M. Casal, S. Paiva, O. Queiros, and I. Soares-silva, Transport of carboxylic acids in yeasts, FEMS Microbiology Reviews, vol.32, issue.6, pp.974-994, 2008.
DOI : 10.1111/j.1574-6976.2008.00128.x

M. Casal, M. Blazquez, F. Gamo, C. Gancedo, and C. Leao, Lack of lactateproton symport activity in pck1 mutants of Saccharomyces cerevisiae, FEMS Microbiol Lett, vol.128, pp.279-282, 1995.

M. Casal, S. Paiva, R. Andrade, C. Gancedo, and C. Leao, The lactate-proton symport of Saccharomyces cerevisiae is encoded by JEN1, J Bacteriol, vol.181, pp.2620-2623, 1999.

M. Casal, H. Cardoso, and C. Leao, Mechanisms regulating the transport of acetic acid in Saccharomyces cerevisiae, Microbiology, vol.142, issue.6, pp.1385-1390, 1996.
DOI : 10.1099/13500872-142-6-1385

J. Makuc, S. Paiva, M. Schauen, R. Kramer, and B. Andre, do not transport monocarboxylic acids across the plasma membrane, Yeast, vol.31, issue.12, pp.1131-1143, 2001.
DOI : 10.1002/yea.763

URL : http://repositorium.sdum.uminho.pt/bitstream/1822/2972/1/Makuc%20et%20al%202001%20Repositorium.pdf

S. Paiva, F. Devaux, S. Barbosa, C. Jacq, and M. Casal, Ady2p is essential for the acetate permease activity in the yeastSaccharomyces cerevisiae, Yeast, vol.21, issue.3, pp.201-210, 2004.
DOI : 10.1002/yea.1056

S. Paiva, S. Althoff, M. Casal, and C. Leao, Transport of acetate in mutants of Saccharomyces cerevisiae defective in monocarboxylate permeases, FEMS Microbiology Letters, vol.170, issue.2, pp.301-306, 1999.
DOI : 10.1111/j.1574-6968.1999.tb13387.x

S. Strahl-bolsinger and W. Tanner, A yeast gene encoding a putative RNA helicase of the ???DEAD???-box family, Yeast, vol.349, issue.4, pp.429-432, 1993.
DOI : 10.1002/yea.320090414

V. Presnyak and J. Coller, The DHH1/RCKp54 family of helicases: An ancient family of proteins that promote translational silencing, Biochimica et Biophysica Acta (BBA) - Gene Regulatory Mechanisms, vol.1829, issue.8, pp.817-823, 2013.
DOI : 10.1016/j.bbagrm.2013.03.006

H. Maekawa, T. Nakagawa, Y. Uno, K. Kitamura, and C. Shimoda, Theste13 + gene encoding a putative RNA helicase is essential for nitrogen starvation-induced G1 arrest and initiation of sexual development in the fission yeastSchizosaccharomyces pombe, MGG Molecular & General Genetics, vol.33, issue.5, pp.456-464, 1994.
DOI : 10.1007/BF00583896

M. Ladomery, E. Wade, and J. Sommerville, Xp54, the Xenopus Homologue of Human RNA Helicase p54, is an Integral Component of Stored mRNP Particles in Oocytes, Nucleic Acids Research, vol.25, issue.5, pp.965-973, 1997.
DOI : 10.1093/nar/25.5.965

T. De-valoir, M. Tucker, E. Belikoff, L. Camp, and C. Bolduc, A second maternally expressed Drosophila gene encodes a putative RNA helicase of the "DEAD box" family., Proceedings of the National Academy of Sciences, vol.88, issue.6, pp.2113-2117, 1991.
DOI : 10.1073/pnas.88.6.2113

Y. Akao, O. Marukawa, H. Morikawa, K. Nakao, and M. Kamei, The rck/ p54 candidate proto-oncogene product is a 54-kilodalton D-E-A-D box protein differentially expressed in human and mouse tissues, Cancer Res, vol.55, pp.3444-3449, 1995.

