of introducing a gene of a
specific functional category by the innovation move is in-
dependent of genome size. This assumption implies that
the number of homology families of a given category
scales linearly in the total number of families, and is
justified empirically for some functional categories by
domain data (Figure 2 and Supplementary Figures S1
and S2). Equivalently, pcN ¼ �cpN, where �c is the prob-
ability of introducing a new family of the category c. In
other words, it is assumed here that every time a new
family is added, the probability that it will belong to
category c is �c.

Under this assumption, the mean-field equation
describing the growth of a family of homologous
domains (evolutionary category) is

CðnÞ@nni ¼
Xf

j¼1

aijnj � �: ð1Þ

Here the genome size n is used instead of time and
averages over multiple realizations of a process are
implied. The novel ingredient of the model—coordinated
growth of functional categories—is encoded in the coeffi-
cients aij responsible for correlated duplications between
evolutionary families i and j. We assume aij to depend only
on functional roles of families i and j. The equation
describing the growth of f—the number of distinct
families in a genome is the same as in a standard CRP
model.

CðnÞ@nf ¼ ð�fþ �Þ: ð2Þ

The function C(n), which sets a natural time scale for the
process, is determined by the normalization condition
qnn=1, i.e.

P
i qn ni+qn f=1.

For the specific case of categories of transcription
factors (TFs) regulating metabolic processes and their
metabolic target enzymes, the necessity of a correlated
move can be argued along the lines of ref. (15). A set of
new targets has to be added to incorporate a new meta-
bolic function. This entails the addition of a new metabol-
ic pathway that is long enough to connect a new nutrient
to a previously existing pathway, that further converts it
to a central metabolic ‘core network’. Supposing that each
newly added branch is controlled by only one added TF,
since the length of the branch becomes smaller with
increasing size of the organismal metabolic network
(compared to a metabolic ‘universe’), on average, increas-
ingly more TFs per target will be needed in order to
control newly incorporated branches.
More generally, functional, genetic and epistatic inter-

actions can create the correlated growth of different func-
tional categories of genes. In the ‘Discussion’ section we
provide the empirical evidence of statistically significant
correlations between various functional categories.
Following the recipe outlined in ref. (15) we consider

a simplified version of the model involving only two

Table 1. Basic model quantities and notations

Quantity Meaning

a, y CRP model parameters
n Genome size quantified by its total number of domains
ni Number of domains in the family i
nc Number of domains in the functional category c
f(n) Number of families in a genome of size n
fc(n) Number of families in a genome of size n belonging to the functional category c
f(d, n) Number of families with exactly d members in a genome of size n
fc(d, n) Number of families belonging to the functional category c with exactly d members in a genome of size n
b Exponent of the family-population histogram
bc Exponent of the family-population histogram restricted to category c
�c Probability to introduce a new family of the category c (empirically quantified by the slope of fc versus f)
zc Exponent of the scaling of the size of functional category c versus genome size n
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functional categories: (1) TF—transcription factors
controlling metabolic processes; (2) met—metabolic
enzymes they regulated. As in the toolbox model,
changes in nTF and nmet are coordinated with correlation
coefficients aij given by

aij ¼
nmet

U
; aji ¼ 0; for i 6¼ j and aii ¼ 0:

Here U is the size of the metabolic universe, i denotes any
gene family from functional category TF, and j—from the
functional category met. In this variant, addition of tran-
scription factors can only occur conditionally to the
addition of metabolic enzymes. In the following, we will
refer to this model variant as Model Ia. We define a
second variant of the correlated model (Model Ib),
which is a more direct extension of the standard CRP
model, and thus can exploit previous mean field theory
analytical results. In this case

aij ¼
ni
nmet

; aji ¼ 0; for i 6¼ j and aii ¼ 1;

