
HAL Id: hal-01527763
https://hal.sorbonne-universite.fr/hal-01527763

Submitted on 25 May 2017

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

ALGORITHMS FOR POSITIVE POLYNOMIAL
APPROXIMATION

Frédérique Charles, Martin Campos-Pinto, Bruno Després

To cite this version:
Frédérique Charles, Martin Campos-Pinto, Bruno Després. ALGORITHMS FOR POSITIVE POLY-
NOMIAL APPROXIMATION. SIAM Journal on Numerical Analysis, 2019. �hal-01527763�

https://hal.sorbonne-universite.fr/hal-01527763
https://hal.archives-ouvertes.fr

ALGORITHMS FOR POSITIVE POLYNOMIAL APPROXIMATION

F. CHARLES, M. CAMPOS PINTO AND B. DESPRÉS ∗

Abstract. We propose several algorithms for positive polynomial approximation. The main tool
is a novel iterative method to compute non negative interpolation polynomials at any order, which is
shown to converge under conditions that make it suitable for the numerical approximation of positive
functions. Our method is based on the special representations of non negative polynomials provided
by the Lukács Theorem, and a key point is the use of Chebyshev polynomials for the initial step of
the iterations. Numerical results illustrate the convergence properties of the proposed algorithms,
and they are completed with a first application of this technique to the positive discretization of the
advection equation.

Key words. Polynomial interpolation, positive polynomials, Chebyshev polynomials.

AMS subject classifications. 65D15, 41A29, 41A55

1. Introduction. Let Pn denote the set of real polynomials of degree ≤ n over
the interval [0, 1]. Let f ∈ W 1,∞(0, 1) be a Lipschitz function which is positive over
the interval

inf
x∈[0,1]

f(x) > 0. (1.1)

Non negative functions f ≥ 0 will be considered as well. The basic model problem in
this work concerns interpolation in P+

n := {pn ∈ Pn : pn(x) ≥ 0 ∀x ∈ [0, 1]} ⊂ Pn
of f . Since the interpolation procedure depends on the knowledge of the interpolation
points and they must have an influence, it is necessary to introduce some degree of
freedom. We will consider the formulation below.

Problem 1.1. Find n+ 1 interpolation points 0 ≤ x0 < x1 < · · · < xn ≤ 1 such
that the polynomial interpolant pn ∈ Pn defined by pn(xi) = f(xi) for all 0 ≤ i ≤ n
satisfies pn ∈ P+

n .
Problem 1.1 has interest for pure numerical analysis purposes, and also because

the question of having good characterization and convenient use of positive polyno-
mials is central in applications and scientific computing. A non exhaustive list of
references which reflects some of our own interests is: [1, 10] for cubic polynomials, [4]
for automatization of the testing, [7, 5] with sum of squares characterization, [8, 9] on
considerations on computer aided design with Bernstein and Bézier curves, [15, 11, 14]
for non negative numerical approximation in scientific computing for hyperbolic equa-
tions and finally [5, 6] and therein for comprehensive references on polynomial theory.

As Problem 1.1 is difficult to handle in full generality, it is convenient for theo-
retical purposes to introduce a numerical parameter 0 < h ≤ 1 and to consider the
problem of interpolating f on subintervals of size h. Thus, a more general problem
is to find h > 0 and an element in P+

n which interpolates fh(x) = f(xh) at n + 1
points of [0, 1]. When discretizing a partial differential equation, the parameter h is
ultimately identified with the mesh size, as evidenced at the end of the numerical
section. So we believe the introduction of this parameter h is also very natural in
view of PDE discretizations.

The original solution to Problem 1.1 that will be proposed takes the following
form.

∗1-Sorbonne Universités, UPMC Univ Paris 06, UMR 7598, Laboratoire Jacques-Louis Lions, F-
75005, Paris, France, 2-CNRS, UMR 7598, Laboratoire Jacques-Louis Lions, F-75005, Paris, France

1

Algorithm 1.1. Let f ∈W 1,∞(0, 1) satisfy (1.1). Compute a sequence pmn ∈ P+
n

(for m = 0, 1, . . .) such that pmn −→ pn ∈ P+
n and pn solves Problem 1.1. A byprod-

uct of our analysis is an algorithm for determining wether a given polynomial f ∈ Pn
satisfies the positivity condition (1.1) or not. Such an algorithm is an approximate
certificate of positivity [7, 5].

Algorithm 1.2. Let f ∈ Pn. Consider the sequence (pmn)m∈N with pmn ∈ P+
n .

If for iteration numbers m ≥ m0 large enough, pmn does not tend to f , then f is not
positive over [0, 1].

All the details of the algorithms and methods will be given, which will give sense
to this algorithm. In practice it is possible to use the algorithm below.

Algorithm 1.3. Let f ∈ Pn. Compute pmn ∈ P+
n the m-th iterate of the sequence

for m large enough. Replace f by pmn .

The interest of this method for scientific computing lies in the fact that if the
convergence conditions of the sequence are realized, then pmn is close to f so the
replacement introduces only a small error. But if in the other hand the convergence
conditions of the sequence are not realized, then pmn is a positive approximation of
f . In case positive polynomials are mandatory (as an ingredient in a given calculus),
then such an algorithm provides a practical solution which indeed can be interpreted
as a new approximate certificate of positivity (we refer to [7, 5] for this notion). The
accuracy of this algorithm will be assessed in the numerical section.

Lukács characterization of P+
n . It is not a surprise that a convenient charac-

terization of P+
n plays a key role in the solution to Problem 1.1. Such one is provided

by the Lukács Theorem, see e.g. [13, Sec. 1.21] for a proof based on complex valued
trigonometric polynomials. A recent proof in real algebra is available in [2].

Theorem 1.1 (Lukács).
• If n = 2p, then pn ∈ P+

n if and only if the polynomial can be expressed as pn(x) =
ap(x)2 + x(1− x) bp−1(x)2 with ap ∈ Pp and bp−1 ∈ Pp−1.
• If n = 2p + 1, then pn ∈ P+

n if and only if the polynomial can be expressed as
pn(x) = x ap(x)2 + (1− x) bp(x)2 with ap, bp ∈ Pp.

The solution of Problem 1.1 that we propose is based on the possibility of obtain-
ing the interpolation points in combination with a direct definition of ap and bp (or
bp−1) in the Lukács Theorem. The two main technical ideas involved in our construc-
tion, namely oscillating polynomials and sliding interpolation points, can be
explained on the simplest example which uses the Lukács decomposition in P+

2 .
Thus, we consider a given polynomial p2 ∈ P+

2 and try to determine a1 ∈ P1 and
b0 ∈ P0 = R such that

p2(x) = a1(x)2 + x(1− x)b20 x ∈ [0, 1]. (1.2)

Assume for simplicity that p2(0) > 0 and p2(1) > 0. Since the weight x(1 − x)
vanishes at the endpoints of the interval, one has necessarily that a1(0)2 = p2(0) > 0
and a2(1)2 = p2(1) > 0. There are two possibilities to finalize the construction of a1.
• The first solution uses an elementary idea proposed in [2]. Since it has a change
of sign, it is called an oscillating polynomial in the core of the paper. That is
a1(0) =

√
p2(0) and a1(1) = −

√
p2(1). One gets a1(x) =

√
p2(0)(1− x)−

√
p2(1)x.

The polynomial q = p2 − a2
1 vanishes at the endpoints, so one can write p2 − a2

1 = we
with w(x) = x(1 − x) and e ∈ R. We use a consequence of the fact that the sign
changes at the endpoints, which is that there exists a interpolation point x∗ ∈ [0, 1]

such that a1(x∗) = 0. One gets that e = p2(x∗)
x∗(1−x∗) ≥ 0. So one defines b0 =

√
e which

2

proves the Lukács Theorem in this case.
We note that the interpolation point x∗ is defined within the construction. Since
its position is a priori unknown and determined self-consitently when solving the
interpolation problem, we call it a sliding interpolation point.
• One the other hand if one tries to design a1 with the same sign at the endpoints
(it writes generically as a1(0) > 0 and a1(1) > 0), then a simple counterexample
shows that the construction does not work. Indeed take p2(x) = (1 − 2x)2, then

a1(x) =
√
p2(0)(1− x) +

√
p2(1)x ≡ 1 so b20 = p2(x)−a1(x)2

x(1−x) = −4. Therefore the pure

imaginary number b0 ∈ iR∗ cannot be a solution to the Lukács Theorem.
In summary, the use of oscillating representation allows to construct a generic solution
of the Lukács Theorem, and it is a necessary and sufficient condition in this example.

Summary of the main results. All our results are based on various extensions
of such representation formulas. Since the case n = 2 is almost trivial as seen in the
previous discussion, the first non trivial interesting case is n = 3 and this is why we
present a detailed analysis for the case n = 2p + 1 with p ∈ N in Sections 2 and 3.
The main results however hold for any integer n and can be stated as follows, where
the uniform norm over (0, 1) is denoted by ‖·‖.

Theorem 1.2. Let n ∈ N and consider a function f ∈W q,∞(0, 1), 1 ≤ q ≤ n+1,
that is positive over [0, 1]. Denote fh(·) = f(·h) for 0 ≤ h ≤ 1.

Then there exists h∗ > 0 such that for all 0 ≤ h ≤ h∗, one can construct a
sequence of positive polynomials pmn ∈ P+

n for m = 0, 1, . . . , which satisfies

‖pmn − fh‖ ≤ Chmin(q,2(m+1)) (1.3)

with a constant C independent of h. For n = 2p, resp. n = 2p + 1, the construc-
tion involves oscillating polynomials

(
amp , b

m
p−1

)
∈ Pp × Pp−1, resp.

(
amp , b

m
p

)
∈ P 2

p ,
that admit a limit (ap, bp−1), resp. (ap, bp), and the approximations are of the form
pmp (x) = amp (x)2 + x(1− x)bmp−1(x)2, resp. pmp (x) = xamp (x)2 + (1− x)bmp (x)2.

This convergence estimate will be given a detailed proof in Sections 2 and 3, see
in particular Theorem 3.2. It can be complemented by the best error estimate for
which we refer to [2]. A by-product is an analytical proof of the Lukács Theorem,
which serves as a foundation for Algorithms 1.2 and 1.3.

Theorem 1.3. Assume moreover f ∈ P+
n . Then one has at the limit m → ∞

f(hx) = ap(x)2 + x(1 − x)bp−1(x)2, resp. f(hx) = xap(x)2 + (1 − x)bp(x)2, where
(ap, bp−1), resp. (ap, bp) is the limit described in the previous Theorem.