M. Seto, K. Yamamoto, T. Takahashi, and R. Ueda, Cloning and expression of a murine cDNA homologous to the human RCK/P54, a lymphoma-linked chromosomal translocation junction gene on 11q23, Gene, vol.166, issue.2, pp.293-296, 1995.
DOI : 10.1016/0378-1119(95)00559-5

R. Navarro, E. Shim, Y. Kohara, A. Singson, and T. Blackwell, cgh-1, a conserved predicted RNA helicase required for gametogenesis and protection from physiological germline apoptosis in C. elegans, Development, vol.128, pp.3221-3232, 2001.

U. Sheth and R. Parker, Decapping and Decay of Messenger RNA Occur in Cytoplasmic Processing Bodies, Science, vol.300, issue.5620, pp.805-808, 2003.
DOI : 10.1126/science.1082320

M. Wickens and A. Goldstrohm, MOLECULAR BIOLOGY: A Place to Die, a Place to Sleep, Science, vol.300, issue.5620, pp.753-755, 2003.
DOI : 10.1126/science.1084512

P. Anderson and N. Kedersha, RNA granules: Figure 1., The Journal of Cell Biology, vol.128, issue.6, pp.803-808, 2006.
DOI : 10.1261/rna.2142405

URL : http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2063724

A. Eulalio, I. Behm-ansmant, and E. Izaurralde, P bodies: at the crossroads of post-transcriptional pathways, Nature Reviews Molecular Cell Biology, vol.89, issue.1, pp.9-22, 2007.
DOI : 10.1038/nrm2080

R. Parker and U. Sheth, P Bodies and the Control of mRNA Translation and Degradation, Molecular Cell, vol.25, issue.5, pp.635-646, 2007.
DOI : 10.1016/j.molcel.2007.02.011

M. Olszewska, J. Bujarski, and M. Kurpisz, P-bodies and their functions during mRNA cell cycle: Mini-review, Cell Biochemistry and Function, vol.11, issue.126, pp.177-182, 2012.
DOI : 10.1002/cbf.2804

M. Brengues, D. Teixeira, and R. Parker, Movement of Eukaryotic mRNAs Between Polysomes and Cytoplasmic Processing Bodies, Science, vol.310, issue.5747, pp.486-489, 2005.
DOI : 10.1126/science.1115791

URL : http://www.ncbi.nlm.nih.gov/pmc/articles/PMC1863069

J. Coller and R. Parker, General Translational Repression by Activators of mRNA Decapping, Cell, vol.122, issue.6, pp.875-886, 2005.
DOI : 10.1016/j.cell.2005.07.012

V. Balagopal and R. Parker, Polysomes, P bodies and stress granules: states and fates of eukaryotic mRNAs, Current Opinion in Cell Biology, vol.21, issue.3, pp.403-408, 2009.
DOI : 10.1016/j.ceb.2009.03.005

URL : http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2740377

J. Liu, F. Rivas, J. Wohlschlegel, J. Yates, and R. Parker, A role for the P-body component GW182 in microRNA function, Nature Cell Biology, vol.128, issue.12, pp.1261-1266, 2005.
DOI : 10.1016/S1534-5807(03)00400-3

R. Pillai, S. Bhattacharyya, C. Artus, T. Zoller, and N. Cougot, Inhibition of Translational Initiation by Let-7 MicroRNA in Human Cells, Science, vol.309, issue.5740, pp.1573-1576, 2005.
DOI : 10.1126/science.1115079

L. Unterholzner and E. Izaurralde, SMG7 Acts as a Molecular Link between mRNA Surveillance and mRNA Decay, Molecular Cell, vol.16, issue.4, pp.587-596, 2004.
DOI : 10.1016/j.molcel.2004.10.013

