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Abstract—The fast growing mobile network data traffic poses
great challenges for operators to increase their data processing
capacity in base stations in an efficient manner. With the
emergence of Cloud Radio Access Network (Cloud-RAN), the
data processing units can now be centralized in a data center and
shared among several base stations. By clustering base stations
with complementary traffic patterns to the same data center, the
deployment cost and energy consumption can be reduced. In
this paper, we propose a two-phase framework to find optimal
base station clustering schemes in a city-wide Cloud-RAN. First,
we design a traffic profile for each base station, and propose
an entropy-based metric to characterize the complementarity
among base stations. Second, we build a graph model to represent
the complementarity as link weight, and propose a distance-
constrained clustering algorithm to find optimal base station clus-
tering schemes. We evaluate the performance of our framework
using two months of real-world mobile network traffic data in
Milan, Italy. Results show that our framework effectively reduces
12.88% of deployment cost and 9.45% of energy consumption
compared with traditional architectures, and outperforms the
baseline method.

Index Terms—Cloud-RAN; base station clustering; mobile
network data; network optimization

I. INTRODUCTION

Today, mobile network data traffic is growing explosively as
Internet-enabled smartphones and tablets become increasingly
popular [1]. According to Cisco [2], global mobile network
data traffic has grown 18-fold over the past five years. In order
to satisfy the fast growing data traffic demand, mobile network
operators need to increase their data processing capacity,
such as deploying more base stations, and adding more data
processing units to the base stations. However, the deployment
cost of these network infrastructures are becoming increas-
ingly high, and may exceed operator’s revenue as network
scale grows [3]. Moreover, the energy consumption of mobile
network infrastructures are substantially increasing, taking up
more than 3% of the worldwide electric energy consumption
nowadays [4]. Therefore, optimizing the deployment cost
and energy consumption has become a necessity for mobile
network operators [5].

Interestingly, for a mobile network, although the overall data
traffic demand at the city scale is growing, the demands in
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Fig. 1. (a) Data traffic patterns in different areas of Milan during a typical
weekday. The blue solid line denotes the data traffic in a business district
(Centro Sacra Mall), and the red dashed line corresponds to the data traffic in
a residential area (Quintosolo district). (b) The aggregated data traffic pattern
of the two areas. Triangles denote the peak traffic hour and intensity.

different areas and different periods of time are not evenly
distributed. For example, as shown in Fig.la, the data traffic
in the business district (denoted in blue solid line) observes
several peaks during working hours, while the traffic in the
residential area (denoted red dashed line) is relatively higher
in morning and evening hours than in working hours. Such a
spatio-temporal non-uniform property of traffic demand poses
great challenges in optimizing deployment cost and energy
consumption. On one hand, the data processing capacity of
each base station needs to cover its peak traffic intensity,
leading to high deployment cost. On the other hand, the data
processing capacity in individual base station is wasted during
off-peak hours, resulting in low energy efficiency.



Fortunately, with the rapid evolution of mobile network
architecture, the emergence of Cloud Radio Access Network
(Cloud-RAN) [6] has presented new opportunities to answer
the above mentioned challenges. In Cloud-RAN, the data
processing units (i.e., Baseband Units, BBUs) are removed
from base stations, and are centralized in a virtual BBU pool
and shared among several base stations [5]. In this way,
the data traffic from these base stations can be aggregated
and processed in the BBU pool. By clustering base stations
with complementary traffic patterns to a BBU pool, the total
number of BBUs needed to be deployed can be reduced, and
the utilization rate of the BBU pools can be increased [7].
For example, in Fig.1, if we cluster the base stations in the
business district and in the residential area to a BBU pool,
the aggregated traffic pattern will become relatively stable
(Fig.1b), leading to potentially higher utilization rate of the
pool. Moreover, the maximum BBU pool capacity can be
reduced from the sum of the peak capacities of the two base
stations (0.32+0.30) to a lower value (0.50), and thus reducing
the deployment cost of BBUs.