The generalization of the techniques and results to the even case n = 2p is de-
scribed in the core of the paper. Interest of the various methods for the design of
numerical algorithms will be demonstrated at the end of this work by many numerical
illustrations either for small h (thus verifying a priori the hypothesis of Theorem 1.2)
or for large h, typically h = 1. The results for h = 1 will clearly show that the range
of parameters for which the algorithms converge is much larger than those predicted
by Theorem 1.2. We think this is an extremely important information in view of
possible use of such methods for practical problems.

Organization. Section 2 is dedicated to the case n = 3. The extension to
n = 2p + 1 for p ∈ N is performed in section 3 by a more general method based on
a simplified Newton-Raphson algorithm. Section 4 provides the formulas for the case
n = 2p. Section 5 yields detail informations and provides the result of many numerical
experiments which all show that the algorithms proposed in this work display good
convergence and approximation properties for arbitrary values of h (not only small

3

h as in Theorem 1.2). Application to the numerical approximation of a very simple
PDE (the advection equation) is performed at the very end of this work.

2. Interpolation by positive cubic polynomials. We focus on cubic poly-
nomials because it is the first non trivial extension of the case n = 2 considered in
(1.2). According to the Lukács representation theorem, a polynomial in P+

3 writes

p3(x) = x a1(x)2 + (1− x) b1(x)2

where a1 and b1 are affine polynomials. Since a1 (resp. b1) is linear, it can be
reconstructed by linear interpolation knowing two values. One is natural: indeed
for x = 1 the identity recasts as p3(1) = a1(1)2. So the main question is to obtain
another interpolation point. Being optimistic, let us assume there exists 0 < α < 1
such that b1(α) = 0. One obtains p3(α) = αa1(α)2 and the representation a1(x) =√
p3(1) (x−α)

1−α ±
√

p3(α)
α

(1−x)
1−α . As explained in the introduction it is much better

to take the minus sign in order to construct an oscillating polynomial , which

is a1(x) =
√
p3(1) (x−α)

1−α −
√

p3(α)
α

(1−x)
1−α . For similar reasons we will consider by

symmetry b1(x) = (β−x)
β

√
p3(0) −

√
p3(β)
β

x
β . The condition a1(β) = b1(α) = 0 is

studied in the following section.

2.1. A sufficient criterion for positive interpolation. Elaborating on the
idea that p3 interpolates fh at the 4 points 0, α, β and 1, one obtains a preliminary
result.

Proposition 2.1. Let f ∈ W 1,∞(0, 1) satisfy (1.1). If a1, b1 ∈ P1 and α, β ∈
(0, 1) are such that a1(α) = −

√
f(α)
α a1(β) = 0 a1(1) =

√
f(1)

b1(0) = −
√
f(0) b1(α) = 0 b1(β) =

√
f(β)
1−β

(2.1)

then 0 < α < β < 1 and p3(x) = xa1(x)2 +(1−x)b1(x)2 is a positive cubic polynomial
that interpolates f at 0, α, β and 1.

Proof. Although straightforward, the above criterion is convenient as it allows to
restate the positive interpolation of f as a fixed point problem. Indeed we see that if
(2.1) holds then a1 and b1 read

a1(x) = −
(x− 1

α− 1

)√f(α)

α
+
(x− α

1− α
)√

f(1), b1(x) = −
(x− β
−β

)√
f(0)+

(x
β

)√ f(β)

1− β
(2.2)

and the associated nodes α and β satisfy the relations

(β − α)
√
f(1) + (β − 1)

√
f(α)

α
= 0, (α− β)

√
f(0) + α

√
f(β)

1− β = 0. (2.3)

Conversely, if α and β are solution to (2.3) then the criterion (2.1) will be satisfied
with a1 and b1 given by (2.2).

By looking at (2.3) the first equation allows to express β as a function of α while
the second equation gives α as a function of β. In particular, (2.3) rewrites as the
fixed point problem

(α, β) = G(α, β) (2.4)

4

with G(α, β) := (ϕ(β), ψ(α)) , where ϕ and ψ are two additional functions from
[0, 1]→ [0, 1] defined as

ϕ(β) =
β
√

(1− β)f(0)√
(1− β)f(0) +

√
f(β)

and ψ(α) =
α
√
αf(1) +

√
f(α)√

αf(1) +
√
f(α)

. (2.5)

The equation (2.4) recasts as τ(α) = 0 where the function is τ(α) = α− ϕ (ψ(α)).
Lemma 2.2. One has τ ∈ C0 ([0, 1] : [−1, 1]) and τ(0) = 0 with τ(1) = 1. As-

suming that f ∈W 1,∞[0, 1] satisfy (1.1), one that d
dατ(0+) = −∞.

Proof. The values at the endpoints are ψ(0) = ψ(1) = 1, ϕ(0) = ϕ(1) = 0 and so
τ(0) = 0 and τ(1) = 1.
The derivative at the origin can be checked as follows. One has ψ(α) = α + (1 −
α)

√
f(α)√

αf(1)+
√
f(α)

. So ψ(α)′ = 1−
√
f(1α)√

αf(1)+
√
f(α)

+(1−α)
√
f(α)

′ (√
αf(1) +

√
f(α)

)−1

−(1− α)
√
f(α)

(√
αf(1) +

√
f(α)

)−2 (√
αf(1) +

√
f(α)

)′
.

All terms are bounded uniformly for small α > 0 except the last parenthesis

because
√
αf(1)

′
= 1

2

√
f(1)
α → +∞ for α → 0+. Therefore ψ(0+)′ = −∞. Similarly

the dominant term in ϕ(β)′ for β close to 1 is ϕ(β)′ ≈ − 1
2
√

1−β
β√

(1−β)f(0)+
√
f(β)

→
−∞ for β → 1−. So τ(0+)′ ≈ −ψ(0+)′ϕ(0+)′ = −∞ and the proof is ended.

Corollary 2.3. There exists two interpolation points 0 < α < β < 1 such that
the polynomial p3 ∈ P+

3 defined in Proposition 2.1 interpolates f at 0, α, β and 1.
Proof. Evident since there exists by continuity 0 < α < 1 such that τ(α) = 0.

2.2. A fixed point algorithm to compute the cubic nodes. The goal in
this section is to construct a fixed point algorithm with good convergence properties
to compute the solution of (2.4). The convergence is better studied after rescaling
the function f , so we systematically replace f(·) by fh(·) = f(h·) in (2.4-2.5). The
function G becomes Gh(α, β) = (ϕh(β), ψh(α)) where

ϕh(β) =
β
√

(1− β)fh(0)√
(1− β)fh(0) +

√
fh(β)

and ψh(α) =
α
√
αfh(1) +

√
fh(1α)√

αfh(1) +
√
fh(α)

. (2.6)

Algorithm 2.1. Given X0 = (α0, β0) ∈ (0, 1)2, consider the fixed point method

Xm+1 := Gh(Xm). (2.7)

Since f is positive we verify that Gh([0, 1]2) ⊂ [0, 1]2, hence it defines an iterative
scheme. The goal hereafter is to determine reasonable conditions such that the fixed
point converges. The good news is that the function Gh has some good properties
for h small enough because its limit G0 has good properties and the scheme (2.7)
converges at a fast rate. This can be understood by considering the limit case h = 0
which corresponds to a constant target function f0 = f(0). Indeed one can recasts Gh

as Gh(α, β) =
(
K
(
β, σh(β)

)
, 1 − K

(
1 − α, τh(α)

))
with K(z, r) := z

√
1−z

r+
√

1−z , τh(α) :=√
f(αh)
f(h) and σh(β) :=

√
f(βh)
f(0) . Using the Lipschitz regularity of f we see that both

τh and σh converge towards 1 uniformly on [0, 1]. Hence Gh converges by continuity
uniformly on [0, 1]2 towards

G0(α, β) =
(
K(β), 1−K(1− α)

)
(2.8)

5

where we have written for simplicity K(z) = K(z, 1).
Lemma 2.4. The function G0 has the following properties

i) it leaves invariant the domain F :=
[

1
5 ,

1
3

]
×
[

2
3 ,

4
5

]
,

ii) it is contractant on F in the maximal norm,
iii) it has a unique fixed point in (0, 1)2, which is

X = (α, β) =
(1

4
,

3

4

)
∈ F (2.9)

iv) the Jacobian matrix ∇G0 = (∂j(G0)i)1≤i,j≤2 vanishes at X

∇G0(X) = 0. (2.10)

Remark 2.5. On [0, 1]2 the function G0 has a second fixed point X̂ = (0, 1), but
that is not an admissible solution to Proposition 2.1 since the nodes α and β must be
distinct from the end nodes 0 and 1 for (2.1) to make sense.

Proof. One has that K′(β) =
√

1−β
1+
√

1−β −
β

2
√

1−β(1+
√

1−β)2
= 1 − 1

2
√

1−β so that K
is increasing on [0, 3

4] and decreasing on [3
4 , 1], with K(3

4) = 1
4 . This yields

K
([2

3
,

4

5

])
=

[
min

(
K
(2

3

)
,K
(4

5

))
,

1

4

]
=

[
2

3(1 +
√

3)
,

1

4

]
⊂
]

1

5
,

1

3

[
which, using the expression (2.8), leads to

G0(F) ⊂
]

1

5
,

1

3

[
×
]

2

3
,

4

5

[
⊂ F. (2.11)

To show the second claim we compute ∇G0(α, β) =

(
0 K′(β)

−K′(1− α) 0

)
and we

observe that the bound |K′(β)| ≤ 1 −
√

3
2 < 0.15, valid on Fβ = [2

3 ,
4
5], translates

to |K′(1 − α)| < 0.15 on Fα = [1
5 ,

1
3], which proves the contraction property. The

third claim is straightforward to verify, and the last one follows from the fact that
K′(β) = K′(1− α) = K′

(
3
4

)
= 0.

Since h is expected to become small in the theory, we consider as an initial value
the fixed point (2.9) of the limit case h = 0, namely

X0 := X =
(1

4
,

3

4

)
. (2.12)

The following theorem shows that this gives indeed a convergent procedure.
Theorem 2.1. Let f ∈ W 1,∞(0, 1) satisfy (1.1). There exist h0 > 0 such that

for all 0 ≤ h ≤ h0, the sequence (Xm)m≥0 given by (2.7) and (2.12) remains in
the domain F ⊂]0, 1[2 and converges to a fixed point of Gh denoted as X∞h ∈ F .
Moreover one has the inequality for all m ≥ 0

‖X∞h −Xm‖ ≤ 2
(h

2h0

)m+1

. (2.13)

The proof relies on a technical lemma that investigate some properties of Gh for
small but non-zero values of h. The properties of Gh are by continuity a consequence
of the properties of G0.