URL : http://doi.org/10.1016/j.molcel.2004.10.013

U. Sheth and R. Parker, Targeting of Aberrant mRNAs to Cytoplasmic Processing Bodies, Cell, vol.125, issue.6, pp.1095-1109, 2006.
DOI : 10.1016/j.cell.2006.04.037

N. Beliakova-bethell, C. Beckham, T. Giddings, J. Winey, M. Parker et al., Virus-like particles of the Ty3 retrotransposon assemble in association with P-body components, RNA, vol.12, issue.1, pp.94-101, 2006.
DOI : 10.1261/rna.2264806

R. Parker, RNA Degradation in Saccharomyces cerevisae, Genetics, vol.191, issue.3, pp.671-702, 2012.
DOI : 10.1534/genetics.111.137265

URL : http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3389967

V. Balagopal, L. Fluch, and T. Nissan, Ways and means of eukaryotic mRNA decay, Biochimica et Biophysica Acta (BBA) - Gene Regulatory Mechanisms, vol.1819, issue.6, pp.593-603, 2012.
DOI : 10.1016/j.bbagrm.2012.01.001

J. Carroll, S. Munchel, and K. Weis, The DExD/H box ATPase Dhh1 functions in translational repression, mRNA decay, and processing body dynamics, The Journal of Cell Biology, vol.11, issue.4, pp.527-537, 2011.
DOI : 10.1093/nar/gkl409

H. Hata, H. Mitsui, H. Liu, Y. Bai, and C. Denis, Dhh1p, a putative RNA helicase, associates with the general transcription factors Pop2p and Ccr4p from Saccharomyces cerevisiae, Genetics, vol.148, pp.571-579, 1998.

J. Coller, M. Tucker, U. Sheth, M. Valencia-sanchez, and R. Parker, The DEAD box helicase, Dhh1p, functions in mRNA decapping and interacts with both the decapping and deadenylase complexes, RNA, vol.7, issue.12, pp.1717-1727, 2001.
DOI : 10.1017/S135583820101994X

T. Franks and J. Lykke-andersen, The Control of mRNA Decapping and P-Body Formation, Molecular Cell, vol.32, issue.5, pp.605-615, 2008.
DOI : 10.1016/j.molcel.2008.11.001

L. Maillet and M. Collart, Interaction between Not1p, a Component of the Ccr4-Not Complex, a Global Regulator of Transcription, and Dhh1p, a Putative RNA Helicase, Journal of Biological Chemistry, vol.277, issue.4, pp.2835-2842, 2002.
DOI : 10.1074/jbc.M107979200

M. Kshirsagar and R. Parker, Identification of Edc3p as an Enhancer of mRNA Decapping in Saccharomyces cerevisiae, Genetics, vol.166, issue.2, pp.729-739, 2004.
DOI : 10.1534/genetics.166.2.729

H. Sharif, S. Ozgur, K. Sharma, C. Basquin, and H. Urlaub, Structural analysis of the yeast Dhh1???Pat1 complex reveals how Dhh1 engages Pat1, Edc3 and RNA in mutually exclusive interactions, Nucleic Acids Research, vol.41, issue.17, 2013.
DOI : 10.1093/nar/gkt600

N. Fischer and K. Weis, The DEAD box protein Dhh1 stimulates the decapping enzyme Dcp1, The EMBO Journal, vol.21, issue.11, pp.2788-2797, 2002.
DOI : 10.1093/emboj/21.11.2788

URL : http://www.ncbi.nlm.nih.gov/pmc/articles/PMC126031

S. Tseng-rogenski, J. Chong, C. Thomas, S. Enomoto, and J. Berman, Functional conservation of Dhh1p, a cytoplasmic DExD/H-box protein present in large complexes, Nucleic Acids Research, vol.31, issue.17, pp.4995-5002, 2003.
DOI : 10.1093/nar/gkg712

