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Abstract

Previous experiments revealed that DHH1, a RNA helicase involved in the regulation of mRNA stability and translation,
complemented the phenotype of a Saccharomyces cerevisiae mutant affected in the expression of genes coding for
monocarboxylic-acids transporters, JEN1 and ADY2 (Paiva S, Althoff S, Casal M, Leao C. FEMS Microbiol Lett, 1999, 170:301–
306). In wild type cells, JEN1 expression had been shown to be undetectable in the presence of glucose or formic acid, and
induced in the presence of lactate. In this work, we show that JEN1 mRNA accumulates in a dhh1 mutant, when formic acid
was used as sole carbon source. Dhh1 interacts with the decapping activator Dcp1 and with the deadenylase complex. This
led to the hypothesis that JEN1 expression is post-transcriptionally regulated by Dhh1 in formic acid. Analyses of JEN1
mRNAs decay in wild-type and dhh1 mutant strains confirmed this hypothesis. In these conditions, the stabilized JEN1
mRNA was associated to polysomes but no Jen1 protein could be detected, either by measurable lactate carrier activity,
Jen1-GFP fluorescence detection or western blots. These results revealed the complexity of the expression regulation of
JEN1 in S. cerevisiae and evidenced the importance of DHH1 in this process. Additionally, microarray analyses of dhh1 mutant
indicated that Dhh1 plays a large role in metabolic adaptation, suggesting that carbon source changes triggers a complex
interplay between transcriptional and post-transcriptional effects.
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Introduction

The cellular metabolism of most yeasts, including Saccharomy-
ces cerevisiae, is set to run essentially on glucose. When this yeast

encounters harsh conditions in niches deprived from glucose, the

ability to transport and metabolize non-fermentable carbon

sources is crucial for its survival. In this manner, the uptake of

short-chain carboxylic acids across the plasma membrane plays a

defining role in the metabolism of yeast cells and in its pH-stasis

[1]. Physiological studies, carried out in this baker’s yeast,

identified two distinct monocarboxylate proton symporters,

strongly repressed by glucose, with different specificities and

regulation. A permease involved in the uptake of lactate-pyruvate-

acetate and propionate was identified in lactic or pyruvic acid-S.
cerevisiae grown cells [2,3], being encoded by JEN1 [4], whereas,

an acetate-proprionate-formate permease was found in ethanol or

acetic acid grown cells, with no obvious gene candidate at that

time [5,6]. Later, ADY2 was identified as the acetate permease

encoding gene in S. cerevisiae [7].

In an early attempt to identify the genes involved in acetate-

proprionate-formate transport, classical genetic studies were

carried out. The strain S. cerevisiae W303-1A was subjected to
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UV mutagenesis, in order to obtain mutants affected in the ability

to utilize acetic acid, but unaffected on the capacity to grow in

ethanol, as the sole carbon and energy source [8]. According to

this strategy, it was hypothesised that mutants specifically affected

in monocarboxylate permease(s) activity could be found. A mutant

clone, exhibiting growth on ethanol, but with pronounced growth

defect in a medium with acetic acid, as the sole carbon and energy

source, was isolated (Ace8 strain) [8]. Further genotypic charac-

terization of the Ace8 mutant led to the identification of the

DHH1 gene as a most likely candidate for explaining the Ace8

phenotype. Indeed, the transformation of Ace8 cells with a

genomic fragment containing DHH1 restored their capacity to

grow on acetate and the deletion of DHH1 presented slower

growth rates than the isogenic wild-type on acetic acid (Paiva, S.

2002 PhD thesis, Fig. S1 in File S1).

DHH1 encodes a RNA helicase of the DEAD-box subfamily

[9,10]. Several homologs have been described in a broad range of

organisms, namely in: S. pombe, STE13 [11], in Xenopus laevis,
XP54 [12], in Drosophila melanogaster, ME31B [13], in mouse,

DDX6 [14,15], in humans, DDX6/P54/RCK (encoding for an

oncoprotein) [14] and in Caenorhabditis elegans CGH-1 [16].

Dhh1 has been involved in the formation of specific dynamic

cytoplasmic loci, the Processing Bodies (P-bodies). P-bodies have

been observed in yeasts, insect cells, nematodes and mammalian

cells as cytoplasmic foci accumulating translationally silent

mRNAs and containing proteins involved in mRNA decay and

translation inhibition, including the deccaping enzymes (Dcp1/

Dcp2), as well as general activators of deccaping, like Dhh1, Pat1,

Lsm1-7 complex, Edc3, the 59-39 exonuclease Xrn1, the Non

sense mediated mRNA Decay (NMD) regulator Nam7/Upf1,

components of the deadenylation machinery, other translational

inhibitors, but also translational elongators and ribosomal subunits

[17–21] (reviewed in [22]). P-bodies were implicated in mRNA

decay, mRNA storage and translation repression [23–25],

miRNA-mediated repression [26,27], nonsense-mediated decay

[28,29] and viral packaging [30]. In consequence, P-bodies have

been proposed to be important players of the cytoplasmic ‘‘mRNA

cycle’’, where normal or aberrant mRNAs having reduced

translational rates and enhanced decapping and deadenylation

activities are targeted and where they can either be degraded or

stored for further translation [31]. However, it should be noted

that their role as loci where cytoplasmic mRNA decay actually

occurs is still controversial [31]. Namely, many studies have shown

that the formation of microscopically detectable P-bodies does not

seem to be required for most mRNA degradation pathways and

that the mRNAs stored in P-bodies are more stable than the

mRNAs found free in the cytoplasm (reviewed in [32]).

