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The dynamics of helicity in homogeneous skew-isotropic freely decaying turbulence is
investigated, at very high Reynolds numbers, thanks to a classical eddy-damped quasi-
normal Markovian (EDQNM) closure. In agreement with previous direct numerical simu-
lations, a k−5/3 inertial range is obtained for both the kinetic energy and helical spectra.
In the early stage of the decay, when kinetic energy, initially only present at large scales,
cascades towards small scales, it is found that helicity slightly slows down the non-linear
transfers. Then, when the turbulence is fully developed, theoretical decay exponents are
derived and assessed numerically for helicity. Furthermore, it is found that the presence
of helicity does not modify the decay rate of the kinetic energy with respect to purely
isotropic turbulence, except in Batchelor turbulence where the kinetic energy decays
slightly more rapidly. In this case, non-local expansions are used to show analytically
that the permanence of large eddies hypothesis is verified for the helical spectrum, un-
like the kinetic energy one. Moreover, the 4/3rd law for the two-point helical structure
function is assessed numerically at very large Reynolds numbers. Afterwards, the evolu-
tion equation of the helicity dissipation rate is investigated analytically, which provides
significant simplifications and leads notably to the definition of a helical derivative skew-
ness and of a helical Taylor scale, which is numerically very close to the classical Taylor
longitudinal scale at large Reynolds numbers. Finally, when both a mean scalar gradient
and helicity are combined, the quadrature spectrum, linked to the antisymmetric part of
the scalar flux, appears and scales in k−7/3 and then in k−5/3 in the inertial range.
Vol. 821; pages 539-581.
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1. Introduction

Helicity is a quantity of interest since it is an invariant of the three-dimensional inviscid
Navier-Stokes equations (Moffatt 1969), and has been consequently at the center of a
great amount of theoretical (Brissaud et al. 1973; Moffatt & Tsinober 1992; Chkhetiani
1996; Gomez et al. 2000; Ditlevsen & Giuliani 2001) and numerical (André & Lesieur
1977; Polifke & Shtilman 1989; Borue & Orszag 1997; Chen et al. 2003; Baerenzung
et al. 2008; Biferale et al. 2012) studies. Nevertheless, despite all the attention helicity
has received for more than forty years, it remains a quantity quite complex, whose effects
on the transfers of energy are not completely understood, as stated in Chen et al. (2003):
indeed, helicity KH =< uiωi > /2, unlike kinetic energy K(t) =< uiui > /2, is not
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positive definite since it is the scalar product of the fluctuating velocity ui and vorticity
ωi = ǫijk∂juk, so that it can be either positive or negative, where < . > is an ensemble
average.

It is worth noting that inviscid three-dimensional turbulence has two invariants, kinetic
energy and helicity, and two-dimensional turbulence has two as well, kinetic energy and
enstrophy < ωiωi >. Therefore, some authors have evoked the possibility of interpreting
helicity as a 3D analogous of enstrophy, despite the fact that the latter quantity is
positive definite. Since enstrophy is responsible for an inverse cascade of energy in 2D
(Kraichnan 1967), they concluded that helicity could also be associated to inverse cascade
mechanisms in 3D (Brissaud et al. 1973; Chen et al. 2003).

Consequently, since the pioneering work of Brissaud et al. (1973), the possibility of
inverse energy cascades has been a crucial point of discussion. At this time, two different
scenarios were proposed: joint cascades of helicity and energy towards small scales with
non zero kinetic and helical dissipation rates, respectively ǫ = ν < ∂jui∂jui > and
ǫH = ν < ∂jui∂jωi >, with ν the kinematic viscosity, so that the kinetic and helical
spectra scale in E(k) ∼ ǫ2/3k−5/3 and H(k) ∼ ǫHǫ−1/3k−5/3 by dimensional analysis (the
assumptions behind the second scaling are discussed later); or a pure helicity cascade,
with no energy transfer ǫ = 0, so that the kinetic and helical spectra scale in E(k) ∼
ǫ
2/3
H k−7/3 and H(k) ∼ ǫ

2/3
H k−4/3 in the forward cascade. In such a configuration, there

would be an inverse cascade of kinetic energy in k−5/3. This second scenario was proven
to be impossible in decaying turbulence by André & Lesieur (1977) in the EDQNM
framework. However, for instance in rotating turbulence with a non-vanishing helical
forcing, and in other very specific configurations, an inverse energy cascade is observed
(Biferale et al. 2013). Furthermore, one must point out that recently, it was shown that
the Navier-Stokes equations intrinsically contain this inverse energy cascade mechanism
(Biferale et al. 2012): indeed, when considering specific triadic interactions between only
positive (or negative) helical modes, there is an inverse kinetic energy cascade E(k) ∼
ǫ2/3k−5/3. Still, as soon as there is a single helical mode of opposite sign, this inverse
cascade vanishes.