(where i again denotes any gene family from functional
category TF and j—from the functional category met).
In this model variant, all families (and hence also TFs
families) have an equal intrinsic growth rate on top of
the correlation. If aij=0, i 6¼ j the model is equivalent to
the standard CRP. Finally, we also considered a model
(Model II) where correlations between functional
categories are absent, but instead members of a given
functional category are added at a category-dependent in-
trinsic rate as prescribed by ‘evolutionary potentials’ of
Molina and van Nimwegen (in this case, aij=0 for i 6¼ j,
and aii= rc(i), where c(i) is the functional category to
which family i belongs, and rc(i) is the evolutionary poten-
tial of class c). These results are discussed later on in the
manuscript and compared to the two ‘correlated duplica-
tion’ models above (see ‘Discussion’ section and
Supplementary Data).
To resume, two kinds of models are considered here:

‘correlated recipes’, where the scaling exponents can only
result from interactions between categories (Model Ia and
Ib, the main focus of our study), and ‘absolute recipes’
(Model II), leading to different intrinsic growth rates for
different categories. Correlated models might contain an
specific intrinsic growth rate of the classes, equal for all
classes (Model Ib), or not (Model Ia). We will see that the
important distinction between Model I (a and b) and
Model II is that the different scaling exponents for func-
tional categories are a result of correlations and not
absolute class expansion rates.

Data

Data on superfamily domain assignments and superfamily
functional annotations for the 753 Bacteria were obtained
from the SUPERFAMILY (v1.73) database (18). The
database contains 1291 different domain superfamilies
grouped into 47 different functional categories (60
families do not belong to a specific category). These
categories are divided into 6 larger groups (Metabolism,
General, Regulation, Information, Initiation Complex

Processes and Elongation Complex Processes, see also
http://supfam.cs.bris.ac.uk/SUPERFAMILY_1.73/
function).

Evaluation of exponents in empirical data

We considered the normalized cumulative histograms
(families with more than d members) and non-cumulative
histograms (families with exactly d members) of the popu-
lations for all evolutionary families (related to exponent b,
see ‘Results’ section), and those restricted to the families
belonging to each of the main functional categories
indexed by c (related to the exponent bc, see ‘Results’
section). Exponents were estimated by fitting the data
with a power-law, restricting to a window where the x
axis value was less than a cutoff value, as in ref. (14).
The cutoff was chosen for each fit, by minimizing the
chi-square residuals with varying window size. This pro-
cedure was implemented with a custom CINT (C++)
script using the ROOT software. Figure 6 is obtained con-
sidering the fitted exponents for the histograms of the five
largest genomes [where the ‘finite-size correction’ is
smallest, see Figure 5 and ref. (14).]

Empirical correlations among functional categories

Correlation between families (or categories) populations
were calculated from the deviations from the average
trend. We obtained the frequency of a family/category in
every genome, defined as the ratio between the population
of a family in domains and the total number of domains
assigned on that genome. Subsequently for every family/
category, we extracted an average trend as a function of
genome size n using a sliding-window histogram (with
window size of 280 domains and resolution of 28
domains), and we considered the deviation of each
genome from the average trend at its value of n. The
Pearson correlation of these deviations over all the
genomes was considered between each pair of families/
categories (Figure 7 and Supplementary Tables S3 and
S4).

Models and simulations

The quantitative duplication–innovation evolutionary
models were explored by a mean field analytical
approach and direct numerical simulations. The mean
field approach considers equations for the means of the
observed quantities in the large-n approximation. In
parallel with the mean field analysis, we performed simu-
lations of the main model and its variants. The realizations
depend on the following parameters. (i) The parameters of
a standard CRP, a and y. (ii) The parameter �c , i.e. the
probability that a new family belongs to a given functional
category. This parameter can be inferred from data (see
‘Results’ section and Figure 2). For example, for the case
of TFs and targets, we defined �TF from the slope
extrapolated from Supplementary Figure S2, giving
�TF . 0.035 (see also Supplementary Figure S6). (iii)
Initial conditions, represented by initial configuration
(number of leaves, number of TFs and number of
families in both categories). We have used the configur-
ation of the smallest bacterium in the data set (Candidatus
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Carsonella ruddii). An alternative choice could be the
minimal intersection of all genomes in the database. (iv)
Variant-specific parameters, that amount to the evolution-
ary potentials rc for the first variant of the model, and the
correlation matrix between functional categories, aij for
the second variant. Simulation results are typically
visualized in boxplots in order to compare the means
with the probability distributions. In these plots bars cor-
respond to (in order) the smallest observation, lower
quartile, median, upper quartile and largest observation.