F. Wyers, M. Minet, M. Dufour, L. Vo, and F. Lacroute, Deletion of the PAT1 Gene Affects Translation Initiation and Suppresses a PAB1 Gene Deletion in Yeast, Molecular and Cellular Biology, vol.20, issue.10, pp.3538-3549, 2000.
DOI : 10.1128/MCB.20.10.3538-3549.2000

T. Sweet, C. Kovalak, and J. Coller, The DEAD-Box Protein Dhh1 Promotes Decapping by Slowing Ribosome Movement, PLoS Biology, vol.194, issue.6, p.1001342, 2012.
DOI : 10.1371/journal.pbio.1001342.s009

URL : http://doi.org/10.1371/journal.pbio.1001342

D. Muhlrad and R. Parker, The yeast EDC1 mRNA undergoes deadenylation-independent decapping stimulated by Not2p, Not4p, and Not5p, The EMBO Journal, vol.19, issue.5, pp.1033-1045, 2005.
DOI : 10.1093/emboj/19.16.4372

URL : http://www.ncbi.nlm.nih.gov/pmc/articles/PMC554118

M. Ka, Y. Park, and J. Kim, The DEAD-box RNA helicase, Dhh1, functions in mating by regulating Ste12 translation in Saccharomyces cerevisiae, Biochemical and Biophysical Research Communications, vol.367, issue.3, pp.680-686, 2008.
DOI : 10.1016/j.bbrc.2007.12.169

Y. Park, H. Hur, K. M. Kim, and J. , Identification of Translational Regulation Target Genes during Filamentous Growth in Saccharomyces cerevisiae: Regulatory Role of Caf20 and Dhh1, Eukaryotic Cell, vol.5, issue.12, pp.2120-2127, 2006.
DOI : 10.1128/EC.00121-06

E. Pedro-segura, S. Vergara, S. Rodriguez-navarro, R. Parker, and D. Thiele, The Cth2 ARE-binding Protein Recruits the Dhh1 Helicase to Promote the Decay of Succinate Dehydrogenase SDH4 mRNA in Response to Iron Deficiency, Journal of Biological Chemistry, vol.283, issue.42, pp.28527-28535, 2008.
DOI : 10.1074/jbc.M804910200

H. Liu and M. Kiledjian, Scavenger Decapping Activity Facilitates 5' to 3' mRNA Decay, Molecular and Cellular Biology, vol.25, issue.22, pp.9764-9772, 2005.
DOI : 10.1128/MCB.25.22.9764-9772.2005

URL : http://www.ncbi.nlm.nih.gov/pmc/articles/PMC1280280

S. Tseng, P. Weaver, Y. Liu, M. Hitomi, and A. Tartakoff, Dbp5p, a cytosolic RNA helicase, is required for poly(A)+ RNA export, The EMBO Journal, vol.17, issue.9, pp.2651-2662, 1998.
DOI : 10.1093/emboj/17.9.2651

C. Snay-hodge, H. Colot, A. Goldstein, and C. Cole, Dbp5p/Rat8p is a yeast nuclear pore-associated DEAD-box protein essential for RNA export, The EMBO Journal, vol.17, issue.9, pp.2663-2676, 1998.
DOI : 10.1093/emboj/17.9.2663

URL : http://www.ncbi.nlm.nih.gov/pmc/articles/PMC1170607

R. Hurto and A. Hopper, P-body components, Dhh1 and Pat1, are involved in tRNA nuclear-cytoplasmic dynamics, RNA, vol.17, issue.5, pp.912-924, 2011.
DOI : 10.1261/rna.2558511

URL : http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3078740

M. Checkley, K. Nagashima, S. Lockett, K. Nyswaner, and D. Garfinkel, P-Body Components Are Required for Ty1 Retrotransposition during Assembly of Retrotransposition-Competent Virus-Like Particles, Molecular and Cellular Biology, vol.30, issue.2, pp.382-398, 2010.
DOI : 10.1128/MCB.00251-09