The review of the different studies involving helicity shows that, except the early work
of André & Lesieur (1977), there were no further attempts to investigate the dynamics
of the helical spectrum H(k, t) at very large Reynolds numbers Reλ > 103, where Reλ =
K
√
20/(3νǫ). In addition, it appears that the long-time decay of helicity has not been

addressed. Yet, the knowledge of the decay rate of integrated quantities, such as the
inviscid invariants (kinetic energy and helicity), is crucial for the understanding and
prediction of the turbulence dynamics in asymptotic regimes at large Reynolds numbers.
Therefore, it could be interesting to have clear decay exponents for helicity: indeed, to
our knowledge, there were no numerical papers providing decay exponents for helicity,
except the theoretical one by Levshin & Chkhetiani (2013), which is not fully satisfactory
as explained later on.

The high Reynolds numbers regime is of theoretical interest since the classical scalings,
phenomenology and mechanisms of turbulence were developed in this framework, where
small scales should always be isotropic and forget the effects of large scales (Kolmogorov
1941). On a practical point of view, large Reynolds numbers can be found notably in
atmospheric turbulent flows, where helicity is naturally present and may be, as an ex-
ample, the reason for the persistence of tornadoes (Moffatt & Tsinober 1992; Lesieur
2008). A complete description of atmospheric flows at high Reynolds numbers being un-
reachable for now by direct numerical simulations (DNS), models are required. This is
not straightforward since atmospheric flows contain several complex mechanisms such as
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stratification, shear, rotation, and temperature gradient. The complete understanding of
these different processes at stake requires the fine comprehension of each mechanism on its
own at large Reynolds numbers. In this view, an anisotropic eddy-damped quasi normal
Markovian (EDQNM) modelling was recently developed to describe at large Reynolds
numbers the dynamics of a passive scalar field in a homogeneous anisotropic sheared
turbulence with a mean temperature gradient (Briard et al. 2016). While unstable strat-
ification (Burlot et al. 2015; Briard et al. 2017) and rotation (Cambon et al. 2013) were
addressed separately with analogous anisotropic EDQNM approaches, the case of helical
turbulence at high Reynolds numbers still requires some attention, especially to answer
two fundamental questions: is the decay of helicity in a freely decaying turbulence pre-
dictable? How does helicity modify the decay of kinetic energy and the energy transfers?
Since mean helicity can be created in homogeneous turbulence, from non-zero spectral
helical modes (André & Lesieur 1977), the knowledge of its decay law is of great interest
when it is initially present in the flow. This is why the authors choose to focus on a
classical configuration at large Reynolds numbers, namely homogeneous helical turbu-
lence (HHT), which is basically a skew-isotropic turbulence, i.e. homogeneous isotropic
turbulence (HIT) without mirror symmetry. In particular, there are no magnetic fields,
so that only the kinetic helicity is considered: this is precisely the framework addressed
by André & Lesieur (1977), and unlike recent studies, no distinctions will be made here
between positive and negative helical modes (Biferale et al. 2013).

In such a fundamental configuration, several crucial theoretical results in physical space
were derived regarding two-point third-order correlations: notably, Chkhetiani (1996)
proposed an inertial scaling for the triple velocity correlation S(r) =< uLu2u

′
3 >, where

r is the distance between two points located in x and x′ = x+ r, the prime ′ referring
to quantities expressed in x′, and the ()L to the component along r: S(r) appears in
the evolution equation of the antisymmetric part of < uiu

′
j >, and is found to scale as,

neglecting the temporal term and viscous dissipation, S(r) ∼ ǫHr2/30. In addition, mixed
velocity-velocity-vorticity structure functions were analyzed in Gomez et al. (2000), and
it was found that < δuLδuiδωi > − < δωLδuiδui > /2 = −4rǫH/3 in the inertial range,
where δui = u′

i − ui. These two laws are equivalent, and result from the conservation of
helicity in inviscid flows. This is why the second law is analogous to the ”four-thirds”
laws for the kinetic energy and scalar variance, which both come from conservation laws
as well (Antonia et al. 1997). Whereas an equivalent of the first law for S(r) was assessed
in DNS (Kurien et al. 2004b), it is not the case for the helical ”four-thirds” law. Both
these fundamental relations will be assessed numerically here at high Reynolds numbers,
and statistics of helical flows will be further investigated, notably the evolution equation
of the helical dissipation rate ǫH and derivatives of skew-isotropic tensors.