RESULTS

A new invariant of genome composition

We found (Figure 2 and also Supplementary Table S1)
that the number of evolutionary domain families
forming a functional category follows a linear law in em-
pirical data, denoting a possible invariant of genome com-
position. This also implies that the mean law qn fc=�c qn f
assumed in the model is justified by the data. This does not
mean exactly that the fraction of all families belonging to
a certain functional category is constant. Rather, the
observed law can be fc=Ac+�c f, with an offset Ac rep-
resenting a minimal amount of evolutionary families
required to build a given functional category. In empirical
data, this offset appears to be large only for the ‘transla-
tion’ functional category.

The model captures the combined scaling laws

Numerical simulation and mean field analytical solutions
of the correlated growth model (Model I) reproduce very
well both the empirical behavior of the TFs scaling law
and the statistics for evolutionary domain families
(Figure 3 and Supplementary Figure S4). We found no
significant qualitative difference between Models Ia and
Ib regarding these observables. Furthermore, the joint
scaling laws can be reproduced also with an uncorrelated
model (Model II), with minor technical difficulties (see
‘Discussion’ section). The correct asymptotic quadratic
scaling can be obtained from mean field arguments for

both Model I and II. These arguments are presented in
the Supplementary Text. In order to illustrate this point
we consider for example Model Ib. Starting from
Equations 1 one has to sum over all domain families
from functional categories TF and met. Since
nTF=

P
i2TF ni, depends on the number of TF classes,

one must have for its derivative qnnTF=P
i2TFqn ni+qn fTF. Combined, these two equations

give dnTF/dnmet=2(nTF�a)/(nmet� a). 2nTF/nmet, or
finally the quadratic scaling nTF � n2met.
Altogether, the agreement between data and model is

universal, in the sense that the same three parameters are
sufficient to predict family/category numbers and popula-
tions for all genomes in the data set. Moreover, the com-
parison does not rely on the adjustment of any hidden
parameter. It is also worthwhile noting that, while the
input of model I (a and b) is built to give an asymptotic
power-law scaling exponent of two for TFs (which is
reproduced by the mean field approach), at the relevant
genome sizes the model automatically reproduces the
correct empirical exponent (about 1.6 in the
SUPERFAMILY data) as an effect of the finite system
size. Note that in Model Ib TFs can duplicate both spon-
taneously (uncorrelated move) and following spontaneous
duplication of targets (correlated move), corresponding to
the terms aii and aij in Equation 1, while in Model Ia this
does not happen.
The extension of the model to more than two categories

requires to know the laws through which families of dif-
ferent categories are correlated with each other.
Supplementary Figure S3 compares the results obtained
by a correlated duplication model formulated with three
categories (TFs, met, others).

Prediction of the exponents of the family-population
histogram restricted to single functional categories

While the agreement between model and data shows that
the scaling of functional and evolutionary categories can
be understood jointly, it does not provide by itself any
substantially new information about how the two
partitionings interact. Further insight can be obtained

Figure 3. Comparison between 1000 realizations of the correlated duplication model Ib at a=0.3 and y=140 (blue boxplot) and empirical data
(red circles). The left panel is a plot of the number of distinct domain families versus genome size. The fact that the number of families does not
saturate is a property of the standard duplication-innovation model (see (6) for a complete discussion). The right panel plots the number of TF
domains versus the total number of domains, showing that the scaling of the transcription functional category is well reproduced (exponent. 1.6.).
See Supplementary Figure S4 for model Ia.
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considering the distributions of the number of domains
per family for different evolutionary families belonging
to the same functional category. In general, the popula-
tion of domain families of a genome follows a near
power law distribution whose slope depends on genome
size (Figure 4). The mean number f(d, n) of domain
families having d members at large genome size n is well

described by the slope 1/d1+b (Figure 4), and thus
the cumulative histogram by Q(d, n) �1/db, where
the fitted exponent b typically lies between 0 and 1. The
standard CRP predicts this behavior (6,14).
The model described here allows to consider the same
histograms restricted to specific functional categories
(Figures 4 and 6).