V. Stribinskis and K. Ramos, Rpm2p, a protein subunit of mitochondrial RNase P, physically and genetically interacts with cytoplasmic processing bodies, Nucleic Acids Research, vol.35, issue.4, pp.1301-1311, 2007.
DOI : 10.1093/nar/gkm023

A. Goldstein and J. Mccusker, Three new dominant drug resistance cassettes for gene disruption in Saccharomyces cerevisiae, Yeast, vol.15, issue.14, pp.1541-1553, 1999.
DOI : 10.1002/(SICI)1097-0061(199910)15:14<1541::AID-YEA476>3.3.CO;2-B

S. Paiva, A. Kruckeberg, and M. Casal, Utilization of green fluorescent protein as a marker for studying the expression and turnover of the monocarboxylate permease Jen1p of Saccharomyces cerevisiae, Biochemical Journal, vol.363, issue.3, pp.737-744, 2002.
DOI : 10.1042/bj3630737

A. Kruckeberg, L. Ye, J. Berden, and K. Van-dam, Functional expression, quantification and cellular localization of the Hxt2 hexose transporter of Saccharomyces cerevisiae tagged with the green fluorescent protein, Biochemical Journal, vol.339, issue.2, pp.299-307, 1999.
DOI : 10.1042/bj3390299

J. Sambrook, E. F. Fritsch, and T. Maniatis, Molecular Cloning: A Laboratory Manual, 1989.

F. Ausubel, R. Brent, D. Kingston, D. Moore, J. Seidman et al., In: Current protocols in molecular biology, 1998.
DOI : 10.1002/0471142727

R. Parker, D. , S. Peltz, and . Jacobson, [29] Measurement of mRNA decay rates in Saccharomyces cerevisiae, Guide to Yeast Genetics and molecular Biology Methods in exymology, pp.415-423, 1991.
DOI : 10.1016/0076-6879(91)94032-8

V. Fardeau, G. Lelandais, A. Oldfield, H. Salin, and S. Lemoine, The Central Role of PDR1 in the Foundation of Yeast Drug Resistance, Journal of Biological Chemistry, vol.282, issue.7, pp.5063-5074, 2007.
DOI : 10.1074/jbc.M610197200

URL : https://hal.archives-ouvertes.fr/hal-00173044

S. Lemoine, F. Combes, N. Servant, L. Crom, and S. , Goulphar: rapid access and expertise for standard two-color microarray normalization methods, BMC Bioinformatics, vol.7, issue.1, p.467, 2006.
DOI : 10.1186/1471-2105-7-467

URL : https://hal.archives-ouvertes.fr/inserm-00122139

A. Saeed, V. Sharov, J. White, J. Li, and W. Liang, TM4: a free, opensource system for microarray data management and analysis, Biotechniques, vol.34, pp.374-378, 2003.

A. Saeed, N. Bhagabati, J. Braisted, W. Liang, and V. Sharov, [9] TM4 Microarray Software Suite, Methods Enzymol, vol.411, pp.134-193, 2006.
DOI : 10.1016/S0076-6879(06)11009-5

V. Tusher, R. Tibshirani, and G. Chu, Significance analysis of microarrays applied to the ionizing radiation response, Proceedings of the National Academy of Sciences, vol.57, issue.2, pp.5116-5121, 2001.
DOI : 10.2307/3579583

M. Robinson, J. Grigull, N. Mohammad, and T. Hughes, FunSpec: a webbased cluster interpreter for yeast, BMC Bioinformatics, vol.3, issue.1, p.35, 2002.
DOI : 10.1186/1471-2105-3-35

R. Taylor, B. Kebaara, T. Nazarenus, A. Jones, and R. Yamanaka, Gene Set Coregulated by the Saccharomyces cerevisiae Nonsense-Mediated mRNA Decay Pathway, Eukaryotic Cell, vol.4, issue.12, pp.2066-2077, 2005.
DOI : 10.1128/EC.4.12.2066-2077.2005