Therefore, in order to unlock the power of the Cloud-
RAN architecture, one of the key problem is to design an
optimal clustering scheme between base stations and BBU
pools [7], [8], so as to minimize the deployment cost and
energy consumption of the entire network infrastructure. More
specifically, given a set of base stations in a city, our objective
is to cluster base stations with complementary traffic patterns
to the same BBU pools. To achieve these goals, we need to
address the following issues:

1) How to characterize the data traffic pattern of a
base station? The data traffic generated in each base
station is highly dynamic in different time of day, and
in different day of week. For example, the traffic volume
in business districts may be higher during the working
hours than at midnight, and be lower in weekends than in
weekdays. Therefore, we need to build appropriate data
traffic profiles to characterize the data traffic patterns of
base stations under different temporal contexts.

2) How to measure the complementarity among base
stations? In order to reduce deployment cost, the peak
traffic volumes of the base stations clustered to the same
BBU pool should be scattered in different temporal
contexts, so that the capacity of the BBU pool can
be shared among these base stations. Moreover, the
aggregated traffic volume in different temporal contexts
should be close to the capacity of the BBU pool to
increase the pool utilization. Therefore, we need to take
into account both aspects, i.e., the peak time distribution
and the capacity utilization, to design an effective metric
to measure the complementarity of base stations.

3) How to cluster the complementary base stations to
BBU pools? Given the traffic patterns and the com-
plementarity measurements of base stations, there are
potentially large numbers of schemes to cluster base
stations to BBU pools. However, in order to reduce
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Fig. 2. Framework overview.

the signal propagation delay and the cost of optical
fiber between base stations and BBU pools [5], the
distance between a BBU pool and its affiliated base
stations should be constrained within a reasonable range.
Therefore, we need to design an effective algorithm to
find the optimal base station clustering scheme under
distance constraint.

With the above-mentioned research objectives and issues,
the main contributions of this paper are:

« We propose a two-phase framework to find optimal base
station clustering schemes for cost-effective and energy-
efficient Cloud-RAN. In the first phase, we design a
temporal-context-based data traffic profile to characterize
the data traffic pattern of each base station. Based on
the data traffic profiles, we propose an entropy-based
metric to characterize the complementarity among base
stations, taking into consideration both the peak time
distribution and the capacity utilization of the aggregated
traffic of a cluster of base stations. In the second phase,
we first build a weighted graph model to represent the
complementarity of base stations as link weight, and then
propose a distance-constrained clustering algorithm to
find optimal clustering schemes between base stations and
BBU pools.

« We evaluate the performance of our framework using two
months of real-world mobile network data from Milan,
Italy. Results show that our framework effectively reduces
12.88% of deployment cost and 9.45% of energy con-
sumption compared with non-Cloud-RAN architectures,
and outperforms the other clustering method.

II. FRAMEWORK OVERVIEW

We propose a two-phase framework to cluster base stations
to a number of BBU pools, so that the deployment cost and
the energy consumption of the entire network infrastructure
can be reduced to a maximal extent. As shown in Fig.2, in the



base station profiling phase, given a set of base stations, we
first generate a traffic profile for each base station according
to its historical data traffic record, and then calculate the
complementarity of base stations using a proposed entropy-
based metric. In the base station clustering phase, we first build
a graph model to represent the complementarity connections
among base stations, and then propose a distance-constrained
clustering algorithm to cluster base stations with complemen-
tary traffic patterns, and aggregate their traffic to BBU pools.

III. BASE STATION PROFILING

In order to cluster base stations with complementary traffic
patterns to the same BBU pool, we need to characterize the
traffic pattern of each base station, and then measure the com-
plementarity of base stations. Since the base station data traffic
is varying significantly across different hours and different
days, we design a temporal-context-based traffic profile for
each base station using their historical data traffic record. In
order to characterize the complementarity of base stations,
we focus on the peak distribution and capacity utilization of
their aggregated traffic, and design an entropy-based metric to
characterize the complementarity of base stations.

A. Base Station Traffic Profile Generation

In the mobile network architecture, a set of base stations are
deployed over geographical areas called cells [9]. This base
station provides the cell with the network coverage which can
be used for transmission of voice and data. With the emergence
of smartphones and tablets, the data traffic generated from
users connected to the base stations is increasing rapidly.
In order to benchmark the data processing capacity of base
stations, many operators have collected large scales of base
station traffic statistics data and make them publicly available
[1]. In this paper, we exploit the dataset released by Tele-
com Italia for the Big Data Challenge initiative [10], which
contains two months of network traffic data from 11/01/2013
to 12/31/2013 in Milan, Italy. We also collect the locations
of active base stations in Milan from CellMapper.com', and
derive the traffic intensity of each base station during the two
months on an hourly basis. The traffic data pre-processing
steps will be detailed in the evaluation section.