Lemma 2.6. Let f ∈ W 1,∞(0, 1) satisfy (1.1), and F be the domain defined in
Lemma 2.4. Then there exist h∗ > 0 and a constant C∗ such that for all 0 ≤ h ≤ h∗,

6

i) Gh leaves the domain F invariant,
ii) Gh is contractant on F in the maximal norm,
iii) the Jacobian matrix ∇Gh satisfies

‖∇Gh(X)‖ ≤ C∗(h+ ‖X −X‖), X ∈ F, (2.14)

iv) the derivative of Gh with respect to h satisfies

‖∂hGh(X)‖ ≤ C∗, X ∈ F. (2.15)

iguyg ed
Proof. The proof is one step after the other.

i) This claim for h smaller than some h∗1 follows from the uniform convergence
Gh → G0 and the embedding (2.11) which involves a proper subset of F .

ii) The Jacobian matrix is

∇Gh(α, β) =

(
0 ∂βK(·, σh)(β)

−∂αK(1− ·, τh)(α) 0

)
(2.16)

with ∂βK(·, σh)(β) = ∂1K(β, σh(β)) + σ′h(β)∂2K(β, σh(β)). We observe from

σ′h(β) = hf ′(hβ)/(2
√
f(0)f(βh)) that for a positive Lipschitz f the limit σ′h(β)→

0 holds uniformly on [0, 1], just as σh(β) → 1. We infer that ∂βK(·, σh)(β) →
K′(β) holds uniformly on [0, 1]. As the same arguments apply to the α-dependent
term in (2.16), it shows that ∇Gh → ∇G0 holds uniformly on [0, 1], so that the
contraction property of G0 is transferred to Gh for h smaller than some h∗2 > 0,
and we take h∗ = min(h∗1, h

∗
2).

iii) Observe that ∇Gh(X) = Φ(h,X) +hΨ(h,X) where Φ (resp. Ψ) involves values
of f (resp. f ′) and is Lipschitz (resp. bounded) on [0, h∗]×F . Using (2.10) one
has that

‖∇Gh(X)‖ = ‖∇Gh(X)−∇G0(X)‖
≤ ‖Φ(h,X)− Φ(0, X)‖+ h‖Ψ(h,X)‖
≤ C∗(h+ ‖X −X‖)

holds for all (h,X) ∈ [0, h∗] × F , with a constant C∗ depending on f (as h∗

depends only on f).
iv) The last claim is straightforward (with another constant), using the fact that f

is Lipschitz and bounded away from 0.
The proof is ended.

Proof. [Proof of Theorem 2.1] From the claims (i) and (ii) of Lemma 2.6 we
see that for h ≤ h∗, the sequence (Xm)m≥0 lies within F , and from the fixed point
theorem of Picard it converges towards X∞h , the unique fixed point of Gh in F .
The error estimate (2.13) is shown in two steps, as follows. Firstly we claim that for
h small enough, the ball B(X, 2C∗h) is left invariant by Gh, i.e., Gh(B(X, 2C∗h)) ⊂
B(X, 2C∗h). To see this let X ∈ B(X, 2C∗h) and write, using (2.14)-(2.15), that

‖Gh(X)−X‖ ≤ ‖Gh(X)−Gh(X)‖+ ‖Gh(X)−G0(X)‖
≤ C∗(h+ ‖X −X‖)‖X −X‖+ C∗h

≤ 2C∗h
(
C∗(h+ 2C∗h) + 1

2

)
,

hence Gh(X) ∈ B(X, 2C∗h) for h ≤ h0 := min
(
h∗,
(
2C∗(1+2C∗)

)−1)
. In particular,

all the terms Xm are in this ball. Secondly writing emh = ‖Xm −X∞h ‖ and applying

7

again (2.14) we bound em+1
h = ‖Gh(Xm) − Gh(X∞h)‖ ≤ C∗(h + 2C∗h)emh ≤ h

2h0
emh

so that emh ≤
(
h

2h0

)m
e0
h. Estimate (2.13) follows by noticing that e0

h = ‖X0−X∞h ‖ =

‖X −X∞h ‖ ≤ 2C∗h ≤ h
h0

using the above considerations. The proof is ended.

2.3. Accuracy of the approximate interpolants in P+
3 . Denoting the m-th

approximation of the iterative scheme (2.7), (2.12) by (αm, βm) := Xm and observing
that Xm ∈]0, 1[2 (as Gh leaves that domain invariant for all h), we define affine
polynomials following (2.2), namely

am1 (x) :=
(x− αm

1− αm
)√

f(h)−
(x− 1

αm − 1

)√f(hαm)

αm

bm1 (x) :=
(x− βm
−βm

)√
f(0)−

(x

βm

)√f(hβm)

1− βm .

(2.17)

Let

pm3 (x) := xam1 (x)2 + (1− x)bm1 (x)2 (2.18)

be the corresponding cubic approximation to fh. Our error estimate then shows that
only one iteration in is actually needed for the optimal convergence in h. Indeed the
estimate (2.19) is optimal for q = 4 and 2(m+ 1) = q, that is m = 1.

Theorem 2.2. Let f ∈ W q,∞(0, 1), 1 ≤ q ≤ 4, satisfy (1.1), and let h0 > 0 be
given by Theorem 2.1. Then for all 0 ≤ h ≤ h0 and all m ≥ 0, the cubic polynomial
(2.18) satisfies

‖pm3 − fh‖ ≤ Chmin(q,2(m+1)) (2.19)

for a constant C depending on f .
Proof. The result follows by inspecting the values of pm3 at the four points 0 <

αm < βm < 1. One has, at the end-nodes pm3 (0) = fh(0), pm3 (1) = fh(1), and at the
interior ones pm3 (αm) = fh(αm) + (1 − αm)bm1 (αm)2 and pm3 (βm) = βmam1 (βm)2 +
fh(βm). So, as (αm, βm) = Xm is only an approximation to (α∞, β∞) = X∞h , we see
that, a priori, pm3 does not interpolate fh on the former. However the error can be
estimated as follows. If h ≤ h0 then we know from Theorem 2.1 that

(αm, βm) ∈ F =
[1

5
,

1

3

]
×
[2

3
,

4

5

]
, m ≥ 0, (2.20)

in particular these nodes are bounded away from 0 and 1. Using also that f is Lipschitz
and bounded away from 0, we see that bm1 (x) = b1[βm](x) is Lipschitz as a function
of (x, βm) ∈ [0, 1]× Fβ . Writing b∞1 = b1[β∞] we compute

|pm3 (αm)− fh(αm)| ≤ bm1 (αm)2 = |bm1 (αm)− b∞1 (α∞)|2

≤
(
|bm1 (αm)− b∞1 (αm)|+ |b∞1 (αm)− b∞1 (α∞)|

)2
≤ C

(
|βm − β∞|+ |αm − α∞|

)2
and the same bound holds for |pm3 (βm) − fh(βm)|. If we now denote by p̃m3 the
cubic polynomial that interpolates fh on the distinct nodes 0, αm, βm, 1 (which are
distinct and bounded away from each other according to (2.20)), standard polynomial

8

interpolation estimates and the equivalence of norms on {p ∈ P3, p(0) = p(1) = 0}
give

‖pm3 − fh‖ ≤ ‖pm3 − p̃m3 ‖+ ‖p̃m3 − fh‖
≤ C

(
|(pm3 − p̃m3)(αm)|+ |(pm3 − p̃m3)(βm)|+ ‖f (q)

h ‖
)

≤ C
(
‖Xm −X∞h ‖2 + hq‖f (q)‖

)
with a constant depending on f . Using (2.13) this concludes the proof.

3. Interpolation in P+
n with n = 2p+ 1, p ≥ 2. The objective of this section

is to extend to arbitrary odd high order the method proposed in the previous section
for n = 3. The extension to even order poses no additional difficulties and will be
explained in section 4. One is faced essentially with two difficulties.

Firstly the exact calculation of the roots of a polynomial of arbitrary order is of
course not possible. Therefore it is not possible to generalize in a straightforward
manner the method (2.4) because it was based on the exact calculation of the root of
an affine polynomial. This difficult is easily avoided by a formulating the fixed point
problem as the set of polynomial equations that the roots must satisfy, see (3.7). The
new algorithm (3.8) in Section 3.1 is based on a standard Newton-Raphson algorithm
which can be re-interprated as an iterative procedure for the sliding interpolation
points.

The second difficulty is perhaps more fundamental. Indeed one needs to start the
generalized Newton-Raphson algorithm from a non ambiguous starting point, and
one needs to proove that the Jacobian needed to formulate the generalized Newton-
Raphson algorithm is a non singular matrix. It appears that it is possible to obtain
an efficient solution that solves this second difficulty by using a suitable combination
of the Chebyshev polynomials which are natural oscillating polynomials. This is
detailed in Section 3.2.

3.1. A sufficient criterion for positive interpolation. For higher odd de-
grees n the sufficient criterion of proposition 2.1 generalizes as follows, see Figure 3.1
with a sketch of the oscillating polynomials. Let f ∈ W 1,∞(0, 1) be positive over
[0, 1], see (1.1), and let h ≥ 0. We consider two polynomials ap,h, bp,h ∈ Pp which have
a dependence with respect to h, and we state a criterion which will allow to restate
the positive interpolation of f as a fixed point problem.

Proposition 3.1. Assume there exists 2p nodes 0 = α0 < . . . < αp−1, β1 <
· · · < βp = 1 in [0, 1] with the properties:
a) the nodes are roots of the polynomials in the sense

bp,h(αi) = ap,h(βi+1) = 0 for 0 ≤ i ≤ p− 1, (3.1)

b) the nodes interpolate
√
f(hx)/x and

√
f(h)x/(1− x) with alternating signs

ap,h(αi) = (−1)i+p

√
f(hαi)

αi
, bp,h(βi) = (−1)i+p

√
f(hβi)

1− βi
for 0 ≤ i ≤ p.

(3.2)
Then the nodes interlace 0 = β0 < α0 < β1 < · · · < βp < αp = 1 and the polynomial
pn(x) = xap,h(x)2+(1−x)bp,h(x)2 ∈ P+

n is the interpolation polynomial of fh = f(h ·)
on the n+ 1 nodes β0, α0, · · · , βp, αp.

Remark 3.2. Actually the polynomial pn depends also on h by construction, but
to simplify the notation we disregard the index h. On the other hand, it is important

9

BRIEF ARTICLE

THE AUTHOR

(0) α β (1)

a1(x)

b1(x)

Figure 1. the case n = 3

β1 β2

αp−1

βp

(αp = 1)

(0 = β0)

· · ·
· · ·

bp(x)

ap(x)

α0 α1

Figure 2. the case n = 2p + 1

1

Fig. 3.1. Sketch of two oscillating polynomials ap,h and bp,h in Pp satisfying the cri-
terion of Proposition 3.1. The black (resp. white) circles indicate the positions of the nodes
α = (α0, . . . , αp−1) (resp. β = (β1, . . . , βp)) where bp,h (resp. ap,h) vanishes, and the squares
represent the data to be interpolated at these nodes, see (3.2). The end nodes (β0 = 0 and αp = 1)
are in gray as neither ap,h nor bp,h vanish there, but they are involved in the interpolation process.

to keep the indication of h in the polynomials ap,h and bp,h to make a clear distinction
with ap and bp which will be defined later.