R. Andrade and M. Casal, Expression of the Lactate Permease Gene JEN1 from the Yeast Saccharomyces cerevisiae, Fungal Genetics and Biology, vol.32, issue.2, pp.105-111, 2001.
DOI : 10.1006/fgbi.2001.1254

T. Nissan, P. Rajyaguru, M. She, H. Song, and R. Parker, Decapping Activators in Saccharomyces cerevisiae Act by Multiple Mechanisms, Molecular Cell, vol.39, issue.5, pp.773-783, 2010.
DOI : 10.1016/j.molcel.2010.08.025

URL : http://doi.org/10.1016/j.molcel.2010.08.025

Q. Guan, W. Zheng, S. Tang, X. Liu, and R. Zinkel, Impact of Nonsense-Mediated mRNA Decay on the Global Expression Profile of Budding Yeast, PLoS Genetics, vol.7, issue.11, p.203, 2006.
DOI : 10.1371/journal.pgen.0020203.st012

S. Geisler, L. Lojek, A. Khalil, K. Baker, and J. Coller, Decapping of Long Noncoding RNAs Regulates Inducible Genes, Molecular Cell, vol.45, issue.3, pp.279-291, 2012.
DOI : 10.1016/j.molcel.2011.11.025

E. Van-dijk, C. Chen, Y. Aubenton-carafa, S. Gourvennec, and M. Kwapisz, XUTs are a class of Xrn1-sensitive antisense regulatory non-coding RNA in yeast, Nature, vol.7, issue.7354, pp.114-117, 2011.
DOI : 10.1038/nature10118

J. Houseley, L. Rubbi, M. Grunstein, D. Tollervey, and M. Vogelauer, A ncRNA Modulates Histone Modification and mRNA Induction in the Yeast GAL Gene Cluster, Molecular Cell, vol.32, issue.5, pp.685-695, 2008.
DOI : 10.1016/j.molcel.2008.09.027

Z. Xu, W. Wei, J. Gagneur, F. Perocchi, and S. Clauder-munster, Bidirectional promoters generate pervasive transcription in yeast, Nature, vol.35, issue.7232, pp.1033-1037, 2009.
DOI : 10.1038/nature07728

URL : http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2766638

S. Kramer, R. Queiroz, L. Ellis, J. Hoheisel, and C. Clayton, The RNA helicase DHH1 is central to the correct expression of many developmentally regulated mRNAs in trypanosomes, Journal of Cell Science, vol.123, issue.5, pp.699-711, 2010.
DOI : 10.1242/jcs.058511

F. Holetz, L. Alves, C. Probst, B. Dallagiovanna, and F. Marchini, Protein and mRNA content of TcDHH1-containing mRNPs in Trypanosoma???cruzi, FEBS Journal, vol.98, issue.16, pp.3415-3426, 2010.
DOI : 10.1111/j.1742-4658.2010.07747.x

S. Mitchell, S. Jain, M. She, and R. Parker, Global analysis of yeast mRNPs, Nature Structural & Molecular Biology, vol.27, issue.1, pp.127-133, 2013.
DOI : 10.1038/nsmb.2468

O. Erez and C. Kahana, Deletions of SKY1 or PTK2 in the Saccharomyces cerevisiaetrk1??trk2?? mutant cells exert dual effect on ion homeostasis, Biochemical and Biophysical Research Communications, vol.295, issue.5, pp.1142-1149, 2002.
DOI : 10.1016/S0006-291X(02)00823-9

T. Westmoreland, J. Olson, W. Saito, G. Huper, and J. Marks, Dhh1 regulates the G1/S-checkpoint following DNA damage or BRCA1 expression in yeast1, Journal of Surgical Research, vol.113, issue.1, pp.62-73, 2003.
DOI : 10.1016/S0022-4804(03)00155-0