Based on the historical traffic data, we observe that the
traffic pattern of a base station is highly dynamic under dif-
ferent temporal contexts. For example, Fig.3 shows the traffic
intensity of a base station located in a business district in Milan
from 11/04/2013 to 11/10/2013. We can see clear weekday-
weekend patterns as a result of regular working schedules.
We also observe significant traffic peaks during the working
hours of weekdays. Based upon the observations, we propose
to characterize the traffic pattern of each base station using a
temporal-context-based profile. More specifically, given a base
station s; and its historical traffic intensity vector measured in
hours, we aggregate and average the traffic from Monday to

Ihttps://www.cellmapper.net/map
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Fig. 3. An illustrative example of the traffic pattern of a base station location
in a business district (Wagner district, Milan) from 11/04/2013 to 11/10/2013.

Friday in each week to build a typical weekday traffic profile,
ie.,

fw(si) = [M],M2,...,M24] (1)

Similarly, we build a typical weekend traffic profile by
aggregating and averaging the traffic in Saturday and Sunday
of each week, i.e.,

£u(si) = vi,va,...,va4] 2

Finally, we concatenate the weekday and weekend traffic
profiles to obtain the temporal-context-based traffic profile:

£(si) = [fi0(s:), £asi)] 3)

B. Base Station Complementarity Calculation

We consider the following two aspects to design an effective
complementarity metric of base stations.

1) Peak Distribution: To reduce deployment cost, the peak
traffic intensity of a set of base stations clustered to the same
BBU pool should be scattered in different temporal contexts,
so that the capacity of the BBU pool can be shared among
these base stations. To this end, we design an entropy-based
metric to measure the peak distribution of a set of base
station. Specifically, given a set of clustered base stations
S={s1,...,sn} , we first find the peak hours in their traffic
profiles, respectively, i.e.,

T(si)={ti, tiys-- - ti, ), 1<in <24 (G))
Then, we calculate the Shannon entropy [11] of the peak hours
of the set of clustered base stations T (S) = UT (s;) as follows:

K
H(S) ==Y pilogpi &)
=1

where K =Y i, corresponds to the total number of peaks, and
Pr 1s the probability of observing the corresponding peak hour
in the set 7(S). A larger entropy measurement of a base station
cluster indicates that the base stations are more complementary
to each other w.r.t. traffic patterns.



2) Capacity Utilization: In order to increase the utilization
rate of a BBU pool, the aggregated base station traffic in
different temporal contexts should be close to the capacity
of the pool. To this end, we design the following metric to
quantitatively measure the capacity utilization of a BBU pool:

 mean f(S)

ues) = max f(S) ©

where f(S) = YN, f(s;) denotes the aggregated traffic profile
of the base stations cluster. We assume the pool capacity to
be the maximum of the aggregated traffic intensity, and derive
the average capacity utilization rate correspondingly.

Finally, we calculate the complementarity of the base station
cluster as follows:

M(S)=U(S)+H(S) =

mean f(S) &
- 1 7
max £(S) k;pk ogpr  (7)

IV. BASE STATION CLUSTERING

In this phase, our objective is to cluster base stations with
complementary traffic patterns to a set of BBU pools. One
intuitive method is to exhaustively search for base stations with
complementary traffic patterns and iteratively cluster them.
However, since there are tremendous number of clustering
schemes, such a method can be computationally impossible as
the network scale increases. Moreover, the distance between
base stations and BBU pools should also be constrained within
a range, since the propagation delay between base stations
and BBU pools may exceed quality-of-service requirements
as distance increases, and the cost of laying optical fiber for
communication between base stations and BBU pools should
be limited within budget.

