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We present the extension of variational Monte Carlo (VMC) to the calculation of electronic
excitation energies and oscillator strengths using time-dependent linear-response theory. By
exploiting the analogy existing between the linear method for wave-function optimisation and
the generalised eigenvalue equation of linear-response theory, we formulate the equations of
linear-response VMC (LR-VMC). This LR-VMC approach involves the first- and second-order
derivatives of the wave function with respect to the parameters. We perform first tests of the
LR-VMC method within the Tamm-Dancoff approximation using single-determinant Jastrow-
Slater wave functions with different Slater basis sets on some singlet and triplet excitations of the
beryllium atom. Comparison with reference experimental data and with configuration-interaction-
singles (CIS) results shows that LR-VMC generally outperforms CIS for excitation energies and is
thus a promising approach for calculating electronic excited-state properties of atoms and molecules.

Keywords: excitation energies - linear method - Tamm-Dancoff approximation - oscillator strengths
- beryllium

I. INTRODUCTION

Quantum Monte Carlo (QMC) methods [1–3] are a
powerful and reliable alternative to wave-function meth-
ods and density-functional theory (DFT) for quantum
chemistry calculations, thanks to their favorable scal-
ing with system size and to their suitability for high-
performance computing infrastructures, such as petas-
cale architectures. Variational Monte Carlo (VMC) [4]
combines Monte Carlo integration for computing the ex-
pectation value of the electronic Hamiltonian Ĥ and the
variational principle for the ground state. VMC scales
as N3−4 (where N is the number of electrons), similar to
DFT scaling. The main drawback of any QMC approach
is the very large prefactor in the scaling, preventing the
systematic use of QMC in quantum chemistry calcula-
tions of medium- and large-size systems. This drawback
is alleviated by performing massive parallel calculations
on supercomputers [5, 6].

A fundamental role is played by the trial wave function,
often written as a product of a determinantal part and
a bosonic Jastrow factor [7] which depends on interpar-
ticle distances (with electron-nucleus, electron-electron,
higher many-body terms,. . . ). For example, one can use
for the determinantal part a linear combination of con-
figuration state functions (CSF, i.e. spatial- and spin-
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symmetry adapted linear combinations of Slater deter-
minants of one-electron molecular orbitals) [8], or the
antisymmetrised geminal power (AGP) ansatz (a single
determinant of geminal pairing functions [9–11]). Fur-
thermore, the optimisation of the wave function is cru-
cial for an accurate description of both static and dy-
namic electron correlation. The linear method [12–14]
allows one to efficiently perform such an optimisation for
all the parameters of the wave function, using only the
first-order derivatives of the wave function with respect
to the parameters.

The calculation of excited-state properties of molecules
(from prototypical models to complex organic dyes and
biochromophores) still represents an open challenge for
theoreticians. The two commonly used approaches are
time-dependent density-functional theory, which is not
computationally demanding but sometimes lacks accu-
racy, and wave-function methods, which are more accu-
rate but very computationally demanding. QMC meth-
ods were originally formulated for ground state problems
and their extension to excited states is not straightfor-
ward. Relatively few applications of QMC for electronic
excitations are present in literature, see e.g. the singlet
and triplet energies for the benchmark CH2 diradical [15],
the low-lying singlet excited states of biochromophores
[16–19], the n → π∗ transition in acrolein [20, 21], and
the recent extension of the AGP ansatz for calculating
excited-state energies [22–26].

The basic idea of the present work stems from the
formal analogy existing between the linear method for
wave function optimisation and time-dependent linear-
response theory [27]. Indeed, the generalised eigen-
value equations of linear-response theory in the Tamm-
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Dancoff approximation (TDA) and of the linear method
at the ground-state minimum coincide. Starting from
this observation, we derive and implement the linear-
response equations in VMC (LR-VMC). This repre-
sents an extension of the well-established time-dependent
linear-response Hartree-Fock or multiconfiguration self-
consistent field methods, taking into account both static
and dynamic electron correlations.