Finally, a new configuration is addressed, combining both a mean scalar gradient and
helicity. This case, which could be of interest for the modelling of atmospheric turbu-
lence where these two features may be present, permits to illustrate the subtle effects
of helicity on the scalar flux, or two-point spectral velocity-scalar correlation. Indeed,
unlike a passive scalar field where there is no explicit contributions of helicity in its evo-
lution equations, the coupling of helicity and mean scalar gradient creates the quadrature
spectrum Q(k, t), linked to the imaginary antisymmetric part of the scalar flux.

The paper is structured as follows: in section 2, the various spectral evolutions equa-
tions, along with the EDQNM modelling, are presented for homogeneous helical turbu-
lence. Initial conditions are discussed and it will be considered that helicity is initially
present at large scales only, so that the kinetic and helical spectra E(k, t) and H(k, t)
develop conjointly. The first theoretical results are presented in section 3: the assump-
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tions behind the k−5/3 scaling of E and H in the inertial range are discussed in part
3.1, along with the possibility of inverse and direct cascades. Then, in part 3.2, non-local
expansions are used to predict the large scales dynamics of the kinetic energy and helical
spectra. The decay of kinetic energy and helicity is then investigated both numerically
and theoretically in section 4. Furthermore, structure functions in HHT are addressed in
section 5: existing theoretical results are recalled and assessed numerically. The evolution
equation of the helicity dissipation rate ǫH is studied and simplified, and some develop-
ments on skew-isotropic tensors are provided, which notably leads to the definitions of a
helical Taylor scale and helical derivative skewness. In section 6, the evolution equation
of the quadrature spectrum is derived, and its inertial scaling is analyzed. Finally, the
results are recalled and discussed in the concluding section 7.

2. Evolution equations and EDQNM modelling

In this part, the evolution equations of the kinetic and helical spectra are derived
starting from the spectral counterpart of the Navier-Stokes equation. In addition, the
EDQNM approach is presented in order to compute explicitly the non-linear transfers
involved in these equations. The final resulting EDQNM evolution equations of the kinetic
and helical spectra (2.31) and (2.32) given here were derived in Pouquet et al. (1976);
André & Lesieur (1977), but the main features of the derivation are nevertheless recalled.
For consistency purposes, the same formalism as in Mons et al. (2016); Briard et al.

(2016) is used, so that the present approach could be easily extended to more complex
configurations in future works, such as helical shear flows for instance. In the following,
helicity is injected initially at large scales along with kinetic energy so that both decay
freely: there is no forcing mechanism nor rotation, and no magnetic field. Historically,
this is the framework investigated by Brissaud et al. (1973) and it will be shown that
even in such a classical case, there are still some important open questions which are
tackled in sections 3, 4 and 5, such as the prediction of the helicity decay and its impact
on kinetic energy.

2.1. Craya equation

In this part, the evolution equation of the spectral two-point velocity correlation is ob-
tained in the framework of HHT, without any mean-velocity gradient nor rotation. The
evolution equation of the spectral fluctuating velocity ûi reads

(
∂

∂t
+ νk2

)
ûi(k, t) + ikj ûiuj(k) = −ikip̂(k), (2.1)

which is the spectral counterpart of the Navier-Stokes equation, with ν the kinematic

viscosity, ki the wavenumber, p̂ the spectral fluctuating pressure, i2 = −1, and (̂) denotes
the Fourier transform. The pressure term is cancelled by projecting this equation onto
the plane perpendicular to ûi, by virtue of the incompressibility condition kiûi = 0. From
this point, one needs to define the two-point second-order velocity correlation R̂ij , also
called the spectral Reynolds tensor

R̂ij(k, t)δ(k − p) =

(
1

2π

)3

δ(k − p)

∫
e−ik.rRij(r)d

3r =< û∗
i (p, t)ûj(k, t) >, (2.2)

where k and p are wave vectors, ()∗ is the complex conjugate, < . > an ensemble average,
and Rij is the second-order velocity correlation in physical space