Proof. Since f is positive over [0, 1], then the sign of ap,h(αi) is alternating: so its
roots βi alternate with the αi. The the same starting from the sign of of bp,h(β). By
construction pn(αi) = f(hαi) for all 1 ≤ i ≤ p and pn(β) = f(hβi) for 0 ≤ i ≤ p− 1.
It yields 2p interpolation points so pn ∈ Pn is the interpolation polynomial at these
points. The proof is ended.

We denote

Ip = {(x1, . . . xp) ⊂ (0, 1)p, 0 < x1 < · · · < xp < 1} . (3.3)

For

(α, β) = (α0, . . . , αp−1; β1, . . . , βp) ∈ I2
p ,

we let ap,h[α] and bp,h[β] be the polynomials which satisfy the interpolation relations
(3.2)

ap,h[α](x) =
∑

0≤i≤p
(−1)i+p

√
f(hαi)

αi

∏
0≤j 6=i≤p

x− αj
αi − αj

(3.4)

and

bp,h[β](x) =
∑

0≤i≤p
(−1)i+p

√
f(hβi)

1− βi
∏

0≤j 6=i≤p

x− βj
βi − βj

. (3.5)

Define Θp,h : I2
p −→ R2p by

Θp,h(α, β) = (bp,h[β](α0), . . . , bp,h[β](αp−1), ap,h[α](β1), . . . , ap,h[α](βp)) . (3.6)

Then the root relation (3.1) in Proposition 3.1 is equivalent to say that (α, β) ∈ I2
p

satisfies

Θp,h(α, β) = 0. (3.7)

10

This equation is highly non linear and might a priori degenerate, for example if αi =
αi+1 or if βi = βi+1. The whole point of this work is that such degeneracy is easy to
avoid using convenient simplified Newton-Raphson algorithms such as the next one.

Algorithm 3.1 (Simplified Newton-Raphson algorithm). Given a starting point
X0 ∈ I2

p , compute

Xm+1 := Xm − Jp(X0)−1Θp,h(Xm) (3.8)

where Jp(X
0) = ∇Θp,0(X0) ∈ R2p×2p is the Jacobian matrix of Θp,0 evaluated at the

starting point X0

Jp(X
0) =

(
∇αbp,0[β](α) ∇βbp,0[β](α)
∇αap,0[α](β) ∇βap,0[α](β)

)∣∣∣∣
(α,β)=X0

. (3.9)

Our goal is now to justify this method. This will be done in three steps. The
first step is the definition of a proper starting point X0 ∈ I2

p , the second step is the
justification that Jp(X

0) is a non singular matrix and the obtention of additional
technical properties, and the last step is the proof of the convergence of the fixed
point algorithm (3.8) for small enough conveniently chosen h > 0.

3.2. Definition of the starting point X0. In the case p = 1 (that is n = 3)
the starting point was obtained by considering the case h = 0 and we may assume
here that f(0) = 1 to simplify. Another interpretation is that we desire the algorithm
(3.8) to be exact for the simplest non trivial case which is f ≡ 1 because it is difficult
to expect any good property of (3.8) if this trivial case cannot be addressed efficiently.

In view of the interpolation identity described in Proposition 3.1, the solution
is related to the determination of two polynomials denoted as ap, bp ∈ Pp such that

xap(x)2 + (1−x)bp(x)2 = 1 for all x. Since it is a weighted sum of squares identically
equal to 1, it is natural to look for a solution based on the Chebyshev polynomials
(Tp, Up) ∈ Pp × Pp−1,

Tp(cos θ) = cos(pθ) and Up(cos θ) =
sin(pθ)

sin θ
, p ≥ 0

which satisfy Tp(−x) = (−1)pTp(x) and Up(−x) = (−1)p−1Up(x) (note: the usual
notation for Up is Up−1).

Lemma 3.3. Given p ∈ N and i = 0, . . . , p, let

αi :=
1

2

[
1− cos

(
(2i+ 1)π

2p+ 1

)]
and β

i
:=

1

2

[
1− cos

(
2iπ

2p+ 1

)]
(3.10)

and let ap and bp be the polynomials defined according to (3.4)-(3.5) with a constant
function f = 1. We have the following properties.

i) Interlacing and symmetry of the nodes: we have

0 = β
0
< α0 < β

1
< · · · < β

p
< αp = 1 (3.11)

and αi + β
p−i = 1, for 0 ≤ i ≤ p.

ii) Chebyshev form: the above polynomials read

ap(x) = Tp (2x− 1)− 2(1− x)Up (2x− 1)

bp(x) = Tp (2x− 1) + 2xUp (2x− 1) .
(3.12)

11

iii) Symmetry: for all x, we have ap(1− x) = (−1)pbp(x).
iv) Root property: ap and bp have p simple roots in]0, 1[, which coincide with β =

(β
1
, . . . , β

p
) and α = (α0, . . . , αp−1) respectively. In particular, we have

ap(β) = bp(α) = 0. (3.13)

v) Weighted sum of squares: for all x, we have

xap(x)2 + (1− x)bp(x)2 = 1. (3.14)

The formula (3.15) shows that ap and bp correspond more precisely to the (shifted)
third and fourth kind Chebyshev polynomials [12], table 18.3.1.

Proof. Property i) follows from a direct computation. To show the others we rely

on the fact that if the polynomials âp and b̂p defined as the right hand sides of (3.12),
namely

âp(x) := Tp (2x− 1)− 2(1− x)Up (2x− 1)

b̂p(x) := Tp (2x− 1) + 2xUp (2x− 1) ,

satisfy iv) and v), then they coincide with ap and bp. Indeed, (3.13) and (3.14) yield

âp(αi)
2 = 1/αi and b̂p(βi)

2 = 1/(1 − β
i
) for i = 0, . . . , p. Using âp(αp) = âp(1) =

Tp(cos 0) = 1 and the interlacing of the nodes (3.11), we see that âp(αi) has the sign of
(−1)i+p. In particular, âp is determined by (3.4) with f = 1 and hence coincides with

ap. The case of b̂p is similar, starting from b̂p(β0) = b̂p(0) = Tp(cosπ) = cos(pπ) =

(−1)p. We are then left to show that âp and b̂p satisfy Properties iii) to v). For iii),
we compute

âp(1− x) = Tp (1− 2x)− 2xUp (1− 2x)

= (−1)pTp (2x− 1)− 2x(−1)p−1Up (2x− 1) = (−1)pb̂p(x).

For iv), we let θ be such that cos θ = 2x− 1. Then 1− x = sin(θ/2)2 and

âp(x) = cos(pθ)− sin(θ/2)

cos(θ/2)
sin(pθ) =

1

cos(θ/2)
cos

((
p+

1

2

)
θ

)
(3.15)

holds for θ < π. This shows that âp has p distinct roots which coincide with the

nodes β1, . . . , βp ∈]0, 1[. The case of b̂p follows from Properties i) and iii). Turning
to Property v), we compute

xâp(x)2 + (1− x)b̂p(x)2 = Tp (2x− 1)
2

+ 4
(
x− x2

)
Up (2x− 1)

2
.

Again with cos θ = 2x− 1 we find sin2 θ = 1− (2x− 1)2 = 4(x− x2), and

Tp (2x− 1)
2

+ 4
(
x− x2

)
Up (2x− 1)

2
= cos2(pθ) + sin2 θ

(
sin(pθ)

sin θ

)2

= 1.

This shows (3.14) for the polynomials âp, b̂p, and the proof is complete.
Definition 3.4 (Starting point of algorithm (3.8)). Using the reference nodes

(3.10), we set

X0 := (α, β) = (α0, . . . , αp−1;β
1
, . . . , β

p
) ∈ I2

p (3.16)

12

Some elementary formulas which are used in practical implementation are derived
hereafter. By definition of the polynomials ap and bp we have (for all i)

ap(αi) =
(−1)i+p

α
1/2
i

and bp(βi) =
(−1)i+p

(1− β
i
)1/2

. (3.17)

For the derivatives we have the following result, which will also be useful in the
subsequent analysis. The polynomials ap and bp defined satisfy

a′p(αi) =
(−1)i+p+1

2α
3/2
i

, i = 0, . . . , p− 1 (3.18)

and similarly

b′p(βi) =
(−1)i+p

2(1− β
i
)3/2

, i = 1, . . . , p. (3.19)

These equalities are derived by differentiating the identity (3.14) and using the values
of ap and bp on the inner nodes αi and β

i
.

3.3. Study of the reference Jacobian matrix Jp(X
0). The main result of

this section is a proof that the reference Jacobian matrix Jp(X
0) has a very simple

structure and is non singular. We also provide an explicit formula.
Lemma 3.5. The reference Jacobian matrix defined by (3.9) has the form

Jp(X
0) =

√
f(0)

(
∇αbp[β](α) ∇βbp[β](α)
∇αap[α](β) ∇βap[α](β)

)∣∣∣∣
(α,β)=X0

=
√
f(0)

(
Dα 0
0 Dβ

)
(3.20)

where Dα = diag
(
b′p(αi) : i = 0, . . . , p− 1

)
and Dβ = diag

(
a′p(βi) : i = 1, . . . , p

)
are

two diagonal matrices with non zero entries given by
a′p(βi) =

2p cos(pη
i
)

cos η
i
+ 1

+
sin(pη

i
)

sin η
i

(
2p+

2

cos η
i
+ 1

)
for i = 1, . . . , p

b′p(αi) =
2p cos(pθi)

cos θi − 1
+

sin(pθi)

sin θi

(
2p− 2

cos θi − 1

)
for i = 0, . . . , p− 1

with η
i

= (2(p−i)+1)π
2p+1 and θi = 2(p−i)π

2p+1 .

Proof. The
√
f(0) comes from the representation formulas (3.4-3.5) for h = 0 and

ap,0 =
√
f(0)ap and bp,0 =

√
f(0)bp.