The paper is organised as follows. In Section II, VMC
and linear-response theory are briefly reviewed, and the
LR-VMC method is presented and discussed in detail.
Results of LR-VMC calculations in the TDA of some
singlet and triplet excitations of the beryllium atom are
reported and discussed in Section III. Conclusions and
perspectives for future work are given in Section IV.

II. THEORY

We first briefly review the form of the wave function
that we use and the linear optimisation method. We then
derive the time-dependent linear-response equations and
show how to implement them in VMC.

A. Wave-function parametrisation

We consider Jastrow-Slater-type wave functions
parametrised as [12, 14]

|Ψ(p)〉 = Ĵ(α)eκ̂(κ)
NCSF∑
I=1

cI |CI〉 , (1)

where Ĵ(α) is a Jastrow factor operator depending on a
set of parameters α, eκ̂(κ) is the orbital rotation opera-
tor depending on a set of orbital rotation parameters κ,
and |CI〉 are CSFs with associated coefficients c = {cI}.
The CSFs are linear combinations of Slater determinants
of orbitals |φi〉, which are expanded in a basis of Slater
functions {|χµ〉}

|φi〉 =

Nbasis∑
µ=1

λiµ |χµ〉 . (2)

The Slater functions are centered on the nuclei and their
spatial representation is

〈r |χµ〉 = Nn(ζ) rn−1e−ζr Y`,m(θ, φ), (3)

each function being characterized by a set of quan-
tum numbers n, `,m and an exponent ζ, Y`,m(θ, φ) are
real spherical harmonics, and N(ζ) a normalisation fac-
tor. The full set of parameters to consider is thus
p = {α, c,κ, ζ} where ζ stands for the set of exponents.

B. Linear optimisation method

The linear optimisation method[12–14] allows one to
find the optimal parameters p using an iterative proce-
dure. At each iteration, we consider the intermediate-
normalised wave function

|Ψ(p)〉 =
|Ψ(p)〉
〈Ψ0|Ψ(p)〉

(4)

where |Ψ0〉 = |Ψ(p0)〉 is the wave function for the param-
eters p0 at the current iteration (taken as normalised to
unity, i.e. 〈Ψ0|Ψ0〉 = 1), and we expand it to linear order
in the parameter variations ∆p = p− p0,

|Ψlin(p)〉 = |Ψ0〉+
∑
i

∆pi |Ψi〉 , (5)

where |Ψi〉 are the first-order derivatives of the wave func-
tion |Ψ(p)〉

|Ψi〉 =

(
∂ |Ψ(p)〉
∂pi

)
p=p0

= |Ψi〉 − 〈Ψ0|Ψi〉 |Ψ0〉 , (6)

where |Ψi〉 = (∂ |Ψ(p)〉 /∂pi)p=p0 are the first-order

derivatives of the original wave function |Ψ(p)〉. Using
the intermediate-normalised wave function has the ad-
vantage that the derivatives in Eq. (6) are orthogonal to
|Ψ0〉, i.e. 〈Ψ0|Ψi〉 = 0. We then determine the parameter
variations ∆p by minimising the corresponding energy

Elin = min
p

〈Ψlin(p)| Ĥ |Ψlin(p)〉
〈Ψlin(p)|Ψlin(p)〉

, (7)

we update the parameters as p0 → p0 + ∆p, and iterate
until convergence.

The minimisation in Eq. (7) leads to the following gen-
eralized eigenvalue equation to be solved at each iteration(

E0 gT
R/2

gL/2 H

)(
1

∆p

)
= Elin

(
1 0T

0 S

)(
1

∆p

)
, (8)

where E0 = 〈Ψ0| Ĥ |Ψ0〉 is the current energy, gL,i =

2 〈Ψi| Ĥ |Ψ0〉 and gR,j = 2 〈Ψ0| Ĥ |Ψj〉 are the left and
right energy gradients (identical except on a finite Monte

Carlo sample), and Hij = 〈Ψi| Ĥ |Ψj〉 is the Hamilto-
nian matrix in the basis of the first-order wave function
derivatives, and Sij = 〈Ψi|Ψj〉 is the overlap matrix in

this basis. Note that in Eq. (8), 0 and 0T stand for the
zero column vector and the zero row vector, respectively.