Therefore, we propose a graph-model-based, distance-
constrained algorithm to effectively cluster neighboring base
stations to BBU pools. First, we construct a weighted graph
model to represent the relationship of base stations, exploiting
graph links to express the base station distance constraints, and
link weights to characterize the base station complementarity
measurement. Then, we propose a community-detection-based
algorithm to iteratively cluster base stations into clusters, so
that the complementarity of base stations is maximal within
each cluster and minimal across different clusters.

A. Graph-Model Based Complementarity Modeling

We model the complementarity among base stations as an
undirected, weighted graph G = (V,E), where V = {s1,...,sn5}
denotes the set of NV base stations, and E denotes the set of
links between two base stations.

We then define the adjacency matrix A of graph G, which is
an N x N symmetric matrix with entries a; ; = 1 when there is
a link between base station s; and base station s}, and a; ; =0
otherwise (i,j =1,...,N). We use the geographic distance of
two base stations to determine whether they are adjacent or
not. More specifically, for base station s; and base station s,
we define:

1, if dist(s;,sj;) <7
4= 0, otherwise

®)

where dist(s;,s;) is the geographic distance between the two
base stations, and T is a neighborhood threshold controlling
the geographic distance of neighboring base stations.

Given two neighboring base stations, we use their comple-
mentarity measurement to determine their link weight, i.e.,

w(si,sj) = M({si,s;}) *ai ©)

We consider the case of normalized symmetric positive
weights (w(s;,s;) € [0,1]) with no loops (w(s;,s;) = 0). We
note that w(s;,s;) = 0 when there is no link between s; and s;
(a;,j = 0).

B. Distance-Constrained Base Station Clustering

In this step, we need to cluster base stations to BBU pools,
so that each cluster consists of neighboring base stations with
complementary traffic patterns. As the link weight of graph
G encodes the complementary of base stations, we need to
cluster base stations with high link weights together, which
can be identified as a community detection problem [12].

Problem: Given graph G = (V,E), we first define a set of
clusters P = {Cy,...,Cx}, where

Uvger =V and Nygep =0 (10)

Then, given a base station v, we define the connectivity of v
to a cluster C as the sum of link weights between v and the
base stations in the cluster C:

COn(V, C) = ZV’GC Wy v/ (11)
Finally, we define the adjacent clusters C(v) of v as
C(v) = {C|con(v,C) > 0,C € P} (12)

With the above definition, our objective is to find an optimal
set of clusters P, so that the internal connectivity within a
cluster is higher than the inter-cluster connectivity, i.e.,

v € C, con(v,Cy) > max{con(v,C;),C; € P}  (13)

We also need to bound the distance span of a cluster within
the neighborhood threshold, i.e.,

Yo' € Gy, dist(vV) <t (14)

Solution: Based on [13], [14], we propose a Distance-
Constrained Complementarity-Aware (DCCA) algorithm to
cluster base stations. The basic idea of DCCA is iteratively
assigning base stations to the adjacent clusters, where the gain
of assigning base station v to cluster C is iteratively evaluated
by a value function as follows:

value(v,C) = con(v,C) X log( (15)

T
max{dist(v,v')} )
The DCCA algorithm greedily assigns the base stations to
the adjacent cluster with highest value? until none of the base
stations are moved among clusters [14]. As the convergence of
such a greedy approach is difficult to prove, we set a maximum
iteration number max_iter to ensure the algorithm will stop.

21f two clusters yield the same value, we randomly choose one.



TABLE I
DATASET DESCRIPTION

Dataset  Item Value
Network Traffic  # Grids 10,000
Grid size 55,225 m?
Average traffic intensity ~ 0.19
Base Station  # Base stations 182
Average coverage 885,724 m?

Data collection period 11/01/2013-12/31/2013

Algorithm: The DCCA algorithm is initialized by assigning
each base station in the graph to a unique cluster label. In
each iteration, we randomly populate a list of base station
L, and traverse the list to update the cluster label of each
base station. The label update process is as follows. First, we
remove the base station from its current cluster, and find the
set of adjacent clusters to the current base station. Then, we
compute the value function for all the adjacent clusters, and
assign the base station to the cluster with the highest value.
We mark the the base station as moved among clusters if
its new cluster label is different from the old one. After we
finish iterating over the base station list, we decide whether
to perform another iteration or finish the algorithm based on
the following stop criteria: (1) the user specified maximum
iteration number max_iter is reached, or (2) none of the base
station are moved among clusters.