Dhh1 plays a fundamental role in regulating the balance

between active translation, accumulation in P-bodies and

cytoplasmic 59-39 decay of mRNAs [33]. Dhh1 physically interacts

with the decapping enzyme activator Dcp1, the deccaping

enhancers Pat1, Lsm1, Edc3 and the Ccr4-Pop2-Not deadenylase

complex [34–39]. Mutants deleted for DHH1, showed a deficient

mRNA decay, longer half-live times of several mRNAs and

accumulated capped deadenylated transcripts, indicating that

Dhh1 acts as an activator of decapping [35,40]. More precisely,

Dhh1 has been proposed to act on mRNA translation rates

[24,41,42], based on the reported competition between mRNA

deccaping and translation initiation [23,36]. Former experiments

suggested that Dhh1 uses its ATPase activity to release eIF4F

complex from the mRNP, or somehow destabilize this eIF4F-

mRNA cap complex, and in this manner repress translation

initiation with concomitant deccaping stimulation [36]. However,

this model has been recently challenged by data indicating that

Dhh1 could promote decapping by slowing translation elongation

downstream to the initiation step [43] and that its ATPase activity

is required for regulating P-bodies dynamics but not translation

inhibition [33]. Hence, Dhh1 plays a role in the regulation of

several cellular processes [44] including mating [45], filamentous

growth [46] and iron deficiency [47]. Moreover, Dhh1 controls

the turn-over of the mRNA encoding the decapping enhancer

Edc1 [44] and DHH1 is epistatic on the DCS1 gene, encoding a

decapping enzyme scavenger [48]. Furthermore, DHH1 has also

been involved in mRNA and tRNA nuclear export [41,49–51].

Dhh1 is required for the efficient retrotransposition of Ty1

elements in yeast [52]. Finally, overexpression of DHH1 also

suppresses defects of the mitochondrial Rnase P subunit Rpm2

[53].

In order to elucidate the involvement of this Dead-box RNA

helicase in monocarboxylate transport and in the regulation of

non-fermentable carbon sources utilization in S. cerevisiae, we

studied the role of Dhh1 in the expression of the Jen1 permease.

We showed that, in the presence of formic acid as sole carbon

source, JEN1 expression is negatively controlled at the post-

transcriptional level by a Dhh1-dependent mechanism. The

deletion of DHH1 led to the accumulation of JEN1 mRNAs

which were associated to polysomes but for which no Jen1 protein

could be detected, questioning the fact that they are eventually

translated. Furthermore, analyses of the wild-type and dhh1
mutant cell transcriptomes evidenced the broad involvement of

this RNA helicase in the control of various cellular pathways.

Materials and Methods

Yeast strains, plasmids and growth conditions

S. cerevisiae strains used in this work are listed in table 1 and the

plasmids in table 2. The cultures were maintained on plates of

yeast extract (1%, w/v), peptone (1%, w/v), glucose (2%, w/v) and

agar (2%, w/v). Yeast cells were grown in YNB glucose 2.0% (w/

v), supplemented with adequate requirements for prototrophic

growth. Carbon sources were glucose (2%, w/v), lactic acid (0.5%,

v/v, pH 5.0), acetic acid (0.5%, v/v, pH 6.0), formic acid (0.5%,

w/v, pH 5.0) and propionic acid (0.5%, v/v, pH 5.0). Solid media

were prepared adding agar (2%, w/v) to the respective liquid

media. Growth was carried out at 30uC, both in solid or liquid

media. The cells were also directly grown in rich media, YP lactic

acid 0.5% pH 5.0, or YP acetic acid 0.5% pH 6.0. YNB glucose-

containing media was used for growth of yeast cells under

repression conditions. For derepression conditions glucose-grown

cells were harvested during the exponential phase of growth,

centrifuged, washed twice in ice-cold deionised water and

cultivated into fresh YNB medium supplemented with a carbon

source of choice.

Strains construction
The yeast strains, the plasmids and the primers used in this work

are listed respectively in Tables 1, 2 and 3. The mutant strain,

dhh1, carrying a dhh1::kanMX4 locus, was transformed with the

hygromycin resistance gene hphMX4 resulting in a marker switch

producing the dhh1::hphMX4 locus [54]. The same procedure

was made for the strain W303-1A: JEN1::GFP-kanMX4 resulting

in the strain W303-1A: JEN1::GFP-hphMX4. The S. cerevisiae
strain BLC 491-U2, was used to amplify the genetic chimaera,

JEN1::GFP-kanMX4, using the primers W303-1A forward and

W303.1A reverse [55]. The dhh1::hphMX4 strain was subse-

quently transformed with the 2.8 Kb JEN1::GFP-kanMX4 PCR

product resulting in strain NV2. Transformed cells were grown in

Analyses of the Dhh1 Role on Gene Expression in Yeast
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YPD media, for 4 hours, and spread on YPD plates, containing

200 mg L21 of Geneticin (G418 from Invitrogen) and 300 mg L21

of Hygromycin (Hygromycin B from Invitrogen). The obtained

transformants were confirmed by analytical PCR, with primers A1

and GFP rev [56].

To obtain the lsm1, pat1, nam7 and ski7 mutants in the W303-

1A background, strains BY 1 to 4 were used to amplify the

corresponding deletion cassettes, using the respective A and D

primers. The strains W303-1A and W303-1A: JEN1::GFP-
hphMX4 were then transformed with this PCR product. The

transformed cells were grown in YPD media for 4 hours and

spread on YPD plates, containing 200 mg L21 of Geneticin and/

or 300 mg L21 of Hygromycin.

Cloning and PCR amplification analyses were performed as

previously described [57].

Transport assays
YNB glucose-containing media was used for growth of yeast

cells under repression conditions. For derepression conditions

glucose-grown cells were harvested during the exponential phase

of growth, centrifuged, washed twice in ice-cold deionised water

and cultivated into fresh YNB medium supplemented with a

carbon source of choice. Cells were harvested by centrifugation,

washed twice and resuspended in ice-cold deionized water to a

final concentration of 20–40 mg dry weight/ml. Conical centri-

fuge tubes containing 30 ml of 0.1 M KH2PO4 buffer at pH 5.0

and 10 ml of the yeast suspension were incubated for 2 min at

26uC. The reaction was started by the addition of 10 ml of an

2 mM aqueous solution (saturation concentration) of

4000 d.p.m./nmol of radiolabeled [14C] lactic or [14C] acetic

acid (sodium salt; GE Healthcare) at pH 5.0. The reaction was

stopped by dilution with 5 ml of ice-cold water. The reaction

mixtures were filtered immediately through GF/C membranes

(GE Healthcare) and the filters were washed with 10 ml of ice-cold

water and transferred to scintillation fluid (Opti-Phase HiSafe II;

Pharmacia LKB). Radioactivity was measured in a liquid

scintillation spectrophotometer (Tri-Carb 2200 CA; Packard

Instrument Co.) equipped with a d.p.m. correction facility. For

nonspecific adsorption of [14C] lactic acid was added at time zero

after the cold water. All experiments were repeated at least three

times, and the data reported represents average values. Data

obtained is represented as the mean 6 SD of triplicate

measurements.

Table 1. S. cerevisiae strains used in this work.