C. Linear-response theory

Starting from the previously optimised wave function,
we introduce now a time-dependent perturbation (e.g,
interaction with an electric field) in the Hamiltonian

Ĥ(t) = Ĥ + γV̂ (t), (9)



3

where γ is a coupling constant. The approximate ground-
state wave function |Ψ(p(t))〉 evolves in time through its
parameters p(t), which become now generally complex.
As before, it is convenient to introduce the intermediate-
normalised wave function

|Ψ(p(t))〉 =
|Ψ(p(t))〉
〈Ψ0|Ψ(p(t))〉

, (10)

where |Ψ0〉 = |Ψ(p0)〉 is the wave function for the initial
parameters p0, again taken as normalised to unity (i.e.,
〈Ψ0|Ψ0〉 = 1). At each time, the time-dependent parame-
ters p(t) can be found from the Dirac-Frenkel variational
principle (see, e.g., Ref.27)

∂

∂p∗i

〈Ψ(p(t))|Ĥ(t)− i ∂∂t |Ψ(p(t))〉
〈Ψ(p(t))|Ψ(p(t))〉

= 0. (11)

To apply Eq. (11) in linear order in γ, we start by ex-
panding the wave function |Ψ(p(t))〉 around p0 to second
order in the parameter variations ∆p(t) = p(t)− p0

|Ψ(p(t))〉 = |Ψ0〉+
∑
i

∆pi(t) |Ψi〉

+
1

2

∑
i,j

∆pi(t)∆pj(t) |Ψij〉+ · · · , (12)

where |Ψi〉 are the first-order derivatives of |Ψ(p)〉 al-
ready introduced in Eq. (6), and |Ψij〉 are the second-

order derivatives of the wave function |Ψ(p)〉

|Ψij〉 =

(
∂2 |Ψ(p)〉
∂pi∂pj

)
p=p0

= |Ψij〉 − 〈Ψ0|Ψj〉 |Ψi〉 − 〈Ψ0|Ψi〉 |Ψj〉
+ (2〈Ψ0|Ψi〉〈Ψ0|Ψj〉 − 〈Ψ0|Ψij〉) |Ψ0〉 , (13)

where |Ψij〉 =
(
∂2 |Ψ(p)〉 /∂pi∂pj

)
p=p0 are the second-

order derivatives of the original wave function |Ψ(p)〉.
Again, the advantage of using the intermediate-
normalised wave function is that the second-order deriva-
tives are orthogonal to |Ψ0〉, i.e. 〈Ψ0|Ψij〉 = 0. Plug-
ging Eq. (12) into Eq. (11) and keeping only first-order
terms in ∆p(t), in the limit of a vanishing perturbation
(γ → 0), we find

A ∆p(t) + B ∆p(t)∗ = iS
∂∆p(t)

∂t
, (14)

with the matrices Aij = 〈Ψi| Ĥ −E0 |Ψj〉 = Hij −E0Sij
where E0 is the ground-state energy, Bij = 〈Ψij | Ĥ |Ψ0〉,
and Sij = 〈Ψi|Ψj〉. If we look for free-oscillation solu-
tions of the form

∆p(t) = Xe−iωnt + Y∗eiωnt, (15)

where ωn corresponds to an excitation (or de-excitation)
energy, we arrive at the linear-response equation in

the form of a non-Hermitian generalized eigenvalue
equation[27](

A B
B∗ A∗

)(
Xn

Yn

)
= ωn

(
S 0
0 −S∗

)(
Xn

Yn

)
. (16)

The Tamm-Dancoff approximation (TDA) corresponds
to neglecting the contributions from B, leading to

AXn = ωnSXn. (17)

At the ground-state minimum, i.e. when the energy
gradient is zero, the generalised eigenvalue equation of
the linear method in Eq. (8) is equivalent to the TDA
equation (17) which directly gives excitation energies
ωn = Elin − E0.