V. EVALUATION

In this section, based on a real-world mobile network traffic
dataset, we evaluate the performance of our framework by
assessing its ability to reduce deployment cost and energy con-
sumption. We first describe the experiment settings, and then
present the evaluation results. We also conduct a parameter
study to help select optimal parameters for our framework.

A. Experiment Settings

Datasets: The Telecom Italia Big Data Challenge dataset
[10] contains two months of network traffic data from
11/01/2013 to 12/31/2013 in Milan, Italy. The area of Milan
is partitioned into 100 x 100 grids with grid size of about
235 x 235 square meters. In each grid, a normalized traffic
intensity is recorded on an hourly basis. We also compile
a base station dataset from CellMapper.com, which consists
of the locations and coverage areas of active base stations
observed in the two months. The details of these two datasets
are listed in TABLE L.

Evaluation Plan: Based on the above-mentioned datasets,
we map the grids to the coverage areas of base stations, and
aggregate the traffic data to the corresponding base stations.
We then select 8 weeks of data from 11/04/2013 to 12/29/2013
to generate 182 traffic profile for the base stations. Finally, we
construct a graph of 182 base stations and their corresponding
link structure based on the complementarity metrics, and
perform the DCCA algorithm to cluster base stations to a set
of BBU pools.
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Fig. 4. Base station clustering results in Milan using the proposed method.
Each colored area denotes a cluster and its corresponding coverage range.

Evaluation Metrics: We focus on the reduction of deploy-
ment cost and capacity utilization to evaluate the effectiveness
of the proposed framework. For the deployment cost metric,
we compare the overall deployment capacity of all the clusters
(i.e., BBU pools) with the overall deployment capacity of all
the base stations without clustering, and derive the following
metric to measure the percentage of deployment cost reduction
rate of a proposed clustering scheme:

Y., max £(S;)
Y, max f(s;)
where P = {C;} is the clustering scheme. For the capacity
utilization metric, we compare the mean capacity utilization

of all the clusters with the mean capacity utilization of all the
base stations, i.e.,

Cost(P) = (16)

. meanc, U (Ck)

Util(P) = (17)

meany, U (s;)
Baseline Method: We compare our method with the
distance-constrained (DC) baseline method, which simply
clusters neighboring base stations to clusters without consid-
ering their traffic complementarity. The graph modeling and
clustering algorithm are similar to the propose method.

B. Evaluation Results

Fig.4 shows the base station clustering results in Milan using
the optimal parameter settings (which will be discussed later).
In general, we obtain 12 clusters to setup BBU pools. We can
see that many clusters (e.g., Cluster A, B, and C) are composed
of an urban part and a suburban part, indicating that the
traffic patterns in these areas are potentially complementary.
We also note that cluster D is concentrated in a relatively
small area, indicating the diverse traffic patterns within this
area. The reason is probably due to the hybrid functions
of this area, which consists of a large residential district
(the Washington neighborhood), a national theater (Teatro
Nazionale CheBanca), and a transportation hub consisting of
6 metro stations (e.g., Wagner Station).



TABLE II
EVALUATION RESULTS

Cost Utilization
Proposed (DCCA) 87.12%  109.45%
Baseline (DC) 96.68%  102.95%
120 120
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Fig. 5. Parameter studies. (a) Maximum iteration number parameter impact.
(b) Distance threshold parameter impact.
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TABLE II shows the evaluation results of the proposed
method and the baseline method under the optimal parameter
settings. We can see that both methods reduce the deployment
cost and increase the capacity utilization of the network,
indicating the advantages of the Cloud-RAN architecture. The
proposed DCCA method saves 12.88% of deployment cost
while the baseline DC method only achieves a 3.32% cost
reduction, indicating the importance of involving base station
traffic complementarity property in the clustering process.
Similarly, the increase rate of capacity utilization in the two
methods are 9.45% and 2.95%, respectively. The relatively low
value of the baseline method implies that simply clustering
neighboring base stations to BBU pools may result in sub-
optimal solutions w.r.t. energy consumption.