A

B

C

Figure 4. Empirical data and simulations for the normalized domain family-population cumulative histograms. The histograms are defined as the
fraction f(d, n)/f(n) of families with more than d domains. (A) Empirical data for the 753 bacteria in the SUPERFAMILY database (each color is a
set of genomes with similar sizes). Left panel: domain family-population cumulative normalized histograms. Right panel: normalized cumulative
histograms restricted to domain families belonging to the TF functional categories. Note that the histograms slopes are different. (B) Simulations of
Model Ib for domain family-population cumulative histograms of CRP with correlated duplications run at a=0.3 and y=140. The plots in the two
panels are defined as in (A). (C) Comparison between simulations of the correlated duplication model variant run at a=0.3 and y=140 (black lines)
with empirical data (orange lines) for the largest genome sizes (5000< n< 8500). Left panel: global normalized cumulative histograms of domain
family population. Right panel: normalized cumulative histograms restricted to TF domain families.
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A mean field calculation (see Supplementary Data)
based on the model variant with correlated duplication
predicts that the different trend of domain population
histograms for TF families scales as fðd; nÞTF � 1=d1þ

�
2

(Figure 5). Thus, the ratio between the exponent of the
cumulative histogram of all families and the exponent of
the cumulative histogram restricted to families belonging
to the TF category is predicted to be equal to the mean
field exponent for the scaling of the functional category.
Specifically, Q(d, n) scales as 1/db whereas QTF(d, n) scales
as d�b/2 and thus the ratio of exponents is b/(b/2)=2, and
this matches the asymptotic scaling of the number of TFs.
More in general, the model indicates that each time the
per-family duplication probability for a functional
category takes the form pcO ’ �cnc, where nc is the total
population of the functional category c, the coefficient zc
will appear in the equation for P(d)c, the (cumulative) dis-
tribution of families belonging category c. This causes
the relationship bc= b/zc and appears to be robust with
respect to the choice of a specific model (see
Supplementary Data). In other words, a precise quantita-
tive relationship must exist between the scaling exponent
of a category and the slope of the family-population histo-
gram restricted to the same category. Functional
categories that grow faster-than-linearly with genome
size will have flatter-than-average domain family size dis-
tributions. Conversely categories growing slower-than-
linearly will follow a steeper-than-average slope.

Accordingly, a strongly visible trend should be expected
in empirical data from families belonging to the TF
category, which scales with exponent 2. Indeed, the em-
pirical population histograms for the TF functional
category for all the genomes in the data set have a
slope that is spectacularly different from the global one
(Figure 5 and Supplementary Figure S13). Quantitatively,
this observation is in excellent agreement with predictions
(Table 2). Direct simulations of the correlated model

reproduce well both the behavior of the histograms at
given size and the dependency on genome size (Figure 4).
More generally, one can test the prediction zc= b/bc

with an empirical evaluation of many functional
categories (Figure 6). The agreement of empirical data
with the predicted behavior is reasonably good, keeping
in mind that many functional categories are composed by
few or poorly populated families, and in these cases the
data might not follow a scaling law that is as clearly
defined as the metabolism or the TF categories.