Strains Genotype Reference

W303-1A MATa ade2-1; leu2–3, 112; his3–11, 15; trp1D2; ura3-1; can 1–100 [90]

ACE 147 W303-1A; dhh1D::kanMX4 Paiva S., 2002 PhD thesis

jen1 W303-1A; jen1D::HIS3 (Casal et al. 1999)

BLC 491-U2 MATa ura3–52 JEN1::GFP-kanMX4 [55]

NV1 ACE 147; dhh1D::hphMX4 This work

NV2 NV1; JEN1::GFP-kanMX4 This work

ACE 145 W303-1A: JEN1::GFP-kanMX4 Paiva S., 2002 PhD thesis

BY 1 (YJL124c) BY4742; MAT alpha; his3D1; leu2D0; lys2D0; ura3D0; YJL124c::kanMX4 Euroscarf

BY 2 (YCR077c) BY4741; MAT a; his3D1; leu2D0; met15D0; ura3D0; YCR077c::kanMX4 Euroscarf

BY 3 (YMR080c) BY4741; MAT a; his3D1; leu2D0; met15D0; ura3D0; YMR080c::kanMX4 Euroscarf

BY 4 (YOR076c) BY4741; MAT a; his3D1; leu2D0; met15D0; ura3D0; YOR076c::kanMX4 Euroscarf

MAR 5 W303-1A: JEN1::GFP-hphMX4 This work

MAR 6 MAR 5; lsm1D This work

MAR 7 MAR 5; pat1D This work

MAR 8 MAR 5; nam7D This work

MAR 9 MAR 5; ski7D This work

MAR 14 W303-1A; lsm1D This work

MAR 15 W303-1A; pat1D This work

MAR 16 W303-1A; nam7D This work

MAR 17 W303-1A; ski7D This work

doi:10.1371/journal.pone.0111589.t001

Table 2. Plasmids used in this study.

Plasmids Source or references

pT12 [4]

pPDA1 Andrade, R. (This work)

pAG32 [54]

doi:10.1371/journal.pone.0111589.t002

Analyses of the Dhh1 Role on Gene Expression in Yeast

PLOS ONE | www.plosone.org 3 November 2014 | Volume 9 | Issue 11 | e111589



Table 3. Primers used in this work.

Primers Sequence

W303-1A forward GATTTGTCCTCTCCTGTTATGAAG

W303-1A reverse ATCTTGCTAGTGTTAACGGCTGTTA

A1 GGCCTATCCAAGGATGCTGTC

GFP_rev AACATCACCATCTAATTCAAC

A LSM1 ACCGTATGGGTCTTTGATACACTTA

D LSM1 GGTCTACTGAGCTTACAATAGCAGC

A PAT1 CATTTTAATGGAGTAATTGTCCTGG

D PAT1 TCAAATAGTCGTTCTCCTCAAGTTC

A NAM7 TTTAGTATCATCAGTTTCCCTTTGC

D NAM7 TGATTAAACGAGCTTTCAATTTTTC

A SKI7 GTGATTTTCTACAATCAAACAACCC

D SKI/ GAAATTCTCAATGGCTACTTTACGA

K2 CGATAGATTGTCGCACCTG

K3 CCATCCTATGGAACTGCCTC

doi:10.1371/journal.pone.0111589.t003

Figure 1. JEN1 expression profile. A- Transcription analyses of JEN1 in S. cerevisiae W303-1A wild-type and dhh1 cells. Total RNA was isolated from
YNB Glucose 2% (w/v) grown cells, collected at mid exponential phase, and after induction for 4 or 6 hours in different non-fermentable carbon
sources: G – glucose; L – lactic acid (4 hours); E – ethanol (4 hours); Py – pyruvic acid (4 hours); A – Acetic acid (4 hours); F – formic acid (4 hours); F* –
formic acid (6 hours); Pr – propionic acid (4 hours); Pr* – propionic acid (6 hours); Gly – glycerol (4 hours). An internal JEN1 fragment was used as
probe. PDA1 was used as a reference, for relatively constant transcription. B- RT-QPCR analyses of JEN1 mRNA expression levels in wild type and dhh1
cells grown on glucose, lactic acid, acetic acid or formic acid. The JEN1 expression levels indicated here are relative to SCR1, a RNA pol III transcript
which is not supposed to be sensitive to the deletion of DHH1. A different control was used for Q-PCR (SCR1) and northern blot (PDA1) analyses to
ensure that the measured effects were not a bias coming from the control. The levels of JEN1 mRNAs measured in wild-type cells in lactic acid were
used as a reference and arbitrarily set up at a value of 1. The experiments were performed three times on biologically independent samples.
doi:10.1371/journal.pone.0111589.g001
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Microscopy

S. cerevisiae living cells were examined with a Leica Microsystems

DM-5000B epifluorescence microscope with appropriate filter

settings. Images were acquired with a Leica DCF350FX digital

camera and processed with LAS AF Leica Microsystems software.

RNA analysis
Total RNA was isolated using the standard hot acidic phenol

protocol. In a 1.5% (w/v) agarose/MOPS/formaldehyde gel,

samples of 20 mg RNA were electrophorised and blotted onto a

Hybond- N+ membrane [58]. An internal fragment of 844 bp,

obtained by the digestion of the pT12 plasmid (Table 2) with the

restriction enzymes NcoI and PstI, was 32P-labelled and used as a

JEN1 probe. As internal control RNA of PDA1 was also used. For

mRNA relative half-life times (t K mRNA) determination,

inhibition of transcription was accomplished by the addition of

1,10-phenantroline (0.1 mg.ml21) for 0, 4, 10 and 20 minutes

[59]. Real time quantitative RT PCR experiments were conducted

as previously described (Garcia et al., MBC 2007) using primer

pairs specific of JEN1 (sequences), ACT1 (sequence) or SCR1
(sequences). Relative half-live times were determined by measuring

the ratio between amounts of JEN1 mRNA and those of SCR1 at

each time point and applying, a linear regression equation to the

Log (JEN1/SCR1) = f(t) function. The calculation of the slope

directly gave access to the relative half-life of JEN1 in the mutant

and the wild-type strain. The reported half-live times represent a

mean value obtained from three experiments performed on

independent biological samples.