Finally, the oscillator strength fn for the transition
from the ground state to the excited state n (with excita-
tion energy ωn) can be easily extracted from the response
vector (Xn,Yn)

fn =
2

3
ωn

∑
α=x,y,z

[
(Xn + Yn)Tµα

]2
, (18)

where µα is the vector containing the transition dipole
moments for the component α (x, y, or z) between the
ground-state wave function |Ψ0〉 and the wave-function
derivative |Ψi〉

µαi = 〈Ψi|µ̂α|Ψ0〉, (19)

and µ̂α is the electronic dipole operator.

D. Realisation in VMC

We now give the expressions for performing linear-
response calculations in VMC, referred to as LR-VMC,
i.e. for calculating the expressions in Section II C in a
VMC run. For convenience, we also recall the expres-
sions necessary for the linear optimisation method.

The current ground-state energy is calculated as

E0 = 〈EL(R)〉 , (20)

where EL(R) = [HΨ0(R)]/Ψ0(R) is the local energy and
〈...〉 stands for an average on a finite Monte Carlo sample
of points Rk distributed according to Ψ0(R)2, with R =
(r1, r2, ..., rN ) designating the electron coordinates. The
left and right energy gradients are evaluated as

gL,i = 2

〈
Ψi(R)

Ψ0(R)

HΨ0(R)

Ψ0(R)

〉
= 2

[〈
Ψi(R)

Ψ0(R)
EL(R)

〉
−
〈

Ψi(R)

Ψ0(R)

〉
〈EL(R)〉

]
,

(21)
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and

gR,j = 2

〈
Ψ0(R)

Ψ0(R)

HΨj(R)

Ψ0(R)

〉
= 2

[〈
Ψj(R)

Ψ0(R)
EL(R)

〉
−
〈

Ψj(R)

Ψ0(R)

〉
〈EL(R)〉

+ 〈EL,j(R)〉

]
, (22)

where EL,j(R) is the first-order derivative of the local
energy

EL,j(R) =
HΨj(R)

Ψ0(R)
− Ψj(R)

Ψ0(R)
EL(R). (23)

Note that, in the limit of an infinite sample, 〈EL,j(R)〉 =
0 due to the hermiticity of the Hamiltonian, and therefore
the left and right gradients become identical.

The elements of the overlap matrix S are calculated as

Sij =

〈
Ψi(R)

Ψ0(R)

Ψj(R)

Ψ0(R)

〉
=

〈
Ψi(R)

Ψ0(R)

Ψj(R)

Ψ0(R)

〉
−
〈

Ψi(R)

Ψ0(R)

〉〈
Ψj(R)

Ψ0(R)

〉
, (24)

and the elements of the matrix H are evaluated as

Hij =

〈
Ψi(R)

Ψ0(R)

HΨj(R)

Ψ0(R)

〉
=

〈
Ψi(R)

Ψ0(R)

Ψj(R)

Ψ0(R)
EL(R)

〉
−
〈

Ψi(R)

Ψ0(R)

〉〈
Ψj(R)

Ψ0(R)
EL(R)

〉
−
〈

Ψj(R)

Ψ0(R)

〉〈
Ψi(R)

Ψ0(R)
EL(R)

〉
+

〈
Ψi(R)

Ψ0(R)
EL,j(R)

〉
−
〈

Ψi(R)

Ψ0(R)

〉
〈EL,j(R)〉+

〈
Ψi(R)

Ψ0(R)

〉〈
Ψj(R)

Ψ0(R)

〉
〈EL(R)〉 . (25)

The elements of the matrix A are then given by

Aij = Hij − E0Sij

=

〈
Ψi(R)

Ψ0(R)

Ψj(R)

Ψ0(R)
EL(R)

〉
−
〈

Ψi(R)

Ψ0(R)

〉〈
Ψj(R)

Ψ0(R)
EL(R)

〉
−
〈

Ψj(R)

Ψ0(R)

〉〈
Ψi(R)

Ψ0(R)
EL(R)

〉
+

〈
Ψi(R)

Ψ0(R)
EL,j(R)

〉
−
〈

Ψi(R)

Ψ0(R)

〉
〈EL,j(R)〉

−
〈

Ψi(R)

Ψ0(R)

Ψj(R)

Ψ0(R)

〉
〈EL(R)〉+ 2

〈
Ψi(R)

Ψ0(R)

〉〈
Ψj(R)

Ψ0(R)