Rij(r) =< ui(x)uj(x+ r) >, (2.3)
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where r is the separation vector, and with in particular Rii(0) =< uiui >= 2K. The
evolution equation of R̂ij , the so-called Craya equation, is

(
∂

∂t
+ 2νk2

)
R̂ij(k, t) = TNL

ij (k, t), (2.4)

where TNL
ij is the total non-linear and conservative transfer. This non-linear transfer can

be expressed as a function of Sijn, the three-point third-order velocity correlation

Sijn(k,p, t)δ(k + p+ q) = i < ûi(q, t)ûj(k, t)ûn(p, t) >, (2.5)

so that (Sagaut & Cambon 2008)

TNL
ij (k, t) = Pimn(k)

∫
Snmj(k,p, t)d

3p+ Pjmn(k)

∫
S∗
nmi(k,p, t)d

3p, (2.6)

where Pimn is the Kraichnan operator defined as

Pimn(k) =
1

2

(
kmPin(k) + knPim(k)

)
, with Pij(k) = δij − αiαj , (2.7)

with αi = ki/k. In the following section 2.2, the spectral Reynolds tensor is expressed
as a function of the energy and helical densities E and H, in a procedure similar to
what was done recently in the framework of homogeneous anisotropic turbulence (Mons
et al. 2016). Then, in section 2.3, the non-linear transfer TNL

ij is derived with a classical
EDQNM procedure.

2.2. E −H decomposition

In HHT, the spectral Reynolds tensor is not symmetric and real anymore, since it contains
an imaginary antisymmetric part (Cambon & Jacquin 1989) reflecting the breakdown of
mirror symmetry. Consequently, R̂ij can be written

R̂ij(k, t) = E(k, t)Pij + iǫijkαk
H(k, t)

k
, (2.8)

where ǫijk is the Levi-Civita permutation tensor. Similar decompositions were used by
Borue & Orszag (1997); Chen et al. (2003). From this rather simple decomposition, one
could extend to more complex cases containing polarization and directional anisotropies,
such as helical-shear driven turbulence, whose equations are given in Cambon et al.

(2013). The energy and helical densities E and H are linked to the spectral Reynolds
tensor R̂ij through

E(k, t) = 1

2
R̂ii(k, t), H(k, t) = −1

2
ikmǫijmR̂ij(k, t). (2.9)

The helical density H can also be defined in terms of the spectral fluctuating velocity
and vorticity

H(k, t)δ(k − p) =

(
1

2π

)3

δ(k − p)

∫
e−ik.rRH

ii (r)d
3r =

1

2
< û∗

i (p, t)ω̂i(k, t) >, (2.10)

where RH
ij is the second-order velocity-vorticity correlation in physical space

RH
ij (r) =< ui(x)ωj(x

′) >, (2.11)

with in particular RH
ii (0) = 2KH . The evolution equations of the kinetic energy and

helical densities are then(
∂

∂t
+ 2νk2

)
E(k, t) = TE(k, t),

(
∂

∂t
+ 2νk2

)
H(k, t) = TH(k, t). (2.12)



6 A. Briard and T. Gomez

Afterwards, to express TE and TH as a function of TNL
ij , one has to use the tensor

τij(k, t) = kn

∫
Sijn(k,p, t)d

3p, (2.13)

where Sijn is the three-point third-order velocity correlation defined in (2.5). This pro-
cedure, used recently in Mons et al. (2016); Briard et al. (2016) in the framework of
homogeneous anisotropic turbulence, permits to express the total non-linear transfer as

TNL
ij (k, t) = Pin(k)τnj(k, t) + Pjn(k)τ

∗
ni(k, t). (2.14)

One obtains

TE(k, t) =
1

2
TNL
ii (k, t) =

1

2

(
τii(k, t) + τ∗ii(k, t)

)
, (2.15)

TH(k, t) = −1

2
iǫijlkl

(
τij(k, t) + τ∗ji(k, t)

)
, (2.16)

and the latter expression was notably derived in Cambon & Jacquin (1989).
The kinetic energy and helical spectra E(k, t) and H(k, t) are defined as the spherical

average of the kinetic energy and helical densities

E(k, t) =

∫

Sk

E(k, t)d2k, H(k, t) =

∫

Sk

H(k, t)d2k, (2.17)

and in HHT, the spherical integration amounts to a multiplication by 4πk2. The evolution
equations of both E and H are given in section 2.3 along with the spherical-average of
TE and TH. The kinetic energy and its dissipation rate are computed as

K(t) =
< uiui >

2
=

∫ ∞

0

E(k, t)dk, ǫ(t) = ν <
∂ui

∂xj

∂ui

∂xj
>= 2ν

∫ ∞

0

k2E(k, t)dk.