Polysome gradients
dhh1 mutant cells were grown in YNB glucose media until they

reached an optical density of 0.8. Then, they were washed twice in

sterile water and transferred into an equivalent volume of either

YNB lactic acid or YNB formic acid media. After 5 hours,

cycloheximide was added to the cells at a final concentration of

100 mg/ml. After 5 minutes of incubation on ice, the cultures were

centrifuged 5 minutes at 3000 g, washed once with sterile water

and a second time with lysis buffer (Tris-HCl pH 7.4 20 mM,

NaCl 50 mM, MgCl2 5 mM, DTT 1 mM, cycloheximide

100 mg/ml). After the last centrifugation, the cell pellet was

resuspended in 800 ml of lysis buffer including 1X protease

inhibitor cocktail (Roche). An equivalent volume of glass beads

were added and the cells were disrupted by vortexing 6 times

30 seconds, at 4uC). The supernatant was collected and centri-

fuged 5 minutes at 5000 g (4uC). The supernatant was cleared by

two rounds of centrifugation 10 minutes at 12000 g (4uC). The

final supernatant was stored at 280uC after adding 10% glycerol.

About 600 ml of this solution was loaded on a 10%–50% sucrose

gradient, centrifuged at 39000 g for 3 hours and 0.5 ml fractions

Figure 2. Real time quantitative RT-PCR analyses of JEN1 mRNA steady states in different carbon sources and genetic contexts. Wild-
type, dhh1, pat1, lsm1, nam7 and ski7 strains were grown in formic, acetic or lactic acid as sole carbon sources. The levels of JEN1 mRNA were
measured by real time PCR and normalized by the levels of SCR1 RNA. The levels of JEN1 mRNAs measured in wild-type cells in lactic acid were used
as a reference and arbitrarily set up at a value of 1. The experiments were performed three times on biologically independent samples.
doi:10.1371/journal.pone.0111589.g002
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were collected in 2 ml tubes using a Retriever 500 (ISCO) fraction

collector and a Type 11 Optical unit (ISCO) with 254 nm filters.

The RNAs contained in the fractions were precipitated by added

50 ml of ammonium acetate 3 M pH 5.3 and 1.2 ml of absolute

ethanol. The mixtures were stored overnight at 220uC, and then

they were centrifuged for 20 minutes at 15000 g (4uC). The pellets

corresponding to the polysomes fractions were resuspended with

the same 100 ml of water. The pellets corresponding to the other

fractions were pooled in another 100 ml of water. The RNA was

then purified and cleaned up using the RNA easy midi kit

(Qiagen), following the supplier’s recommendations. The RNA

was quantified by spectrometry and 0.5 mg (for lactic acid) or

1.5 mg (for formic acid) were used for reverse transcription and

real-time quantitative PCR analyses using the JEN1 and ACT1
primer probes as described above.

Figure 3. Real time quantitative RT-PCR analyses of JEN1 mRNA stability in YP lactic acid-grown wild-type, nam7 and dhh1 mutant
cells. Mutant and wild-type cells were grown in YP lactic acid and collected immediately before (time zero) or 4, 10 or 20 minutes after the addition
of 1,10-phenantroline (0.1 mg/ml). The expression levels are expressed relatively to the SCR1 expression level used as a control. These relative
expression levels were set to one at time zero for both strains, in order to normalize differences in mRNA levels between the two strains at the
beginning of the experiment. Squares represent the values obtained for the dhh1 mutant, triangles represent the values obtained for the nam7
mutant and diamonds represent the values obtained for the wild-type. The experiments were performed three times on biologically independent
samples.
doi:10.1371/journal.pone.0111589.g003

Figure 4. Transport activity of lactic acid in S. cerevisiae W303-1A strains: wild-type, dhh1, jen1 (A), lsm1, ski7, pat1 and nam7 (B). The
results are percentages of initial activities of 2 mM [14C] lactic acid uptake, pH 5.0. Cells were grown in YNB glucose and derepressed in YNB lactic
acid or YNB formic acid. Wild-type and dhh1 YNB lactic acid derepressed cells were used as a control.
doi:10.1371/journal.pone.0111589.g004
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Microarray analysis
Detailed protocols are described at http://www.transcriptome.

ens.fr/sgdb/protocols/. The S. cerevisiae microarrays used are

fully described in Array express (www.ebi.ac.uk/microarray-as/

aer/entry; accession number A-MEXP-337). The microarray

experiments were conducted as previously described [60]. Raw

data were normalized using global lowess followed by print-tip

median methods, with background removal, as implemented in

Goulphar [61]. Experiments were carried out 2 times, with dye

swapping. The microarray data are available in Table S2 and fully

available at the GEO database (accession number: GSE60983).

The statistical significance of the expression variations measured

was addressed by using the TMEV version of SAM with a FDR of

5%, a S0 calculated by the Tusher method and using the exact

number of permutation [62–64]. Only genes that passed the SAM

filter and had an average log2 of ratio above 0.9 in glucose or in

formic acid were considered as significantly changing their

expression in the mutant compared with the wild type. These

Figure 5. Jen1 protein expression. A - Subcellular localization of Jen1::GFP in S. cerevisiae living cells. Wild-type, W303-1A, dhh1, lsm1, pat1, nam7
and ski7 mutant cells harboring Jen1::GFP were used to follow Jen1 expression after growth in YNB glucose, and derepression for 4 hours in YNB lactic
0.5%, pH 5.0, or YNB formic acid 0.5%, pH 5.0. B – Total protein extracts from wild type and dhh1 mutant cells harboring Jen1::GFP were used to
follow Jen1 expression after growth in YNB glucose, and derepression for 4 hours in YNB lactic 0.5%, pH 5.0, or YNB formic acid 0.5%, pH 5.0 and
immunoblotted with the indicated antibodies. We add a sample of extracts from lactic acid 50 fold diluted.
doi:10.1371/journal.pone.0111589.g005
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Figure 6. Polysome gradient analyses of dhh1 mutant cells grown in lactic or formic acids. A: Absorbance profiles along a polysomes
gradient obtained with cells grown in lactic acid. The fractions corresponding to the polysomes are indicated. B: the polysomes fractions obtained in
acetic and lactic acid were pooled and the percentage of JEN1 mRNA contained in this fractions compared to the rest of the gradient was quantified
by RT-QPCR. In contrast to previous Q-PCR experiments, SCR1 could not be used as a reference because it is not translated. Hence, ACT1 was used as
a control for an mRNA which was actively transcribed in both lactic and formic acids. The experiments were performed three times on biologically
independent samples. The difference of JEN1 abundance in polysomal fractions between lactic and formic acid was not significant, according to a
Student test.
doi:10.1371/journal.pone.0111589.g006