〉
〈EL(R)〉 , (26)

and the elements of the matrix B are

Bij =

〈
Ψij(R)

Ψ0(R)

HΨ0(R)

Ψ0(R)

〉
=

〈
Ψij(R)

Ψ0(R)
EL(R)

〉
−
〈

Ψij(R)

Ψ0(R)

〉
〈EL(R)〉

−
〈

Ψi(R)

Ψ0(R)

〉〈
Ψj(R)

Ψ0(R)
EL(R)

〉
−
〈

Ψj(R)

Ψ0(R)

〉〈
Ψi(R)

Ψ0(R)
EL(R)

〉
+ 2

〈
Ψi(R)

Ψ0(R)

〉〈
Ψj(R)

Ψ0(R)

〉
〈EL(R)〉 . (27)

Finally, the expression of the transition dipole moment
needed for calculating oscillator strengths is

µαi =

〈
Ψi(R)

Ψ0(R)
µα(R)

〉
=

〈
Ψi(R)

Ψ0(R)
µα(R)

〉
−
〈

Ψi(R)

Ψ0(R)

〉
〈µα(R)〉 , (28)

where µα(R) = −
∑N
k=1 rk,α is the α-component of elec-

tronic dipole moment.

In the linear optimisation method, using the non-
symmetric estimator of the matrix H in Eq. (25) instead
of a symmetrised one has the advantage of leading to the
strong zero-variance principle of Nightingale and Melik-
Alaverdian [28]: in the limit where the current wave
function |Ψ0〉 and its first-order derivatives |Ψi〉 form a
complete basis for expanding an exact eigenstate of the
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Hamiltonian, the parameter variations ∆p and the as-
sociated energy Elin are found from Eq. (8) with zero
variance provided that the Monte Carlo sample size is
larger than the number of parameters (see discussion in
Ref. 14). Unfortunately, this strong zero-variance prin-
ciple does not apply when solving the linear-response
equation (16). However, in the limit where |Ψ0〉 is an
exact eigenstate of the Hamiltonian, the left energy gra-
dient gL,i in Eq. (21) vanishes with zero variance, and
thus the TDA linear equation (17) becomes equivalent
to Eq. (8) for calculating excited-state energies even on
a finite Monte Carlo sample. Therefore, in this case, the
strong zero-variance principle applies to the calculation
of the response vectors Xn and excitation energies ωn.

E. Computational details

The calculations shown here were performed using the
QMC program CHAMP [29], starting from Hartree-Fock
calculations done with GAMESS [30]. Two Slater ba-
sis sets of different sizes were used, namely the VB1
and VB2 basis set from Ref. 31. The VB1 basis set
has five s and one p Slater functions ([5s, 1p]), whereas
the VB2 basis set has six s, two p, and one d Slater
functions ([6s, 2p, 1d]). We use a flexible Jastrow fac-
tor consisting of the exponential of the sum of electron-
nucleus, electron-electron and electron-electron-nucleus
terms, written as systematic polynomial and Padé ex-
pansions [32–34], with 4 electron-nucleus parameters,
5 electron-electron parameters and 15 electron-electron-
nucleus parameters. For each VMC calculation, 104

blocks were employed with 104 steps each. One block
was used for equilibration of the VMC distribution.

III. RESULTS

The beryllium atom was used as a first test of the
LR-VMC approach, since accurate experimental refer-
ence values for the excitation energies are available from
Ref. 35. An accurate description of the Be ground
state requires a multiconfigurational wave function for
accounting for the near-degeneracy between the 2s and
2p orbitals. However, for these preliminary tests, we
present only results of calculations using a Jastrow-Slater
single-determinant wave function for the ground state
using TDA linear-response theory. This choice is mo-
tivated by the fact that a direct comparison between the
LR-VMC/TDA method and configuration-interaction-
singles (CIS) calculations represents a simple but essen-
tial first step for validating our approach. We expect
LR-VMC/TDA to outperform CIS because the Jastrow
factor in LR-VMC should account for a substantial part
of electronic correlation, and we find this to be the case
for most of the excitations studied. The results are pre-

Table I: 2s3s (1S) excitation energies (in Hartree) for the
beryllium atom calculated using CIS and LR-VMC/TDA in-
cluding the response of the Jastrow parameters (j) and of
the Jastrow and orbital parameters (j+o). The experimental
value is taken from Ref. 35.