C. Parameter Impact Study

We also study the impacts of the two important parameters,
i.e., the maximum iteration number max_iter and the distance
threshold 7. In Fig.5a, we can see that the deployment cost and
capacity utilization ratio converge to stable values respectively
as the max_iter values increases. In Fig.5b, we observe that
as the cluster size increases, the deployment cost continues
to decrease and the capacity utilization continues to increase.
However, due to propagation delay and optical fiber costs, a
very large cluster is not realistic in deployment. Based on the
above study, we finally choose max_iter = 12 and T = 3km.

VI. RELATED WORK
A. Cloud Radio Access Network

Cloud Radio Access Network (Cloud-RAN) is a novel
mobile network architecture to address the challenges faced by
operator while trying to meet the fast-growing traffic demand.
The details of the Cloud-RAN concept can be found [6]. The
basic idea of Cloud-RAN is to pool the data processing units
from multiple base stations into centralized BBU pools, so that

the pool capacity can be shared among these base stations.
Since fewer BBUs are needed and higher BBU utilization
can be achieved, the Cloud-RAN architecture can reduce
the network deployment cost and energy consumption [5].
Therefore, Cloud-RAN is seen as a typical realization of the
fifth generation (5G) network in the year 2020 horizon [15].

One of the key problem in the Cloud-RAN architecture is
to design optimal base station clustering scheme to build BBU
pools. An optimal scheme should facilitate the pool capacity
utilization, reduce the BBU deployment cost, and also prevent
the propagation delay between base stations and BBU pools
[5]. To this end, Bhaumik et al. [7] proposed CloudIQ, a
framework for partitioning a set of base stations into groups
and process the signals in a shared data center. However,
the one data center topology may result in potential delay
between distant base stations and the data center [5]. Lee
et al. [16] proposed a base station cooperation scheme with
dynamic clustering in Cloud-RAN, however the objective of
the cooperation is to derive the signal-to-interference for base
station evaluation. One of the very relevant ideas to our work is
illustrated in [1], which explores various means of integrating
big data analytics with network optimization in 5G, especially
by exploiting historical data to optimize resource allocation in
centralized baseband units in Cloud-RAN.

B. Mobile Data Analytics

With the emergence of ubiquitous sensing and computing
diagrams [17], a massive number of mobile data can now be
collected either by mobile crowdsensing paradigms [18]-[20]
or from operators’ infrastructures. These heterogeneous mobile
big data are being extensively analyzed in the literature to
retrieve interesting and informative information [21]-[24]. For
example, Barlacchi et al. [10] released a large-scale Call Detail
Records (CDR) dataset from Telecom Italia, containing two-
months of calls, SMSs and network traffic data from the city
of Milan and the province of Trentino, Italy. Based on the
dataset, Furno et al. [25] proposed a data analytics framework
to builds profiles of the city-wide traffic demand, and identifies
unusual situations in network usages, aiming at facilitating the
design and implementation of cellular cognitive networking.
Cici et al. [26] studied the decomposition of cell phone activity
series, and connect the decomposed series to socio-economic
activities such as regular working patterns and opportunistic
social events [27].

VII. CONCLUSION

In this work, we identify two of the most important goals in
Cloud-RAN optimization, i.e., cost-effectiveness and energy-
efficiency, and propose a base station clustering framework to
achieve these goals. More specially, we first exploit the histor-
ical data of base stations to generate the corresponding traffic
profiles, and propose an entropy-based metric to characterize
the complementary of base stations. Upon the basis, we build a
graph model to represent the complementarity of base stations,
and propose a distance-constrained clustering algorithm to
find optimal base station clustering scheme. Evaluation results



using two months of real-world data show that our framework
effectively reduces 12.88% of deployment cost and 9.45% of
energy consumption compared with traditional architectures.
Our work can facilitate green and soft Cloud-RAN architecture
in the next generation 5G network era.

In the future, we plan to improve this work in the following
three directions. First, we plan to involve more contextual
factors in building the base station traffic profiles. Second,
we will explore the methods for dynamic capacity adjustment
in BBU pools. Third, we plan to evaluate our framework in
broader areas, such as Trentino Italy, and to study the traffic
complementarity property under different contextual settings.
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