Figure 7. Transcriptome analyses of Dhh1 impact on gene expression. Venn diagram representing the overlap of down (left) and up (right)
regulation effects in a dhh1 mutant, grown either in glucose or in formic acid. The main functional categories enriched in each group are indicated.
They were determined using the FUNSPEC web tool (funspec.med.utoronto.ca/). The complete set of genes in each category, together with their
functional annotation, can be found in Table S1.
doi:10.1371/journal.pone.0111589.g007

Analyses of the Dhh1 Role on Gene Expression in Yeast

PLOS ONE | www.plosone.org 8 November 2014 | Volume 9 | Issue 11 | e111589



Figure 8. ADY2 expression profile. A- Transcription analyses of ADY2 in S. cerevisiae W303-1A and dhh1 cells. Total RNA was isolated from YNB
Glucose 2%-grown cells, collected at mid exponential phase, and after induction for 4 or 6 hours in different non-fermentable carbon sources: G –
glucose; L – lactic acid (4 hours); E – ethanol (4 hours); Py – pyruvic acid (4 hours); A – Acetic acid (4 hours); F – formic acid (4 hours); F* – formic acid (6
hours); Pr – propionic acid (4 hours); Pr* – propionic acid (6 hours); Gly – glycerol (4 hours). An internal ADY2 fragment was used as probe. PDA1 was
used as a reference, for relatively constant transcription. B- Densiometry analysis of ADY2 Northern blots was performed on scanned films using
ImageJ gel analysis tool (public domain NIH Image program (developed at the U.S. National Institutes of Health and available on the Internet at
http://rsb.info.nih.gov/nih-image/). Absolute intensities were calculated for both ADY2 and the PDA1 control. Relative intensities were calculated for
each experimental band by normalizing the absolute intensity to the corresponding control intensity.
doi:10.1371/journal.pone.0111589.g008

Figure 9. Transport activity of Ady2 in S. cerevisiae W303-1A strains: wild-type, dhh1, lsm1, ski7, pat1 and nam7. The results are
percentages of initial activities of 2 mM [14C] acetic acid uptake, pH 5.0. Cells were grown in YNB glucose and derepressed in YNB acetic acid or YNB
formic acid. Wild-type and dhh1 YNB acetic acid derepressed cells were used as a control.
doi:10.1371/journal.pone.0111589.g009
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genes were listed in Table S1. Global functional analyses were

performed using FUNSPEC [65].

Results

JEN1 expression profile
W303-1A and dhh1 cells were grown in different carbon and

energy sources, in an effort to clarify the mechanisms involved in

the expression regulation of JEN1 by DHH1. The expression

pattern of JEN1 was studied by Northern blot analyses (Fig. 1A).

In the wild-type strain, JEN1 was highly expressed in lactate,

acetate and glycerol, poorly expressed in ethanol and almost

totally absent in glucose, formic acid and propionic acid. In the

dhh1 strain, the JEN1 expression profile was similar to the wild-

type with the notable exceptions of pyruvic, acetic, formic and

propionic acids. In the presence of formate and propionate, the

JEN1 mRNA largely accumulated in the mutant, indicating either

a derepression of JEN1 transcription or a stabilization of JEN1
mRNA in this strain as compared with the wild-type. In the

presence of pyruvate and acetate, an opposite behavior was

observed: the JEN1 mRNA was less abundant in the dhh1 strain

than in the wild-type. JEN1 expression was also quantified by real-

time quantitative PCR in wild-type and dhh1 cells grown in

glucose, lactic acid, acetic acid or formic acid, which confirmed

the conclusions taken from the northern blots (Fig. 1B). These

results show that DHH1 regulates the expression of JEN1 at the

mRNA level, pointing to an involvement of this RNA helicase in

the regulation of monocarboxylic acids utilization, in S. cerevisiae.

Involvement of other players in the mRNA degradation
pathways

To further investigate the mechanisms by which Dhh1 controls

JEN1 expression, we measured the JEN1 mRNA levels in cells

Figure 10. Model for JEN1 expression regulation. This model is inferred from the data presented in this work. Briefly, in glucose, JEN1 is
transcriptionally silent. In lactate or acetate, JEN1 is transcriptionally activated by Cat8 and JEN1 mRNA are actively translated, which results in the
accumulation of Jen1 in the plasma membrane and in an active transport of carboxylic acids. In formic acid, JEN1 is transcriptionally active, but the
JEN1 mRNAs are targeted to degradation in P-bodies and therefore barely detectable by northern blots. In the absence of Dhh1 or Pat1, JEN1 mRNA
are no more degraded but still the Jen1 protein was not detectable, which result in an accumulation of mRNA with no or very few Jen1 protein in the
membrane and no or very few active transport of carboxylic acids. Our data cannot tell if this low protein level is due to the low RNA level or to actual
translation inhibition.
doi:10.1371/journal.pone.0111589.g010
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mutated for genes involved in various aspects of cytoplasmic

mRNA degradation: decapping activation (pat1 and lsm1), 39-59

exosome-mediated degradation and the non-stop decay (ski7) and

non sense mediated decay (nam7). The inactivation of PAT1 or

NAM7 led to an accumulation of JEN1 mRNA in formic acid of 6

and 4 fold, respectively, as compared with the wild-type. This

effect was similar to what was observed in the dhh1 strain (Fig. 2,

left panel). The lsm1 strain exhibited an increase in JEN1 mRNA,

which was significant, but lower for the one observed for pat1 and

nam7 strains (about 2 fold). In contrast, the deletion of SKI7 had

no effect on JEN1 expression in these growth conditions. With

acetic acid as the sole carbon source, the deletion of DHH1 or

PAT1 led to a significant decrease of JEN1 expression of 5 and 2

fold, respectively (Fig. 2, right panel). The other mutants

examined showed no significant differences as compared with

the wild-type. Finally, in lactic acid, the mutations tested had few

effects on JEN1 mRNA levels (Fig. 2, lower panel). These results

suggested contrasted roles of Dhh1, Pat1 and Nam7 on JEN1
expression, which largely vary depending on the carbon source.

We further investigated the regulation of JEN1 in formic acid.