(2.18)
Similarly, one has for the helicity and its dissipation rate

KH(t) =
< uiωi >

2
=

∫ ∞

0

H(k, t)dk, ǫH(t) = ν <
∂ui

∂xj

∂ωi

∂xj
>= 2ν

∫ ∞

0

k2H(k, t)dk.

(2.19)
The kinetic energy and helicity verify in freely decaying turbulence

dK

dt
= −ǫ,

dKH

dt
= −ǫH , (2.20)

and the decay of these quantities for high Reynolds numbers is investigated in section 4.
We define as well the kinetic and helical integral scales

L(t) =
3π

4K

∫ ∞

0

k−1E(k, t)dk, LH(t) =
3π

4KH

∫ ∞

0

k−1H(k, t)dk. (2.21)

Finally, from the definition of the vorticity itself, it can be shown that the helical spectrum
H(k, t) must satisfy the following condition (Kraichnan 1973)

|H(k, t)| 6 kE(k, t), (2.22)

with KH =< uiωi > /2. At this level, one must point out that unlike kinetic energy which
is always positive, helicity is not positive-definite and consequently can be negative, so
that H(k, t) can take negative values.

2.3. EDQNM closure and non-linear transfers

The eddy-damped quasi-normal Markovian (EDQNM) approximation is now used to
close the non-linear transfers TE and TH that call into play the triple correlation Sijn.
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The complete procedure is detailed and discussed in numerous references (Pouquet et al.
1976; André & Lesieur 1977; Lesieur 2008; Sagaut & Cambon 2008) and has been used
recently in homogeneous isotropic turbulence (Briard et al. 2015). Consequently, only a
brief description is presented here.
The EDQNM model was firstly introduced by Orszag (1970); Leith (1971); Orszag

(1977) for hydrodynamic turbulence. This approximation is used here to solve the equa-
tions of dynamics in order to obtain the time evolution of the kinetic and helical spectra.
The EDQNM model is a quasi-normal closure: this approximation assumes that the
fourth-order moments of the velocity field appearing in the evolution equation of the
third-order correlation are related to the second-order moments as if the field was Gaus-
sian. The realizability of the model is then enforced by adding an eddy-damping term

ηED(k, t) = A

√∫ k

0

p2E(p, t)dp (2.23)

that reflects departure from Gaussianity, where the Kolmogorov constant CE ≃ 1.30 with
A = 0.355. The Markovianization leads to define the relaxation time of the third-order
correlations in the EDQNM model as

θkpq =
1− e−µkpqt

µkpq
where µkpq = ν(k2+p2+q2)+ηED(k, t)+ηED(p, t)+ηED(q, t).

(2.24)
When it comes to the study of helicity, an additional assumption is made, as in André
& Lesieur (1977): the characteristic time of the third-order correlations θkpq is chosen
to be the same for the kinetic and helical fields. It is shown in section 3.1 that such an
hypothesis is consistent with joint cascades for the kinetic and helical spectra, and can
be a posteriori justified with physical arguments. Beyond these physical justifications, it
seems consistent to choose θkpq for both the kinetic and helical fields since the closure
comes from the same evolution equation, which is the one of the third-order correlation
defined in (2.5).
Thanks to the EDQNM approximation, one can compute explicitly the spherical-

average of the non-linear kinetic and helical transfers, as done in André & Lesieur (1977),
which yields

SNL
E (k, t) =

∫

Sk

TE(k, t)d
2k = S(iso)(k, t) + S(hel)(k, t), (2.25)

SNL
H (k, t) =

∫

Sk

TH(k, t)d2k = S
(dir)
H (k, t) + S

(inv)
H (k, t), (2.26)

with in detail

S(iso)(k, t) = 16π2

∫

∆k

θkpqk
2p2q(xy + z3)E ′′(E ′ − E)dpdq, (2.27)

S(hel)(k, t) = −16π2

∫

∆k

θkpqk
2pz(x+ yz)H′′(H′ −H)dpdq, (2.28)

S
(dir)
H (k, t) = 16π2

∫

∆k

θkpqk
2p2q(xy + z3)E ′′(H′ −H)dpdq (2.29)