CIS LR-VMC/TDA(j) LR-VMC/TDA(j+o) Exp.

VB1 0.378 0.2888(1) 0.2672(1) 0.249

VB2 0.228 0.2880(1) 0.2378(2) 0.249

Table II: 2s4s (1S) excitation energies (in Hartree) for the
beryllium atom calculated using CIS and LR-VMC/TDA in-
cluding the response of the Jastrow parameters (j) and of
the Jastrow and orbital parameters (j+o). The experimental
value is taken from Ref. 35.

CIS LR-VMC/TDA(j) LR-VMC/TDA(j+o) Exp.

VB1 2.639 0.6106(1) 0.5578(2) 0.297

VB2 0.470 0.6104(1) 0.321(3) 0.297

sented both as errors with respect to the experimental
values in Figure 1 and as detailed excitation energies in
the subsequent tables.

In Table I results for the singlet 2s3s (1S) state are
reported. The effect of the Slater basis set adopted is
dramatic at the CIS level, as a reasonable agreement
with the reference experimental value of 0.249 Hartree
is found only when the VB2 basis set is used. LR-
VMC/TDA values are labelled as follow: (j) designates
the response of the Jastrow parameters only, while (j+o)
is the response of both the Jastrow and orbital param-
eters. The response of the Jastrow factor substantially
improves upon the CIS VB1 estimate, going from 0.378
to 0.2888(1) Hartree. The excitation energy improves
further when the response of the orbital parameters are
included in the LR-VMC/TDA calculation, yielding an
error of around 0.02 Hartree with respect to the experi-
mental value. Increasing the size of the Slater basis set,
i.e. moving from VB1 to VB2, we obtain a fair agree-
ment with the experimental data when both the Jastrow
and the orbital parameters are included in the response
(0.2378(2) Hartree).

The singlet 2s4s (1S) excitation is higher in energy,
and CIS fails to recover the experimental result of 0.297
Hartree, for both basis sets, as shown in Table II. As al-
ready mentioned for the 2s3s excitation, the response
of the Jastrow factor plays an important role for the
VB1 basis set, reducing the error in the excitation en-
ergy by around 2 Hartree. Including the orbital param-
eters in the response lowers the excitation energy fur-
ther to 0.5578(2), but this is still a large overestimate
of the experimental value. With the VB2 basis, the LR-
VMC/TDA(j+o) calculation outperforms CIS, but a sub-
stantial error (>0.02 Hartree) still remains for this high-
lying excitation. The failure of VB1 and, to a lesser ex-
tent, of VB2 is likely due to the poor description of the



6

-0.05
0.00
0.05
0.10
0.15
0.20
0.25
0.30
0.35
0.40
0.45
0.50
0.55
0.60
0.65
0.70

VB1 VB2 VB1 VB2
2s3s(1S) 2s4s(1S)

E
rr

or
 o

f e
xc

ita
tio

n 
en

er
gy

 (
H

ar
tr

ee
)

CIS
LR-VMC/TDA(j)
LR-VMC/TDA(j+o)

-0.04

-0.03

-0.02

-0.01

0.00

0.01

0.02

0.03

0.04

0.05

VB1 VB2 VB1 VB2
2s2p(1P) 2s2p(3P)

E
rr

or
 o

f e
xc

ita
tio

n 
en

er
gy

 (
H

ar
tr

ee
)

CIS
LR-VMC/TDA(o)

Figure 1: Errors with respect to experimental values [35] of CIS (grey), and LR-VMC/TDA excitation energies including the
response of the Jastrow parameters (j) (blue) and the response of the Jastrow and orbitals parameters (j+o) (red) for S excited
states (left), and the response of the orbital parameters (o) (green) for P excited states (right). These results are also detailed
in the tables.

Table III: 2s2p (1P ) excitation energies (in Hartree) for the
beryllium atom calculated using CIS and LR-VMC/TDA in-
cluding the response of the orbital parameters (o). The ex-
perimental value is taken from Ref. 35.