The other properties are proved as follows.
• Firstly, the diagonal form of the extra-diagonal blocks of Jp(X

0) is clear, since for
j 6= i, ap[α](βi) does not depend on βj (and similarly bp[β](αi) does not depend on
αj). The values of the non-zero entries then follow by direct computation, using the
formulas ∂x{Tp(2x−1)} = 2pUp(2x−1) and ∂x{Up(2x−1)} =

(
(2x−1)Up(2x−1)−

pTp(2x− 1)
)
/
(
4x(1− x)

)
. It is also easy to see that these values are non-zero: from

Lemma 3.3 we know that ap vanishes on the p nodes β
1
, . . . , β

p
, so that the Rolle

theorem yields p−1 distinct roots for a′p ∈ Pp−1, one inside every interval of the form

13

]β
i
, β

i+1
[with 0 ≤ i ≤ p− 1. Thus if a′p would vanish at one of the β

i
’s then it would

be identically zero, which is not possible due to the alternating sign of ap. The same

argument shows that b′p cannot vanish on a node αi.
• Secondly, we need to study how ap[α] defined by (3.4), namely

ap[α](x) =
∑

0≤i≤p
(−1)i+p

√
f(hαi)

αi

∏
0≤j 6=i≤p

x− αj
αi − αj

,

varies as a function of the inner nodes α = (α0, . . . , αp−1) ∈ Ip (and similarly for
bp[β]). We focus on the dependency with respect to α0 of the above quantity, which
means that we freeze all the other variables and study

q(x, α0) := ap[(α0, α1, . . . , αp−1)](x)− ap[(α0, α1, . . . , αp−1)](x).

One has the property that

q(αi, α0) = (−1)i+p

√
f(hαi)

αi
− (−1)i+p

√
f(hαi)

αi
= 0 for i = 1, . . . , p.

Since q(·, α0) ∈ Pp, this yields q(x, α0) = λ(α0)
∏

1≤i≤p(x − αi) where λ can be
obtained by identification at an arbitrary point. We take this point equal to α0 and
observe that since h = 0 in the reference Jacobian we can assume that f = 1. This
gives

λ(α0) =
ap[α0, α1, · · · , αp−1](α0)− ap[α0, α1, · · · , αp−1](α0)∏

1≤i≤p(α0 − αi)

=
1∏

1≤i≤p(α0 − αi)

(
(−1)p

√
1

α0
− ap(α0)

)
.

(3.21)

By differentiating the representation ap[α0, α1, · · · , αp−1](x) = ap[α0, α1, · · · , αp−1](x)+
λ(α0)

∏
1≤i≤p(x− αi) with respect to α0, we find

∂

∂α0
ap[α0, α1, · · · , αp−1](x) = λ′(α0)

∏
1≤i≤p

(x− αi)

and using (3.21) we write

λ′(α0) =
∂

∂α0

[
1∏

1≤i≤p(α0 − αi)

][
(−1)p

1

α
1/2
0

− ap(α0)

]

+
1∏

1≤i≤p(α0 − αi)

[
1

2
(−1)p+1 1

α
3/2
0

− a′p(α0)

]
.

Thanks to (3.17) and (3.18) this shows that λ′(α0) = 0. Hence ∂
∂α0

(
ap[α](x)

)∣∣∣
α=α

=

0. By rotation of the indices we find the same result for the differentiation with
respect to α1, · · · , αp−1. Since the same method applies to bp, we have finally proven
that the two diagonal blocks of Jp(X

0) indeed vanish, and this completes the proof.

14

3.4. Node separation. To avoid Θp,h to become unbounded in the fixed point
algorithm (3.8), one must guarantee that the approximated nodes stay away from
each other. If note the whole construction fails apart. In the cubic case (p = 1)
studied above this was guaranteed (for small values of h) by exhibiting a convex set
F of [0, 1]2 that was preserved by the fixed point algorithm. To treat the general case
p ≥ 2 we define the separation set

Ip,ε = {(x1, . . . xp) ⊂ [ε, 1− ε]p : ε ≤ xi − xi−1 for 1 ≤ i ≤ p} (3.22)

for some given ε > 0. Clearly we must have ε ≤ 1/(p + 1) so that Ip,ε is non empty.
The separation set is used in the proof of the convergence Theorem in next section
because it is needed to obtain conditions such that the sequence Xm stays inside Ip,ε
for some ε > 0 . For technical reasons, it is also possible to ”project” the iterates Xm

inside Ip,ε so that the iterates Xm are defined for all m. Additionally the separation
operator defined below is used in our implementation, see the numerical section. The
two steps of the construction of the separation operator are as follows:
• Given α = (α0, . . . , αp−1) ∈ Rp, a vector α∗ = (α∗0, . . . , α

∗
p−1) ∈ [0, 1]p is first

obtained by projecting αi 7→ min(max(αi, 0), 1) ∈ [0, 1] and reordering the resulting
values so that 0 ≤ α∗0 ≤ · · · ≤ α∗p−1 ≤ 1.

• A vector α̃ ∈ Ip,ε is then obtained as follows. We define the differences ∆i =
α∗i − α∗i−1 for i = 0, . . . p, where we have denoted α∗−1 = 0 and α∗p = 1. By
construction, we have ∆i ≥ 0 for 0 ≤ i ≤ p and

∑p
i=0 ∆i = 1. We set

∆̃i :=
max(∆i, 2ε)∑p
j=0 max(∆j , 2ε)

.

We have
∑p
j=0 max(∆j , 2ε) ≤

∑p
j=0(∆j + 2ε) = 1 + 2(p+ 1)ε, hence

∆̃i ≥
2ε

1 + 2(p+ 1)ε
≥ ε

by using that ε ≤ 1/(2(p+ 1)). On the other hand, we still have
∑p
i=0 ∆̃i = 1 and

we can define

α̃0 := ∆̃1 and α̃i := ∆̃i + α̃i−1 for i = 1, . . . , p− 1.

By construction the resulting vector α̃ is indeed in Ip,ε.

Definition 3.6. For X = (α, β) ∈ R2p, we define Sp,εX = (α̃, β̃) by applying
the above construction to α and β separately.

If X = (α, β) ∈ Ip,2ε then this process does not change the nodes, that is Sp,εX =
X. For a general X ∈ R2p, one obtains that S2

p,εX = Sp,ε (Sp,εX) = Sp,εX. So Sp,ε
is a projector.

Algorithm 3.2 (Simplified Newton-Raphson algorithm with node separation).
The fixed point algorithm (3.8) with guaranteed node separation reads

Xm+1 = Sp,εGh(Xm) where Gh(X) := X − Jp(X0)−1Θp,h(X) (3.23)

where the 2p × 2p Jacobian matrix of Θp,0 is Jp(X
0) =

√
f(0)

(
Dα 0
0 Dβ

)
and the

diagonal matrices Dα and Dβ are defined in Lemma 3.5.

15

In practice, ε can be taken very small. Clearly, to avoid spoiling the convergence
process it should be significantly smaller than the minimal distance between the refer-
ence nodes (3.10). In all the sequel we will consider that it has a fixed value depending
only on n, such that the following condition holds,

ε ≤ min

(
1

2(p+ 1)
, min
1≤i≤2p+1

(γ
i
− γ

i−1

4

))
(3.24)

where we have used a common notation γ
i

:= 1
2

[
1− cos

(
iπ

2p+1

)]
, i = 0, . . . , 2p + 1,

for the n+ 1 reference nodes in [0, 1]. The first bound is required for the definition of
the separation operator Sp,ε, and the other one guarantees that X0 = (α, β) is inside

(Ip,4ε)
2, so that

B(X0, ε) ⊂ (Ip,2ε)
2. (3.25)

In fact, (3.24) guarantees the stronger property that the n − 1 inner nodes γ =
(γ

1
, . . . , γ

2p
) are in the set I2p,4ε, hence

(α0, . . . , αp−1;β1, . . . , βp) ∈ B(X0, ε) =⇒ (α0, β1, . . . , αp−1, βp) ∈ I2p,2ε. (3.26)

3.5. Convergence. The proof of convergence is a generalization of the case
p = 1. The main condition is that h must be taken sufficiently small which means
in view of (3.8) or (3.23) that the algorithm is very close to a true Newton-Raphson
algorithm Xm+1 = Xm − Jp(X

0)−1Θp,0(Xm) where the function is evaluated for
h = 0. It is therefore not a surprise that, for small h > 0, the simplified Newton-
Raphson algorithm inherits by continuity of a degenerated version of the very strong
contraction properties of a true Newton-Raphson algorithm: it results in the geometric
convergence rate evidenced in (3.27) below. This rate can be interpreted in two ways.
Since 0 < h ≤ h0, one obtains a rate of convergence better than ≈ 1

2m . For a given
h0, it can be viewed as O(hm) convergence: in this second regime, the exact value of
h0 does not matter.

Theorem 3.1 (Convergence). Let f ∈W 1,∞(0, 1) satisfy (1.1), and ε = ε(n) > 0
be such that (3.24) holds. Then there exist h0 > 0 such that for all 0 ≤ h ≤ h0 the
following properties hold:

i) the separation operator is not active, that is the algorithms (3.8) and (3.23) with
starting point (3.16) compute the same iterates (Xm)m≥0 which belong to the
set (Ip,2ε)

2 ⊂]0, 1[2p

ii) the sequence (Xm)m≥0 converges towards a fixed point of Gh in the ball B(X0, ε),
X∞h = (α∞0 , . . . , α

∞
p−1;β∞1 , . . . β∞p), consisting of interlaced nodes bounded away

from each other and from the end nodes, see (3.22),

(α∞0 , β
∞
1 , . . . , α∞p−1, β

∞
p) ∈ I2p,2ε

iii) the error estimate holds for all m ≥ 0

‖X∞h −Xm‖ ≤ 2
(h

2h0

)m+1

. (3.27)

Again the proof relies on a technical lemma that generalizes Lemma 2.6.
Lemma 3.7. Let f ∈ W 1,∞(0, 1) satisfy (1.1), and ε > 0 be such that (3.24)

holds. Then there exist a constant C∗p,ε independent of h ∈ [0, 1] such that

16

i) the Jacobian matrix ∇Gh satisfies

‖∇Gh(X)‖ ≤ C∗p,ε(h+ ‖X −X0‖), X ∈ (Ip,ε)
2, (3.28)

ii) the derivative of Gh with respect to h satisfies

‖∂hGh(X)‖ ≤ C∗p,ε, X ∈ (Ip,ε)
2. (3.29)

Proof. The proof is very similar to the one of (2.14)-(2.15). Using (3.23) we
compute

∇Gh(X) = I −∇Θp,0(X0)−1∇Θp,h(X) (3.30)

and from the expressions (3.4)-(3.6) we observe that ∇Θp,h(X), and hence ∇Gh(X),
can be written under the form Φ(h,X) + hΨ(h,X) where Φ (resp. Ψ) involves values
of f (resp. f ′) and is Lipschitz (resp. bounded) on [0, 1] × (Ip,ε)

2, with Lipschitz
constant (resp. L∞ norm) depending on f , p and ε, but not on h. From (3.30) we
also see that ∇G0(X0) = 0. Using that (Ip,ε)

2 is convex, this gives

‖∇Gh(X)‖ = ‖∇Gh(X)−∇G0(X0)‖
≤ ‖Φ(h,X)− Φ(0, X0)‖+ h‖Ψ(h,X)‖
≤ C∗p,ε(h+ ‖X −X0‖)

for all (h,X) ∈ [0, 1]× (Ip,ε)
2, with a constant C∗p,ε independent of h. The last claim

is again straightforward (with another constant), using the fact that f is Lipschitz
and bounded away from 0.