M. Bergkessel and J. Reese, An Essential Role for the Saccharomyces cerevisiae DEAD-Box Helicase DHH1 in G1/S DNA-Damage Checkpoint Recovery, Genetics, vol.167, issue.1, pp.21-33, 2004.
DOI : 10.1534/genetics.167.1.21

C. Mazzoni, P. Mancini, L. Verdone, F. Madeo, and A. Serafini, A Truncated Form of KlLsm4p and the Absence of Factors Involved in mRNA Decapping Trigger Apoptosis in Yeast, Molecular Biology of the Cell, vol.14, issue.2, pp.721-729, 2003.
DOI : 10.1091/mbc.E02-05-0258

N. Kushner, D. Zhang, N. Touzjian, M. Essex, and J. Lieberman, A fragment of anthrax lethal factor delivers proteins to the cytosol without requiring protective antigen, Proceedings of the National Academy of Sciences, vol.16, issue.4, pp.6652-6657, 2003.
DOI : 10.1038/nbt0498-370

A. Kihara and Y. Igarashi, Cross Talk between Sphingolipids and Glycerophospholipids in the Establishment of Plasma Membrane Asymmetry, Molecular Biology of the Cell, vol.15, issue.11, pp.4949-4959, 2004.
DOI : 10.1091/mbc.E04-06-0458

K. Fujita, A. Matsuyama, Y. Kobayashi, and H. Iwahashi, The genome-wide screening of yeast deletion mutants to identify the genes required for tolerance to ethanol and other alcohols, FEMS Yeast Research, vol.6, issue.5, pp.744-750, 2006.
DOI : 10.1111/j.1567-1364.2006.00040.x

M. Pagani, A. Casamayor, R. Serrano, S. Atrian, and J. Arino, Disruption of iron homeostasis in Saccharomyces cerevisiae by high zinc levels: a genome-wide study, Molecular Microbiology, vol.276, issue.2, pp.521-537, 2007.
DOI : 10.1016/S1367-5931(98)80063-X

M. Ralser, M. Wamelink, E. Struys, C. Joppich, and S. Krobitsch, A catabolic block does not sufficiently explain how 2-deoxy-D-glucose inhibits cell growth, Proceedings of the National Academy of Sciences, vol.7, issue.7, pp.17807-17811, 2008.
DOI : 10.1038/ncb1268

URL : http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2584745

M. Banuelos, D. Moreno, D. Olson, Q. Nguyen, and F. Ricarte, Genomic analysis of severe hypersensitivity to hygromycin B reveals linkage to vacuolar defects and new vacuolar gene functions in Saccharomyces cerevisiae, Current Genetics, vol.158, issue.4, pp.121-137, 2010.
DOI : 10.1007/s00294-009-0285-3

C. Gregori, C. Schuller, I. Frohner, G. Ammerer, and K. Kuchler, Weak Organic Acids Trigger Conformational Changes of the Yeast Transcription Factor War1 in Vivo to Elicit Stress Adaptation, Journal of Biological Chemistry, vol.283, issue.37, pp.25752-25764, 2008.
DOI : 10.1074/jbc.M803095200

N. Blewett and A. Goldstrohm, A Eukaryotic Translation Initiation Factor 4E-Binding Protein Promotes mRNA Decapping and Is Required for PUF Repression, Molecular and Cellular Biology, vol.32, issue.20, pp.4181-4194, 2012.
DOI : 10.1128/MCB.00483-12

URL : http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3457345

A. Goldstrohm, B. Hook, D. Seay, and M. Wickens, PUF proteins bind Pop2p to regulate messenger RNAs, Nature Structural & Molecular Biology, vol.98, issue.6, pp.533-539, 2006.
DOI : 10.1038/nsmb1100

B. Thomas and R. Rothstein, Elevated recombination rates in transcriptionally active DNA, Cell, vol.56, issue.4, pp.619-630, 1989.
DOI : 10.1016/0092-8674(89)90584-9