Decay of JEN1 mRNA in the S. cerevisiae dhh1 and nam7
strains

The relative stability of JEN1 mRNA was analysed in the S.
cerevisiae wild-type strain and in a dhh1 or nam7 genetic

background. A pulse of 1,10-phenanthroline (0.1 mg/ml) was

added to YP lactic acid-grown cells (JEN1 inducing conditions) to

stop transcription. RNA samples were prepared 0, 4, 10 and

20 minutes after the pulse. JEN1 mRNA levels were measured

using real time quantitative PCR. The results were normalized to

the signals obtained for the SCR1 mRNA (a stable RNA pol III

transcript) and time zero was used as a reference to normalize for

RNA steady state differences between wild-type and dhh1 strains

before the phenanthrolin pulse (Fig. 3). The relative half-live times

(t K mRNA) of JEN1 mRNA were calculated in each strain. This

relative half-life increased by two fold in the dhh1 mutant as

compared with the wild-type and nam7 mutants (15+/2

1.05 minutes in dhh1 mutant, 8.5+/20.9 and 8.7+/21.2 minutes

in the wild type and nam7 mutant, respectively) (Fig. 3). These

results suggest that dhh1 actively participates to the regulation of

the stability of JEN1 mRNA in formic acid. In contrast, the

increase of JEN1 mRNA seen in the nam7 mutant is not related to

a higher stability, suggesting that Dhh1 and Nam7 act at different

levels in the regulation of JEN1.

Activity of monocarboxylic acids transporters in S.
cerevisiae dhh1 strain

In order to determine whether JEN1 mRNAs detected in dhh1,

pat1 and nam7 mutant strains grown in formic acid was being

translated to a functional protein, the uptake of 2 mM of labelled

lactic acid pH 5.0, was assessed in wild-type and mutant cells

grown on glucose and shifted to YNB formic acid 0.5%, pH 5.0,

for 4 hours (Fig. 4B). As a control, wild-type and dhh1 mutant cells

were grown in glucose and shifted to YNB lactic acid 0.5%, for

4 hours and no significant differences were observed in the uptake

of labelled lactic acid (Fig. 4A), in contrast to what was found for

jen1 mutant, where no active transport was observed. In formic

acid, no lactate transporter activity was observed in the wild-type

cells, which is in accordance with the fact that no mRNA

expression was found in these conditions. In dhh1, pat1 and nam7
mutants, although the JEN1 mRNA was accumulating, no active

lactate transport could be detected (Fig. 4B), suggesting that the

accumulation of JEN1 mRNAs in the absence of DHH1 does not

lead to detectable Jen1 activity.

Jen1 protein is undetectable in the dhh1, pat1 and nam7
mutant strains grown in formic acid

To try to detect Jen1 protein in formic acid, cells of the wild-

type and the dhh1, nam7, pat1, lsm1 and ski7 (Table 1) mutant

strains, harboring a gene encoding a Jen1::GFP chimera in their

genome, were grown in YNB formic acid or in YNB lactic acid

(positive control) for 4 hours. Cells were harvested and equal

volumes of cell suspension were resuspended in low-melt agarose

(1.0%, w/v), and observed by epifluorescence microscopy. In lactic

acid, the fluorescence was unambiguously localized to the plasma

membrane in all tested cells as previously described for the wild-

type strain [55] (Fig. 5A). The same experiments were conducted

with cells grown in formic acid as sole carbon and energy source

for 4 and 6 hours. In these conditions, there was no fluorescence of

Jen1::GFP in any of the strains tested (Fig. 5A). Again, this result

was expected for the wild-type, in which almost no JEN1 mRNA

is present, but not for dhh1, pat1 or nam7 mutants, in which

significant amounts of JEN1 mRNA were detected by Q-PCR

and northern blots. However, this may just be a problem of

detection sensitivity, because, even in the dhh1, pat1 and nam7
mutants, the JEN1 mRNA levels in formic acid are still 50 fold

lower than the one measured in lactic acid. Hence, we used a more

sensitive technique than GFP fluorescence to try to detect Jen1.

We performed western blots, using anti-GFP antibodies, in wild

type and dhh1 mutant grown in glucose, lactic acid or formic acid

(Fig. 5B). As expected, the Jen1-GFP protein was detected in no

strain in glucose and in all strains in lactic acid. No signal was

detected in formic acid, even in the dhh1 strain, which supported

the fact that the jen1 protein was not produced in these conditions

(Fig. 5B). Still, these experiments did not exclude the possibility

that Jen1 is actually produced but below the detection sensitivity of

the method. Indeed, with a simple 50 fold dilution of the lactic

acid sample (which roughly mimics the amount of protein that

may be expected in the formic acid grown mutant cells, based on

the mRNA levels measured in Fig. 1B), the protein became barely

detectable (Fig. 5B).

JEN1 mRNA is associated with polysomes in the dhh1
mutant grown in formic acid

To clarify the translational status of the JEN1 mRNA, we

performed polysome gradients in formic acid grown dhh1 mutant

cells (Fig. 6A). Similar experiments were conducted in lactic acid

grown dhh1 cells, as a control for a condition in which JEN1
mRNA are actively translated. ACT1 was used as a control for an

mRNA which is actively translated in both formic and lactic acid

grown cells. The mRNA levels were estimated using real-time

quantitative PCR. Because the JEN1 mRNA levels were very low

in formic acid, we had to pool all the fractions corresponding to

polysomes on one hand and all the other fractions on the other

hand, and make a rough estimate of the percentage of ACT1 or

JEN1 mRNAs present in each of the two categories of fractions

(Fig. 6B). As expected, JEN1 mRNAs were enriched in the

polysome fractions in cells grown in lactic acid. Interestingly, it was

also clearly enriched in the polysomes fractions in cells grown in

formic acid. These experiments indicated that, although we could

not detect any Jen1 activity, the JEN1 mRNAs, which accumulate

in formic acid in the absence of Dhh1, are associated with

polysomes.
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Genome-wide analyses of the dhh1 role in metabolic
adaptation

To highlight the role of Dhh1 in the gene regulation associated

with carboxylic acids and non fermentative growth conditions, we

performed DNA microarray analyses of the transcriptome of yeast

wild-type and dhh1 mutant cells, grown in glucose or shifted from

glucose to formic acid 0.5%, pH 5.0, for 4 hours. About 920 genes

were identified as being significantly up or down regulated in the

dhh1 mutant compared with the wild-type, in at least one of the

two tested conditions (Fig. 7). The mRNAs which amounts

increased in the mutant were mostly involved in proteasomal

and vacuolar proteolysis, respiration, oxidative and general stress

responses and carbohydrate metabolism. The mRNA which

steady-state decreased in the mutant were involved in ammonia

and amino acid metabolism (including most of the corresponding

transcriptional regulators), DNA topology and the maintenance

and silencing of telomeres, aminoacyl-tRNA synthesis, transla-

tional elongation and mating (Fig. 7). About 75% of these effects

were independent of the carbon source, i.e. they were found both

in glucose and formic acid. Among the genes that accumulated

independently of the carbon source, we found the previously

identified targets of Dhh1: EDC1, COX17 [25,44] and SDH4
[47]. Also, the decrease in expression of genes involved in mating

and in tRNA metabolism is reminiscent of the roles of Dhh1 in

Ste12 induction [46] and tRNA maturation [51], respectively.