Proof. [Proof of Theorem 3.1]

Let h0 := (2C∗p,ε)
−1 min

(
ε, (1 + 2C∗p,ε)

−1
)
. Then for h ≤ h0 the condition (3.24)

gives 2C∗p,εh ≤ ε and, using (3.25),

B(X0, 2C∗p,εh) ⊂ B(X0, ε) ⊂ (Ip,2ε)
2. (3.31)

Like in Theorem 2.1, it shows that Gh(B(X0, 2C∗p,εh)) ⊂ B(X0, 2C∗p,εh). In partic-
ular, for h ≤ h0 all the iterates Xm are in this ball and also in (Ip,2ε)

2 so that the
separation operator Sp,ε has no effect. Since Ip,2ε ⊂ Ip,ε, estimate (3.28) holds and
gives ‖∇Gh(X)‖ ≤ h

2h0
. This shows that Gh is contractant on B(X0, 2C∗p,εh) so that

the fixed point theorem of Picard applies: Gh has a unique fixed point X∞h in the
ball. Writing emh = ‖Xm −X∞h ‖ we have em+1

h = ‖Gh(Xm)−Gh(X∞h)‖ ≤ h
2h0

emh so

that emh ≤
(
h

2h0

)m
e0
h. Estimate (3.27) follows by noticing that e0

h = ‖X0 − X∞h ‖ ≤
2C∗p,εh ≤ h

h0
using the above considerations.

An easy corollary of the above convergence theorem 3.1 is a local version of the
Lukács Theorem which specifies Theorem 1.3.

Corollary 3.8. Assume f ∈ P+
n and f > 0 on [0, 1]. Then there exist h0 > 0

such that for 0 ≤ h ≤ h0, f(hx) = xap,h(x)2+(1−x)bp,h(x)2 with ap,h = ap,h[α∞] and
bp,h = bp,h[β∞] given by (3.4)-(3.5), using the nodes (α∞, β∞) = X∞h corresponding
to a fixed point of Gh in (Ip)

2.

Proof. Indeed both sides of the equality are equal at n+ 1 different points which
are 0 = β∞0 < α∞0 < · · · < β∞p < α∞p = 1. Since it is an equality between polynomials
of degree ≤ n, it yields the claim.

17

3.6. Accuracy of the approximate interpolants in P+
n . Proceeding like in

Section 2.3, we denote (αm, βm) := Xm the m-th approximation of (α∞, β∞) := X∞h
in the iterative Newton scheme (3.23), (3.16), and since Xm ∈ (Ip,ε)

2 thanks to the
speration operator we can define polynomials in Pp following (3.4)-(3.5), namely

amp,h = ap,h[αm](x) =
∑

0≤i≤p
(−1)i+p

√
f(hαmi)

αmi

∏
0≤j 6=i≤p

x− αmj
αmi − αmj

(3.32)

and

bmp,h = bp,h[βm](x) =
∑

0≤i≤p
(−1)i+p

√
f(hβmi)

1− βmi
∏

0≤j 6=i≤p

x− βmj
βmi − βmj

. (3.33)

and let

pmn (x) := xamp,h(x)2 + (1− x)bmp,h(x)2 (3.34)

be the corresponding approximation to fh from P+
n (the dependence of pmn on h is left

implicit for simplicity). The following result specifies Theorem 1.2 for odd degrees.
Theorem 3.2 (Optimal h convergence). Let f ∈ W q,∞(]0, 1[), 1 ≤ q ≤ n + 1,

satisfy (1.1), and let h0 > 0 be given by Theorem 3.1. Then for all 0 ≤ h ≤ h0 and
all m ≥ 0, the polynomial (3.34) satisfies

‖pmn − fh‖ ≤ Chmin(q,2(m+1)) (3.35)

for a constant C independent of h.
Proof. The result essentially follows by inspecting the values of pmn on 0, αm,

βm and 1. On the extremal nodes one has pmn (0) = fh(0) and pmn (1) = fh(1). On
the interior ones one has pmn (αmi) = fh(αmi) + (1 − αmi)bmp,h(αmi)2 and pmn (βmi) =

βmi a
m
p,h(βmi)2 + fh(βmi). Since h ≤ h0 we know from Theorem 3.1 that

(αm, βm) ∈ (Ip,ε)
2, m ≥ 0, (3.36)

and using also that f Lipschitz and bounded away from 0, we see that bmp,h(x) =
bp,h[βm](x) is Lipschitz as a function of (x, βm) ∈ [0, 1]× Ip,ε. In particular, we have
(for all i)

|pmn (αmi)− fh(αmi)| ≤ bmp,h(αmi)2 = |bmp,h(αmi)− b∞p,h(α∞i)|2

≤
(
|bmp,h(αmi)− b∞p,h(αmi)|+ |b∞p,h(αmi)− b∞p,h(α∞i)|

)2
≤ C

(
‖βm − β∞‖+ ‖αm − α∞‖

)2
,

where we readily observe the squaring of the right hand side which is the reason of the
doubling of the rate of convergence. The same bound holds for |pmn (βmi)− fh(βmi)|.
Let us denote by p̃mn the polynomial in Pn that interpolates fh on the n+ 1 nodes of
{0, 1}∪{αm0 , . . . , αmp−1}∪{βm1 , . . . , βmp } which are distinct and bounded away from each
other by at least 2ε according to (3.31) and (3.26). Standard polynomial interpolation
estimates yield

‖pmn − fh‖ ≤ ‖pmn − p̃mn ‖+ ‖p̃mn − fh‖
≤ C

(
max

0≤i≤p−1
|(pmn − p̃mn)(αmi)|+ max

1≤i≤p
|(pmn − p̃mn)(βmi)|+ ‖f (q)

h ‖
)

≤ C
(
‖Xm −X∞h ‖2 + hq‖f (q)‖

)
with a constant depending on f and n. Using (3.27) this concludes the proof.

18

4. Extension to the case n = 2p. For even degrees, the results are essentially
the same as in previous section. The main difference comes from the fact that now
the polynomials ap ∈ Pp and bp−1 ∈ Pp−1 do not have the same degree a priori. Since
the core parts of the proofs do not differ, we just state the results without further jus-
tification (the interested reader can easily recover the arguments by comparison with
the material in the previous section). However the properties in terms of Chebyshev
polynomials and definition of the starting point of the simplified algorithm need to
be precisely stated because they are different.

A sufficient criterion for positive interpolation. For even degrees n the
sufficient criterion of proposition 3.1 generalizes without difficulty.

Proposition 4.1. Let f ∈ W 1,∞(]0, 1[) satisfy (1.1), and let h ≥ 0. Let
ap,h ∈ Pp, bp−1,h ∈ Pp−1 and the 2p − 1 nodes 0 = α0 < α1 < . . . < αp−1 < αp = 1
and 0 < β1 < · · · < βp < 1 in (0, 1) are such that

ap,h(βi) = 0 for 1 ≤ i ≤ p,
bp−1,h(αi) = 0 for 1 ≤ i ≤ p− 1,

(4.1)

and such that

ap,h(αi) = (−1)i+p
√
f(hαi), for 0 ≤ i ≤ p,

bp−1,h(βi) = (−1)i+p

√
f(hβi)

βi(1− βi)
for 1 ≤ i ≤ p.

(4.2)

Then one has that: a) 0 = α0 < β1 < α1 < · · · < βp < αp = 1; b) the polynomial
pn(x) = ap,h(x)2 + x(1 − x)bp−1,h(x)2 ∈ P+

n interpolates fh = f(h ·) on the n + 1
nodes α0, β1, · · · , βp, αp.

Simplified Newton Algorithms. The principle of the algorithms (3.8) and
(3.23) is adapted in a straightforward manner. For

(α, β) = (α1, . . . , αp−1; β1, . . . , βp) ∈ Ip−1 × Ip,

we let ap,h[α] and bp−1,h[β] be the polynomials solving the interpolation problems
(4.2), that is

ap,h[α](x) =
∑

0≤i≤p
(−1)i+p

√
f(hαi)

∏
0≤j 6=i≤p

x− αj
αi − αj

(4.3)

and

bp−1,h[β](x) =
∑

1≤i≤p
(−1)i+p

√
f(hβi)

βi(1− βi)
∏

1≤j 6=i≤p

x− βj
βi − βj

. (4.4)

Let us define the function Γp,h : Ip−1 × Ip −→ R2p−1 by

Γp,h(α, β) = (bp−1,h[β](α1), . . . , bp−1,h[β](αp−1), ap,h[α](β1), . . . , ap,h[α](βp)) . (4.5)

As in section 3 the sufficient criterion of Proposition 4.1 applies as soon as (α, β) ∈
Ip−1 × Ip satisfies

Γp,h(α, β) = 0. (4.6)

19

and we introduce, starting from X0 ∈ Ip−1 × Ip, the following simplified Newton-
Raphson algorithms

Xm+1 = Xm − [∇Γp,0(X0)]−1Γp,h(Xm) (4.7)

where ∇Γp,0(X0) ∈ R2p−1×2p−1 is the Jacobian matrix of Γp,h with h = 0, evaluated
at the starting point X0. The algorithm with separation operator recasts as

Xm,1 = Xm − [∇Γp,0(X0)]−1Γp,h(Xm) Xm+1 = Sp,εX
m,1. (4.8)

Using the compact notation Γp,h(α, β) = (bp−1,h[β](α), ap,h[α](β)), the Jacobian ma-
trix takes the 2× 2 block form

∇Γp,0(X0) =

(
∇αbp−1,h[β](α) ∇βbp−1,h[β](α)
∇αap,h[α](β) ∇βap,h[α](β)

)∣∣∣∣
(α,β)=X0

. (4.9)

Definition of the starting point X0. Again here, we define the starting point
X0 thanks to the use of the Chebyshev polynomial (Tp, Up) ∈ Pp × Pp−1. We seek
two polynomials ap, bp−1 ∈ Pp such that

ap(x)2 + x(1− x)bp−1(x)2 = 1 for all x ∈ [0, 1].

The following Lemma can be prooved in the same way as Lemma 3.3
Lemma 4.2. Given p ∈ N let ap(x) = Tp (2x− 1), bp−1(x) = 2Up (2x− 1) and

αi :=
1

2

[
1− cos

(
iπ

p

)]
i = 0, . . . , p, β

i
:=

1

2

[
1− cos

(
(2i− 1)π

2p

)]
, i = 1, . . . , p.