DISCUSSION

Population of evolutionary families of a given
functional category

We have presented the first combined quantitative descrip-
tion of the partitioning of genomes in both evolutionary
families and functional categories. The results show that a

Figure 6. Linear relation between zc and 1/bc. Our theory predicts zc �
b/bc (solid line). The empirical value of b=.74 is calculated from the
family-population histograms of the five most populated genomes.
Symbols (circles and triangles) are empirical data for 38 functional
categories (see also Supplementary Table S2). Triangles represent the
10 most populated categories, where the estimated exponents are most
accurate. The outlier is the ‘small molecule binding’ category known to
follow peculiar evolutionary mechanisms (20).
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Figure 5. Exponent of evolutionary families and genome size. Fitted
exponent of domain family-population cumulative histograms versus
genome size, for the 753 bacteria in the SUPERFAMILY database
for TF families (red circles) and all families (black triangles),
obtained by a fitting method giving a lower weight to the tail in
order to keep into account the cutoffs [used in ref. (14)].

Table 2. Prediction of the exponent of the family-population histo-

grams restricted to singular functional category

Genome b/bTF zTF

Sorangium cellulosum 1.72±0.1 1.6
Burkholderia xenovorans 1.63±0.08 1.6
Burkholderia 1.54±0.13 1.6
Solibacter usitatus 1.46±0.05 1.6
Bradyrhizobium japonicum 1.59±0.11 1.6

Comparison between expected and observed ratio of the exponent of
the cumulative histogram of all families and the exponent of the cu-
mulative histogram of TF families (Figure 6), for the five largest
bacteria in the SUPERFAMILY database. The ratio can be
compared with the mean field prediction of 2, or directly with the
empirical exponent of the TF functional category (1.6).
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theoretical framework that correctly reproduces both the
scaling laws for functional categories of genes/domains
and the scaling laws for gene/domain families (numbers
and histograms) is possible. Biologically, this finding can
help us understand the large-scale architecture of a
genome in terms of its functional content.
Analyzing the data in order to formulate the model, we

found that the number of evolutionary domain families
forming a functional category is linear in the total
number of domain families (Figure 2). Thus, the
genomic subdivision of evolutionary classes in functional
categories appears to be arguably the simplest possible, if
one disregards the class population. This ingredient was
taken as an assumption for all the models considered here,
which the data fully justify.
The model leads to the non-trivial prediction that

connects the growth exponent of a functional category
to the slope of the family-population histogram restricted
to the same category. In other words, the populations
functional categories and evolutionary families of genes
are connected by a simple quantitative law. Specifically,
the ratio between the exponent of the cumulative histo-
gram of all families and the exponent of the cumulative
histogram restricted to families belonging to a functional
category is predicted to be equal to the exponent for the
scaling of the functional category.
To generate this prediction, we have analyzed in detail

the case of TFs, where the exponent of the population
histogram is halved due to the quadratic scaling using
mean field calculations and simulations, and verified that
it holds in general by simulations of both model variants.
Empirical data on TFs follow this behavior remarkably
well, showing population cumulative histograms of TF
superfamilies decaying with halved exponents compared
to the global populations. The fatter tails of the TF histo-
grams might also be related to the fact that only a few
highly populated DNA-binding domain superfamilies
dominate the population of TF DNA-binding domains
and determine the scaling laws (Supplementary Data
and Supplementary Figures S10 and S11). More in
general, we have also compared the behavior of domain
family population histograms for all the empirical func-
tional categories with the prediction, obtaining results
that are in good agreement (Figure 6), in particular
for the highly populated categories, where the fitting pro-
cedure gives the highest confidence. The only highly
populated category that significantly violates this general
trend is small molecule binding, a category composed
of very few highly populated domain families. This
category is known to follow peculiar evolutionary laws,
with high mobility of domains across the metabolic
network, resulting in members of the same family being
scattered across different pathways and producing lineage-
specific domain families, with frequent re-invention of the
same function by different families (20,21). Thus, the ex-
ception makes biological sense, and can be understood in
terms of members of evolutionary classes ‘jumping’ to dif-
ferent functional categories with high rate during
evolution.