CIS LR-VMC/TDA(o) Exp.

VB1 0.220 0.2358(1) 0.194

VB2 0.189 0.1873(2) 0.194

4s orbital.

The extension of our proposed approach to P excita-
tions is straightforward, with a relaxation of the spatial
symmetry constraints in the orbital rotation parameters.
Note that the Jastrow factor employed in this work only
depends on interparticle distances, i.e. it has spherical
symmetry, and therefore excited states with P symmetry
cannot be represented with the wave-function derivatives
with respect to the Jastrow parameters. For this reason,
only results concerning the response of the orbitals (o)
are reported for the P excitations. In Table III, results
for the singlet 2s2p (1P ) state are given, which is the
lowest energy excitation in the beryllium atom. The CIS
calculations with the VB1 and VB2 basis sets show a
fair agreement with the reference value of 0.194 Hartree,
the CIS calculation using the VB2 basis set being only
5 mHartree below it. The LR-VMC/TDA(o) estimate is
also close to the experimental reference when the VB2
basis set is employed (0.1873(2) Hartree), while for the
VB1 basis set LR-VMC/TDA(o) greatly overestimates
the excitation energy.

Similarly, our implementation of linear response al-
lows us to easily compute triplet excitations by consid-
ering triplet orbital rotation parameters. The CIS cal-
culation underestimates the correct excitation energy by

Table IV: 2s2p (3P ) excitation energies (in Hartree) for the
beryllium atom calculated using CIS and LR-VMC/TDA in-
cluding the response of the orbital parameters (o). The ex-
perimental value is taken from Ref. 35.

CIS LR-VMC/TDA(o) Exp.

VB1 0.068 0.1064(1) 0.100

VB2 0.063 0.0929(2) 0.100

Table V: Oscillator strength f corresponding to the 2s2p (1P )
excitation of the beryllium atom computed using CIS and LR-
VMC/TDA including the response of the orbital parameters
(o). The experimental value is taken from Ref. 36.

CIS LR-VMC/TDA(o) Exp.

VB1 0.648 0.435(1) 1.34(3)

VB2 0.669 0.57(2) 1.34(3)

more than 30 mHartree, while the LR-VMC/TDA(o) ex-
citation energies are very close to the reference values of
0.100 Hartree. The basis set effects are small is this case.
Finally, we computed the oscillator strength f (Table V)
corresponding to the singlet 2s2p (1P ) excitation, which
is non zero according to selection rules. The LR-VMC(o)
oscillator strengths seem more sensitive to the basis set
compared to the CIS oscillator strengths. Moreover, the
inclusion of the Jastrow factor does not improve the os-
cillator strength.
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IV. CONCLUSIONS AND PERSPECTIVES

In this work we have presented a formulation of time-
dependent linear-response theory in the VMC frame-
work using a Jastrow-Slater wave function. Compared to
state-specific or state-average excited-state QMC meth-
ods, the advantage of this LR-VMC approach is that, af-
ter optimizing only one ground-state wave function, one
can easily calculate several excitation energies of different
spatial or spin symmetry. Compared to similar linear-
response quantum chemistry methods, the presence of
the Jastrow factor in LR-VMC allows one to explicitly
treat a part of dynamical correlation. A disadvantage of
the method is that the excitation energies are much more
sensitive than the ground-state energy to the quality of
the optimized ground-state wave function. This is true
in other linear-response quantum-chemistry methods as
well, but is a bigger drawback in a method that employs
stochastic optimization.

Using a Jastrow-Slater single-determinant wave func-

tion and the TDA, the LR-VMC method was shown to
be more accurate that CIS for most of the excitation
energies of the beryllium atom that were studied. The
LR-VMC approach thus seems a promising method for
calculating electronic excitation energies. In the near fu-
ture, a systematic study on a set of molecules will be an
essential step to further validate the proposed method-
ology, together with calculations using the full response
equation beyond the TDA. Also, we will explore using
multideterminant wave functions, larger basis sets, and
including the wave-function derivatives with respect to
the exponents of the Slater functions.
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