We have the following properties.
i) Interlacing of the nodes: we have 0 = α0 < β

1
< α1 < · · · < β

p
< αp = 1.

ii) Symmetry: for all x, we have ap(1 − x) = (−1)pap(x) and bp−1(1 − x) =

(−1)p−1bp−1(x).
iii) Root property: ap (respectively bp−1) has p (respectively p− 1) simple roots in

]0, 1[, which coincide with β = (β
1
, . . . , β

p
) and α = (α1, . . . , αp−1) respectively.

In particular, we have ap(β) = bp−1(α) = 0.

iv) Weighted sum of squares: for all x, we have ap(x)2 + x(1− x)bp−1(x)2 = 1.
v) the polynomials ap and bp correspond to the ones defined according to (4.3)-(4.4)

with a constant function f = 1.
Corollary 4.3. The polynomials ap and bp satisfy a′p(αi) = 0 for i = 0, . . . , p

and similarly b′p(βi) = (−1)i+p+1 (1−2βi)
[βi(1−β

i
)]3/2

for i = 1, . . . , p. We may then set, as

starting point of the algorithm (3.8),

X0 := (α, β) = (α1, . . . , αp−1;β
1
, . . . , β

p
) ∈ Ip−1 × Ip (4.10)

using the reference nodes (3.10). The main result of this section is a proof that the
reference Jacobian matrix ∇Γp,0(X0) has a very simple structure and is non singular.
We also provide an explicit formula.

Lemma 4.4. The reference Jacobian matrix defined by (3.9) has the form

∇Γp,0(X0) =
√
f(0)

(
∇αbp−1[β](α) ∇βbp−1[β](α)
∇αap[α](β) ∇βap[α](β)

)∣∣∣∣
(α,β)=X0

20

that is ∇Γp,0(X0) =
√
f(0)

(
Dα 0
0 Dβ

)
where Dα = diag

(
b′p(αi) : i = 1, . . . , p − 1

)
and Dβ = diag

(
a′p(βi) : i = 1, . . . , p

)
are diagonal matrices given by

a′p(βi) =
2p sin(pξ

i
)

sin(ξ
i
)
6= 0 for i = 1, . . . , p

b′p(αi) = 4
sin(pγ

i
)

sin(γ
i
)

cos(γ
i
)

1− cos(γ
i
)2
− 4p

cos(pγ
i
)

1− cos(γ
i
)2
6= 0 for i = 0, . . . , p

with ξ
i

= (2(p−i)+1)π
2p and γ

i
= (p−i)π

p . The convergence estimates for even degrees
n = 2p take the same form than for odd degrees, which allows to state Theorem 1.2
as a general result.

5. Numerical illustrations. We provide implementation details then present
results which either validate the different algorithms and convergence estimates or,
and we think this is much more valuable, show that the range of parameters for which
the algorithms can be used is much larger than what is predicted by the theory.

5.1. Implementation details. The practical implementation of the algorithms
described above requires elementary modifications, so as to run smoothly even if the
hypothesis of the convergence theorems are not entirely satisfied. We describe these
modifications for the simplified Newton-Raphson algorithm (3.8) in the case of odd
degrees n = 2p+ 1

Xm+1 = Gh(Xm) where Gh(X) := X − Jp(X0)−1Θp,h(X).

The case of cubic (2.7) and even degrees (4.10) poses no real difficulties and is left to
the reader. In practice, the modified loop writes

Xm+1 = Sp,εĜh(Xm) where Ĝh(X) := X − Jp,ε(X0)−1Θp,h,ε(X). (5.1)

There are three ingredients in this formula which all of them contribute to get a non
singular algorithm up to a small truncation error of order ε > 0.
• The first one is the separation operator Sp,ε introduced in Definition 3.6.
• The second one is a new Jacobian replacing Jp(X

0), see (3.20),

Jp,ε(X
0) :=

√
fmε

(
Dα 0
0 Dβ

)
(matrices Dα,β defined in Lemma 3.5)

where fmε stands for a maximal value of f evaluated at iteration m. A convenient
choice writes fmε := max (maxz∈Vm f(z), ε) ≥ ε > 0 where Vm = {Xm

i }1≤i≤2p is the
set of coordinates of Xm (the αmi and βmi).
• The third ingredient is based on the introduction of the offset ε > 0 in the interpo-
lation polynomials which are now

ap,h,ε[α](x) =
∑

0≤i≤p
(−1)i+p

√
max (f(hαi), ε)

αi

∏
0≤j 6=i≤p

x− αj
αi − αj

(5.2)

and

bp,h,ε[β](x) =
∑

0≤i≤p
(−1)i+p

√
max (f(hβi), ε)

1− βi
∏

0≤j 6=i≤p

x− βj
βi − βj

. (5.3)

21

We note that this offset is not necessary to define the polynomials (5.2) and (5.3),
but it is needed for them to oscillate. The new function Θp,h,ε : I2

p −→ R2p is

Θp,h,ε(α, β) = (bp,h,ε[β](α0), . . . , bp,h,ε[β](αp−1), ap,h,ε[α](β1), . . . , ap,h,ε[α](βp)) .

Our best implementation of Θp,h,ε is based on the Newton divided differences method.

5.2. Interpolation. The application to interpolation problems is presented.

5.2.1. Cubic nodes. We illustrate in table 5.1 the convergence of the fixed
point Algorithm 2.1 which computes the interpolation nodes for the cubic case. We
consider the function

f(x) = 0.5 + |x− 0.5| for x < 0.5, f(x) = 0.5 +
1

2
|x− 0.5| for 0.5 ≤ x. (5.4)

The numerical values of the nodes Xm = (αm, βm) are given in function of the
iteration marker m. One observes very fast convergence of the sliding interpolation
points to their limit value. This convergence behavior is in some sense better than
the one predicted by Theorem 2.1 because h = 1 in this numerical simulation.

m αm βm

0 0.250000, 0.750000
1 0.290569 0.747017
2 0.290678 0.747013

. . . 0.290678 0.747013

 0.8 1
x

cubic pol.

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 0 0.2 0.4 0.6

exact function

Table 5.1
Algorithm 2.1: convergence of the sliding interpolation points for the function (5.4).

The next series of numerical results illustrate the accuracy estimate (2.19) of
Theorem 2.2 for the positive polynomial approximation of a given function. For
different values of h, we consider the functions

fh(x) =
1

1− hx, 0 ≤ x ≤ 1, h =
1

2
,

1

4
,

1

8
, · · · (5.5)

The results are given in Table 5.2. The relative L∞(0, 1) error between fh and its
approximation pm3 is provided as a function of the iteration number m which shows
up in estimate (2.19). For m = 0, the accuracy is second order. For m = 1 and
beyond, the accuracy is fourth order. It cannot be greater than fourth order since
this is optimal for the approximation with cubic polynomials.

5.2.2. General order Newton-Raphson algorithm . We illustrate the effi-
ciency of the general order Newton-Raphson algorithm (3.8) (for even degrees it is
given by equation (4.8)). The initial point is (3.16). The first iterates of the algo-
rithm are always well defined since the Jacobian Jp(X

0) is a non singular matrix by
Lemma 3.5. The sliding nodes are well separated provided h is small enough, as ex-
plained in Section 3.4 and Theorem 3.1. However we have observed in many numerical
experiments excellent convergence properties even for h = 1.

22

h m = 0 m = 1 m = 2

1/2 0.0205988 0.0024350220 0.0024422952
1/4 0.0044347 4.64 0.0000881270 27.6 0.0000893219
1/8 0.0010400 4.26 0.0000045399 19.4 0.0000046098
1/16 0.0002519 4.13 0.0000002579 17.6 0.0000002619
1/32 0.0000619 4.07 0.0000000153 16.8 0.0000000156
order ≈ 2 ≈ 4

Table 5.2
Relative L∞ errors between the function (5.5) and its approximated cubic interpolant, with the

reduction factors. The observed convergence order is in accordance with Theorem 2.2. The last
column with m = 2 shows no improvement with respect to m = 1, as expected.

The first series of plots compare the approximation of the (Runge) function

R(x) =
1

(1 + 25(2x− 1)2
(5.6)

for interpolation with positive polynomials of degree n = 7k for k = 1, 2, 3, 4. The
function R and its positive interpolant are represented on the same plot, with in bullets
the position of the interpolation points. The number of iterations is systematically
the same m = 10. One observes stability and convergence of the interpolation points
as n increases, either for even or odd degrees.

0.0 0.2 0.4 0.6 0.8 1.0
0.0

0.2

0.4

0.6

0.8

1.0 Fonction fh and interpolant polynomial, n=7

Fonction fh
Positive polynomial pn

0.0 0.2 0.4 0.6 0.8 1.0
0.0

0.2

0.4

0.6

0.8

1.0 Fonction fh and interpolant polynomial, n=14

Fonction fh
Positive polynomial pn

0.0 0.2 0.4 0.6 0.8 1.0
0.0

0.2

0.4

0.6

0.8

1.0 Fonction fh and interpolant polynomial, n=21

Fonction fh
Positive polynomial pn

0.0 0.2 0.4 0.6 0.8 1.0
0.0

0.2

0.4

0.6

0.8

1.0 Fonction fh and interpolant polynomial, n=28

Fonction fh
Positive polynomial pn

Fig. 5.1. Degree n = 7, 14, 21, 28. The (Runge) function (5.6) is in dashed lines. The positive
interpolation is the continuous line. Interpolation points are represented in bullets m = 10.

The second series of experiments illustrates the result of the local Lukács Theo-

23

rem 1.3. We take a function f ∈ P+
17 which is now polynomial

f(x) = 105x10(1− x)7 + 0.01 (5.7)

and very close to zero at the boundaries. We use the general order Newton-Raphson
algorithm (3.8) until convergence. The results are given in Table 5.3. The approx-
imation is exact to machine accuracy for p = 8 which yields the exact degree of f
since n = 2p + 1 = 17. The curves for 0 ≤ p ≤ 8 (not shown here) indicate that the
approximation is always non negative, which is a property of the method.

p 0 1 2 3 4 5 6 7 8
rel. L∞ ≈ error 1. 0.8 0.3 0.2 0.1 0.05 0.03 0.003 εmach.

Table 5.3
Convergence of the sliding interpolation points to their limit for the polynomial function f (5.7).

The errors in L∞ norm are provided in the table above the figure which displays in bold both f and
its exact approximation for p = 8.