Interestingly, several genes involved in mRNA decay were up-

(EDC1, EDC2, DCS1, DCS2, PUF3, PUF2) or down- (POP1
and the subunits of the CCR4-NOT complex CAF16, CAF4 and

NOT3) regulated in the mutant, suggesting the existence of

feedback controls between the activity of Dhh1 and the

components of the mRNA degradation pathways. Moreover,

some translation regulators exhibited increased (SRO9, PET122,

PPQ1, SUI1, CBP6) or decreased (TPA1, RPS31, GCN1,

RBG2, MDM38, GCN3, ECM32) expression in the dhh1 mutant.

Intriguingly enough, many genes encoding RNA helicases (SLH1,

BRR2, DED1, DBP1) and telomeric DNA helicases (Table S1)

showed significant expression changes in the mutant.

Finally, microarray results confirmed the accumulation of the

JEN1 mRNA in the mutant strain, only in the presence of formic

acid, as previously that was described in this work. Then, we

focused our attention on the genes which, like JEN1, are repressed

in the presence of glucose and induced by acetate [7] (Table S1).

We found that 32 of these genes behaved like JEN1 in the dhh1
mutant. This is for instance the case of the other carboxylic acid

transporter, ADY2, of CAT8, the transcriptional regulator of

JEN1, and of the positive regulator of respiratory gene expression,

HAP4. Northern blot analyses confirmed that the ADY2 mRNA

indeed accumulated in the dhh1 mutant only in the presence of

formic acid (Fig. 8). Additionally, transport activity experiments in

formic acid derepressed cells showed that the accumulation of

ADY2 mRNA did not produce detectable amounts of Ady2

protein, nor in dhh1 mutant nor in the other mutants tested in this

work, similar to what was found for Jen1 (Fig. 9). These results

suggest that the post-transcriptional regulation that we character-

ized for JEN1 is shared by several other genes involved in carbon

source metabolism. Surprisingly, several genes that were known to

be similarly subjected to glucose repression already accumulated in

the dhh1 mutant in the presence of glucose (Table S1). This is for

instance the case of ADR1, a transcription factor which

collaborates with CAT8 under non fermentative growth condi-

tions. Noteworthy, ADR1 mRNA had been already shown to be

post-transcriptionally down-regulated by the non-sense mediated

mRNA decay machinery and the decapping enzyme Dcp1 in

presence of glucose [66]. This raises the interesting hypothesis that

the balance between transcriptional and post-transcriptional

regulations ensuring glucose catabolic repression may largely

differ from one gene to another.

Discussion

Jen1 is localized at the plasma membrane of S. cerevisiae cells

and it is involved in the transport of lactic, pyruvic, acetic and

propionic acids. This permease is induced in the presence of non-

fermentable carbon and energy sources, like lactic and pyruvic

acids and its expression is undetectable in the presence of glucose,

formic or propionic acids [4,67]. The disruption of the RNA

helicase encoding gene DHH1 attenuated growth on acetic acid.

Dhh1 was known to participate in the mRNA cycle [25]

controlling, together with the Pat1-Lsm complex, the balance

between translation and mRNA degradation by inhibiting

translation initiation, targeting mRNAs to the P-bodies and

contributing to the recruitment of the decapping machinery [68].

In this work, we showed that Dhh1 in particular, and the

decapping complex in general, have roles in the post-transcrip-

tional regulation of JEN1 expression, which depend on carbon

source. In the absence of Dhh1, Pat1 or Lsm1, JEN1 mRNAs

accumulated in formic acid and associated with polysomes,

although we could not detect the translated functional protein.

Hence, the translational status of JEN1 mRNAs in these

conditions remains an open question. The same phenomena

occurred in a mutant for Nam7/Upf1, which is an important actor

of the NMD pathway. Additionally, we confirmed that the half-

lives of the JEN1 mRNA actually increased in the absence of

Dhh1, but not in the nam7 mutant. In contrast, in acetic acid, the

inactivation of Pat1 or Dhh1 had a negative effect on JEN1
mRNA expression. Our microarray experiments suggest that other

key genes of metabolic adaptation, like the transcription factor

encoding gene CAT8 or the acetate transporter encoding gene

ADY2 (Fig. 8), may encounter similar regulations.

Hence, the model that we can draw from our results and from

previous studies is the following (Fig. 10). In glucose, JEN1 is

transcriptionally silent, as described previously. In lactic, its

transcription is induced by Cat8 and Adr1, which results in high

levels of Jen1 protein. In formic acid, the glucose transcriptional

repression is also released, but JEN1 mRNAs are rapidly

degraded. This degradation requires Dhh1, Pat1 and Lsm1,

which are known to collaborate in the activation of decapping and

59-39 mRNA decay, but not Ski7, which is involved in the 39-59

degradation of cytoplasmic mRNA by the exosome. Notably, the

stability of the JEN1 mRNA increase in the dhh1 mutant was only

two fold, when its accumulation was about 6 fold, suggesting

additional levels of controls of Dhh1 on JEN1 mRNA steady-state.

This accumulation of JEN1 mRNA in formic acid is also

dependent on the presence of Nam7, but Nam7 does not act at

the level of JEN1 mRNA stability. NAM7/UPF1 is involved in the

NMD pathway which degrades aberrant mRNAs exhibiting a

premature stop codon and ‘‘normal’’ mRNAs which present

particular features (long 39UTRs, alternative translation initiation

sites, upstream ORFs) [69], reviewed in [31]. However, our results

suggest that JEN1 mRNA is not a target of Nam7. One possibility

is that Nam7 acts indirectly on JEN1 expression by regulating the

levels of a transcriptional regulator of JEN1 in formic acid.