Correlated and absolute recipes

The central ingredient of our main model (Model I) is the
coupling between addition/removal of genes in different
functional categories. From a biological standpoint, it is
reasonable that gene repertoires of functional categories
related to each other via shared tasks, pathways or
processes should follow coordinated rules (8). In order
to further justify this assumption, we probed directly the
empirical domain data for correlation between number of
domains in different functional categories,. To this end,
for each genome g we calculated the deviation dnc(g)
between the functional category size nc(g) and its
average size in genomes of comparable size (see
‘Materials and Methods’ section). We then calculated
the matrix of correlations between values of dnc for differ-
ent functional categories c. The results are reported in
Figure 7 and Supplementary Tables S3 and S4. We also
tested that this procedure for evaluating the correlation
was not dependent on genome size (Supplementary
Figure S9.) The metabolism categories appear to be
highly (anti-)correlated with each other, probably
because of the role they play in different pathways of a
common metabolic network (15). The observed correl-
ations between metabolic families might also be relevant
for reproducing the correct tail of the family-population
histogram restricted to the metabolism category
(Supplementary Figure S3).

An alternative approach is a description where the
growth of each category is governed by intrinsic ‘evolu-
tionary potentials’ (3). We have also analyzed such a de-
scription in some detail (see Supplementary Data and
Supplementary Figure S3). Despite of minor differences,
a model combining class-expansion/duplication/loss with
uncorrelated moves for the functional categories, Model
II, can also perform well in reproducing the joint scaling

Figure 7. Correlation between the populations of 24 different metabol-
ic functional categories from the SUPERFAMILY database for 753
bacteria. The correlation matrix is calculated from fluctuations of
categories from the average trend (see ‘Materials and Methods’
section). Both correlation and anticorrelation are present between
categories. Different metabolism categories are highly (anti-)correlated.
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law and in predicting a relationship between the scaling
exponents and the functional categories. In particular, this
means that the latter result should not by itself be con-
sidered a piece of evidence in favor of a correlated recipe.
Figure 8 illustrates the basic differences between the two
descriptions. The evolutionary potentials approach gener-
ically requires a lower number of parameters, but suffers
from the tedious technical problem that the values of the
growth coefficients cannot be controlled directly, because
of the scaling of the normalization constant with genome
size (see Supplementary Data and Supplementary Figure
S7). The correlated model is technically more under
control, since its behavior does not rely on any
unknown normalization constant. For this reason, it
also performs better with functional categories that grow
faster than linear with genome size, such as TFs. On the
other hand, such a model can be formulated with very few
parameters only when a synthetic description for the cor-
relations, such as the toolbox model, is provided.

Here, we have considered mainly a model with three
categories (TFs, metabolic and others) and one non-zero

correlation between metabolic domains and TFs. In
general, specific biological details of how categories are
correlated with each other determine the scaling exponents
relating their genome fractions to each other and genome
size. Note that the task of formulating a correlated model
for many categories requires a knowledge of how the dif-
ferent functional categories are ‘slaved’ to each other. This
structure is largely unknown quantitatively, and can in
principle define an arbitrarily complex network of inter-
actions, since many categories may correlate with many
others in potentially complicated ways. Should the im-
portance of correlated recipes be confirmed by further
analysis, it seems likely that the full formulation of such
a description would still require to solve this problem. In
order to show explicitly that the model can in principle be
successfully extended to many categories (and still give
scaling laws) we have analyzed the case of a simple hier-
archical structure where many categories are slaved to a
main one (see Supplementary Figure S8).
Overall, since functional categories scaling laws effect-

ively emerge from the correlated approach, a good recon-
ciliation of the two approaches could be to interpret the
evolutionary potential model as an emergent description
(which can be very useful in concrete empirical applica-
tions). In other words, evolutionary potentials would
describe emergent effective growth of functional
categories of a genome, averaging over more ‘microscopic’
evolutionary processes where addition of genes belonging
to specific functional categories needs to comply to con-
straints combining different functions to perform specific
cell tasks. These kind of interactions between functions are
better described by correlated growth of functional
categories. In this view, genome growth would be
governed by a relative recipe, where the proportions are
more important than the exact amounts, rather than an
absolute recipe, where only the detailed amounts of each
ingredient play a role.

SUPPLEMENTARY DATA

Supplementary Data are available at NAR Online.
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