The convergence order of estimate (1.3) in Theorem 1.2, which deals with non
negative polynomial approximation of high order, is illustrated in Table 5.4, using the
same method than in Table 5.2. The objective function is fh with f given in (5.7).
Here we consider odd degrees n = 2p, and to obtain the optimal accuracy with the
minimal algorithmic cost, we equate p the degree of ap and bp with m which is the
number of iterations of the fixed point, indeed n+ 1 = 2p+ 2 = 2(m+ 1)⇐⇒ m = p.

h p = m = 0 p = m = 1 p = m = 2 p = m = 3

1/2 0.08574 0.002774567 0.0000780726648 0.000002586969712
1/4 0.01794 0.000083124 0.0000005857086 0.000000002761407
1/8 0.00417 0.000003792 0.0000000065231 0.000000000007073
1/16 0.00100 0.000000204 0.0000000000866 0.000000000000023
1/32 0.00024 0.000000011 0.0000000000012 εmach.
order ≈ 2 ≈ 4 ≈ 6 ≈ 8

Table 5.4
Relative L∞ errors between the function fh(·) = f(h·) with f provided in (5.7) and its approx-

imated interpolant pmn with n = 2p+ 1, as a function of p = m. The observed convergence order is
in accordance with Theorem 1.2, namely 2(m+ 1).

5.2.3. Optimality with respect to the polynomial degreee. The approxi-
mation by positive interpolation polynomials is optimal in terms of polynomial degree,
and so is optimal in terms of accuracy. This can be visualized by comparison with
another trivial positive approximation which writes

p̂n =
(
Ip
(√

f
))2

, n = 2p, (5.8)

where Ip is the standard Lagrange interpolation operator with degree p = n/2. For
n = 10, we compare p̂n with pn provided by Algorithm (3.8). The result displayed
in Figure 5.2 shows without surprise that pn which uses 11 interpolation points is
much more accurate than p̂n which uses only 6 interpolation points. The target is the
Runge function R, see (5.6).

24

0.0 0.2 0.4 0.6 0.8 1.0
0.0

0.2

0.4

0.6

0.8

1.0

Fonction fh and interpolant polynomial, n=10
Fonction fh
Positive polynomial pn

0.0 0.2 0.4 0.6 0.8 1.0
0.0

0.2

0.4

0.6

0.8

1.0

Fonction fh and Chebychev interpolant squared

Fig. 5.2. Approximation of R by two polynomial of degree n = 10. Left: pn in dots is the
positive polynomial obtained by iteration. Right: p̂n is obtained by squaring procedure (5.8) of
standard Chebyshev interpolation, so only 6 interpolation points are involved at the intersection of
the curves.

5.3. A simple certificate of positivity: Algorithms 1.2 and 1.3. We show
how to interpret the positive polynomials as a certificate of positivity, as in Algorithms
1.2 and 1.3. This method is the basis of the algorithms in the next section.

Instead of developing a general theory, we propose a simple example. We consider
the polynomial function qλ ∈ P4

qλ(x) = 10(x− 1/2)4 + λ (5.9)

and consider different values of λ. For λ ≥ 0, one clearly has qλ ∈ P+
4 , and on the

other hand, for λ < 0 then qλ 6∈ P+
4 . Of course, it is evident for such a polynomial

to know wether qλ is negative of not. The point is that for a general polynomial of
arbitrary order, it can be quite difficult.

In order to propose a general solution, we construct the sequence of positive
polynomials pm4 ∈ P+

4 with the simplified Newton-Raphson Algorithm (5.1) with a
small offset ε > 0. The iterations are performed up to a given arbitrary degree which
is taken a priori sufficiently large. The two main cases are

• either qλ ∈ P+
4 , then pm4 ∈ P+

4 is very close to qλ
• or qλ 6∈ P+

4 , then pm4 ∈ P+
4 can be used as a non negative polynomial surrogate to

the objective function qλ.

This is illustrated in Figure 5.3 where we approximate qλ=0.1 and qλ=−0.1 with positive
polynomials of degree n = 4 and n = 9. For λ = 0.1 > 0, one observes without surprise
that the two top results in Figure 5.3 are extremely accurate. On the other hand for
λ = −0.1 < 0, the two bottom figures in Figure 5.3 show that positive polynomials
have the ability to capture a very good (polynomial) non negative approximation of
max(qλ, ε). The iteration of positive polynomials constructs in this case a practical
(in the sense of Algorithm 1.3) certificate of positivity. One is nevertheless forced to
increase the polynomial degree to obtain good accuracy (in this case, a doubling).

5.4. Numerical approximation of the advection equation. This section
can be considered as an ultimate justification of the introduction of the parameter
h in the various theorems of approximation, such as the main one Theorem 1.2.
This parameter is now proportional to the mesh size ∆x > 0 used to discretize par-
tial differential equations. We consider the numerical discretization of the advection

25

0.0 0.2 0.4 0.6 0.8 1.0
0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8 Fonction fh and interpolant polynomial, n=4

Fonction fh
Positive polynomial pn

0.0 0.2 0.4 0.6 0.8 1.0
0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8 Fonction fh and interpolant polynomial, n=9

Fonction fh
Positive polynomial pn

0.0 0.2 0.4 0.6 0.8 1.0
0.1

0.0

0.1

0.2

0.3

0.4

0.5

0.6 Fonction fh and interpolant polynomial, n=4

Fonction fh
Positive polynomial pn

0.0 0.2 0.4 0.6 0.8 1.0
0.1

0.0

0.1

0.2

0.3

0.4

0.5

0.6 Fonction fh and interpolant polynomial, n=9

Fonction fh
Positive polynomial pn

Fig. 5.3. The objective polynomial can be either in P+
n (top) or not (bottom). In case it admits

negative values, positive polynomials construct good approximation.

equation {
∂tu+ a∂xu = 0, x ∈ R, t > 0, a = 1,
u(x, 0) = u0(x), x ∈ R,

with a periodic initial data u0(x + 1) = u0(x) for all x ∈ R. Assuming u0 ≥ 0 or
u0 > 0, one desires to design methods which respect these conditions. Two methods
are tested, which are based on the approximate certificate of positivity described
in section 5.3. That is the algorithms start by reconstructing a classical Lagrange
interpolation from the available local data: this yields a local polynomial pn ∈ Pn
with n = 2p + 1; in a second stage we use the iteration loop (3.8) with m = p steps;
it yields a local polynomial p̃n ∈ P+

n which is a high order approximation of pn. The
first method is based on the semi-Lagrangian method [3] where the value at the foot
of the characteristic is predicted by standard Lagrangian interpolation then modified
so as to get a non negative value. The second one if essentially similar up to the
fact that we solve the transport equation by computing fluxes equal to the integral
over the length ∆l = a∆t of a polynomial p̃n ∈ P+

n . The stability of the resulting
scheme/algorithm is not possible to determine by theoretical means yet. We can
only say that the stencil of the Lagrange interpolation is linearly stable in any Lr,
1 ≤ r ≤ ∞, see [3], and that the guaranteed non negativity of the global method
yields some non linear stability. Take the initial data is u0(x) = cos(πx)2 + 1 > 0.
The CFL constant is a∆t

∆x = 0.5. Therefore the foot of the characteristics is at the
middle of the first left cell. In Table 5.5, we display the L∞ error at time Tend = 1
for the semi-Lagrangian implementation, as a function of the numbers of cells.

26

h n = 1 n = 3 n = 5 n = 7

20 0.195 0.0045767 0.00020966477 0.000016399842
40 0.109 0.0005707 0.00001083749 0.000000551818
80 0.058 0.0000725 0.00000039502 0.000000006955
160 0.029 0.0000091 0.00000001303. 0.000000000065
320 0.015 0.0000011 0.00000000041 εmach.

order ≈ 1 ≈ 3 ≈ 5 ≈ 7
Table 5.5

h-convergence with respect to the polynomial degree n for the positive semi-Lagrangian scheme.

Same test problem with a conservative implementation (ENO-like reconstruction
of the fluxes) yields the results in Table 5.6 with increase of the convergence order.

h n = 1 n = 3 n = 5 n = 7

20 0.03791 0.000800990 0.000022346530 0.000001284228
40 0.00964 0.000052541 0.000000460477 0.000000023856
80 0.00242 0.000003355 0.000000008021 0.000000000168
160 0.00060 0.000000211 0.000000000132 εmach.
320 0.00015 0.000000013 εmach. εmach.

order ≈ 2 ≈ 4 ≈ 6 ≈ 8
Table 5.6

h-convergence wrt the polynomial degree n for the positive conservative semi-Lagrangian
scheme. Gain of one convergence order with respect to the semi-Lagrangian scheme (Table 5.5).

REFERENCES

[1] S. Butt and K. W. Brodlie, Preserving positivity using piecewise cubic interpolation, Comput.
& Graphics Vol. 17, No, 1, pp. 55-64, 1993.

[2] B. Després, Polynomials with bounds and numerical approximation, Numer. Algo., 1-31, 2017.
[3] B. Després, Uniform asymptotic stability of Strang’s explicit compact schemes for linear ad-

vection, SIAM J. Numer. Anal. 47 (2009), no. 5, 3956-3976.
[4] H. Hong and D. Jakus, Testing Positiveness of Polynomials, J. of Aut. Reas. 21: 23-38, 1998.
[5] J.-B. Lasserre, Moments, Positive Polynomials and Their Applications, Imp. Col. Press, 2010.
[6] G.V. Milovanovic, D.S. Mitrinovic and T.M. Rassias, Topics in polynomials: extremal problems,

inequalities, zeros. World Scientific Publishing Co., Inc., River Edge, NJ, 1994.
[7] V. Powers, Positive Polynomials and Sums of Squares: Theory and Practice, in Real Algebraic

Geometry 2011, Conference Rennes University, Editors Basu and al.
[8] J.J. Risler, Mathematical methods for CAD. Camb. Univ. Press, Cambridge, 1992.
[9] J.J. Risler, Computer aided geometric design. Handbook of numerical analysis, Vol. V, 715-818,

Handb. Numer. Anal., V, North-Holland, Amsterdam, 1997.
[10] J.-W. Schmidt and W. Hess, Positivity of cubic polynomials on intervals and positive spline

interpolation, BIT Numerical Mathematics June 1988, Volume 28, Issue 2, 340-352.
[11] C.W. Shu, Bound-preserving high order accurate schemes , Notes of the Canadian Mathematical

Society (CMS Notes), v45 (2013), pp.24-25.
[12] Olver and al editors, NIST Handbook of Mathematical Functions, Camb. Univ. Press, 2010.
[13] G. Szegö, Orthogonal polynomials, American Mathematical Society, Providence, R.I., 1939.
[14] E. F. Toro, Riemann solvers and numerical methods in fluid dynamics, a practical introduction,

Springer, 1997.
[15] J.-H. Zhang and Z.-X.Yao, Optimized explicit finite-difference schemes for spatial derivatives

using maximum norm, Journal of Computational Physics 250 (2013) 511-526.

27