In acetic acid, the regulation of JEN1 seems to be totally

different. In the wild type, the JEN1 mRNA is highly expressed.

Mutations of DHH1 or PAT1 decreased this expression level

(Fig. 1 and 2). GFP-fusion experiments showed that the JEN1
mRNAs are translated in the dhh1 mutant but that this lower level

of mRNA expression resulted in a lower permease activity, as
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measured by lactate transport assays (Fig. S2 in File S1). These

observations may explain the slow-growth phenotype of the dhh1
mutant in acetic acid. This effect on the mRNA levels of JEN1 in

acetic acid was independent from Nam7 (Fig. 2). The fact that the

inactivation of a degradation pathway can lead to a decrease in

gene expression may seem counter intuitive. It was shown recently

that the inactivation of the cytoplasmic 59-39 exonuclease Xrn1 or

of the decapping enzyme Dcp2 leads to accumulation of long non

coding RNAs (lncRNAs), some of which being located in the

promoter or in antisense position of coding genes [70,71]. In some

cases, this accumulation can lead to the transcriptional silencing of

the overlapping genes. This system seems to preferentially target

inducible genes, as for instance the GAL system [70,72]. The

JEN1 genomic region has been shown to be able to produce two

stable unannotated transcripts (SUTs) [73] in sense and antisense

positions (www.yeastgenome.org). Moreover, it overlaps with one

large Xrn1 sensitive lncRNA (XUT) antisense to the JEN1
mRNA sequence [71] (www.yeastgenome.org). Therefore, it was

tempting to speculate that the negative effects of Dhh1 and Pat1

deletion on JEN1 expression in acetic acid could be mediated by

an accumulation of one or several of these intergenic or antisense

lncRNAs. Northern blot analyses of the three non coding RNAs

overlapping the JEN1 locus could not show any difference of

expression between the wild type and the dhh1 mutant grown in

acetic acid (data not shown). This suggested that Dhh1 does not

act on JEN1 expression in acetic acid by degrading overlapping

transcripts. This is consistent with previous observations that Dhh1

and Pat1 had no role in the transcriptional silencing by the

accumulation of lncRNAs [70].

More generally, we pointed out about 900 potential targets for

Dhh1, which are involved in many, different cellular pathways.

These results emphasized the large role of Dhh1 in gene

expression regulation. Still, this number (about 15% of the genes)

is relatively small, considering that Dhh1 participates to a general

mRNA degradation pathway. Interestingly, in trypanosomes,

microarray analyses of dhh1 mutants suggested that it controls

the expression of only 1% of the genes, several of them being

involved specifically in developmental processes [74,75]. More

recently, CLIP-seq experiments have shown that Dhh1 was able to

bind about 300 mRNAs in standard growth conditions [76]. Our

microarray results and the model of JEN1 regulation discussed

above support the idea that, besides its general role in the global

cytoplasmic mRNA decay, Dhh1, like Xrn1 or Dcp2 [70–72] may

have more specific roles in the post-transcriptional and/or

transcriptional regulation of some genes, in response to environ-

mental stimuli. Moreover, our list of genes whose expression is

affected in the dhh1 deletion strain provides explanations for the

various phenotypes reported for DHH1 mutations, including

defects in G1/S checkpoint recovery, filamentous growth, stress

responses, membrane asymmetry, sporulation, ion homeostasis,

apoptosis, vacuolar trafficking, ethanol, 2-deoxyglucose and zinc

resistance [41,46,77–86]. However, the interpretation of these

mRNA steady-state measurements in terms of direct and indirect

effects is not straightforward, since Dhh1 impacts on the

expression of a large number of transcriptional and post-

transcriptional regulators and of their target genes (Table S1).

For instance, the expression of the transcription factor encoding

gene WAR1 (involved in weak acid resistance) and of its main

target gene PDR12 decreased in the dhh1 mutant. Noteworthy,

the level of expression of DHH1 increased in a WAR1 gain of

function mutant [87]. Similarly, Dhh1 apparently controls the

level of expression of several proteins regulating mRNA stability,

including for instance PUF2 and PUF3. Some PUF proteins have

been shown to promote mRNA decay depending on Dhh1

[88,89]. This suggests a complex interplay between transcriptional

and post-transcriptional effects, with regulatory feedbacks between

them. Clearly, further genome-wide mRNA stability and pro-

teome studies of the dhh1 mutant will be required to decipher the

global regulatory roles of Dhh1.

In conclusion, this study revealed that he regulation of JEN1,

ADY2 and possibly many other mRNA in carboxylic acids is much

more complex than a simple relieve of glucose repression, and that

the mechanisms which control this expression considerably vary

from one carbon source to another.

Supporting Information

File S1 Figures S1 and S2. Figure S1. Representative growth

curves of wild-type and dhh1 cells grown in YNB glucose 2% (A)

and in YP acetic acid 0.5% (B) media. Figure S2. Transport

activity and subcellular localization of Jen1::GFP in S. cerevisiae
W303-1A strains. A – Percentages of initial activities of 2 mM

lactic acid uptake, at pH 5.0, in cells grown in YNB glucose and

derepressed in YNB acetic acid 0.5%, pH 6.0. B – Wild-type and

dhh1 cells harboring Jen1-GFP were used to monitor Jen1

expression after growth in YNB glucose and derepression in

YNB acetic acid 0.5% pH 6.0 for 6 hours or YNB lactic acid 0.5%

pH 5.0 for 4 hours.

(DOCX)

Table S1 Lists of genes with significant expression
variations. The criteria used to select these genes can be found

in the material and methods. There are three sheets corresponding

to the following categories: gene changing expression 1- only in

formic acid, 2- only in glucose or 3- in both glucose and formic

acid. Column 1: ORF ID, column 2: fold change in acetate

compared with glucose (data from Paiva et al., Yeast 2004),

Column 3: average log of fold change (mutant/wild-type) in

glucose, Column 4: average log of fold change (mutant/wild-type)

in formic acid, Column 5: gene name, Column 6: functional

annotation taken from the SGD.

(XLS)

Table S2 Complete microarray results. Column 1: ORF

ID. Column 2 to 4: Log2 of normalized fluorescence ratios (dhh1
mutant/wild-type) for the 4 experiments (two growth conditions in

duplicate).

(XLS)
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