S
(inv)
H (k, t) = −16π2

∫

∆k

θkpqk
2pz(x+ yz)H′′(p2E ′ − k2E)dpdq, (2.30)

with ∆k the domain where k, p and q are the lengths of the sides of the triangle formed
by the triad k + p + q = 0, and where x, y and z are the cosines of the angles formed
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by p and q, q and k, and k and p respectively. For the sake of clarity E = E(k, t)/4πk2,
E ′ = E(p, t)/4πp2, E ′′ = E(q, t)/4πq2, and H = H(k, t)/4πk2, H′ = H(p, t)/4πp2, and

H′′ = H(q, t)/4πq2. All these four non-linear transfers S(iso), S(hel), S
(dir)
H , and S

(inv)
H

are conservative (with zero integral over the whole wavenumber space) and have been
obtained previously (André & Lesieur 1977). Here is some additional information: S(iso)

is the classical kinetic energy non-linear transfer appearing in HIT. Moreover, it is clear
from (2.25) that helicity directly impacts the non-linear transfers of E(k, t) through a

purely helical transfer S(hel). One can further remark that S
(dir)
H has a form very similar

to the isotropic non-linear transfer of a passive scalar field (Briard et al. 2016). In addition
to the original work of André & Lesieur (1977), it will be shown numerically in section

3.1 that both S(iso) and S
(dir)
H correspond to direct transfers from large to small scales,

whereas S(hel) and S
(inv)
H are inverse transfers.

Finally, with (2.25) and (2.26), it is now possible to write the Lin evolution equations
for E(k, t) and H(k, t) in homogeneous helical turbulence

(
∂

∂t
+ 2νk2

)
E(k, t) = SNL

E (k, t), (2.31)

(
∂

∂t
+ 2νk2

)
H(k, t) = SNL

H (k, t). (2.32)

In the next part, some details are provided about the numerical resolution of these two
equations.

2.4. Numerical setup and initial conditions

The time evolution of the kinetic and helical spectra E(k, t) and H(k, t) is obtained
by solving two coupled integro-differential equations using a third-order Runge Kutta
scheme with implicit treatment of viscous terms. The wavenumber space is discretized
using a logarithmic mesh ki+1 = rki for i = 1, . . . , n, where n is the total number of
modes and r = 101/f , f = 17 being the number of points per decade. This mesh spans
from kmin = 10−6kL to kmax = 10kη, where kL = 1/L is the integral wavenumber and
kη = (ǫ/ν3)1/4 is the Kolmogorov wavenumber (the possibility of a different viscous
cutoff wavenumber for the helical spectrum will be discussed as well). If not mentioned
otherwise, the initial Reynolds number based on the Taylor microscale is Reλ(0) ≃
5.104: this allows to investigate the decay of helicity and kinetic energy in regimes that
cannot be reached yet by DNS, but that nevertheless involve typical Reynolds numbers
of atmospheric flows. The characteristic time used for normalization is the eddy turnover
time τ0 = K(0)/ǫ(0).
The choice of initial conditions is important, and for consistency, the same as in André

& Lesieur (1977) are used

E(k, t = 0) = kσ exp

(
−σ

2

(
k

kL

)2
)
, H(k, t = 0) = kE(k, t = 0), (2.33)

with σ the large scales spectral exponent of the kinetic energy spectrum: E(k < kL) ∼ kσ.
Consequently, the helical infrared slope is σH = σ + 1, and satisfies (2.22). It can be
checked numerically that if one chooses E(k, 0) = H(k, 0), this violates the previous
condition at large scales. Moreover, with the choice (2.33), both spectra evolve conjointly,
and helicity affects the filling of the small scales during the cascade of kinetic energy: this
is illustrated in figure 1 as well, where the filling of the small scales with kinetic energy is
delayed by helicity in the early times of the decay. This is consistent with the results of
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Figure 1. Early decay of the kinetic energy K(t) with and without the additional presence
of helicity, for Batchelor turbulence (σ = 4). The results are similar for Saffman turbulence
(σ = 2).

André & Lesieur (1977). The authors insist on the fact that the first effect of helicity is
to slightly slow down the filling of small scales with energy, as already noticed by Polifke
& Shtilman (1989); Polifke (1991); Moffatt & Tsinober (1992). Once the spectra E and
H are fully developed, the effects of helicity on the kinetic energy decay are more subtle,
as addressed in sections 3.2 and 4.

3. Kinetic energy and helical spectra E(k, t) and H(k, t)

In this part, the kinetic energy and helical spectra E(k, t) and H(k, t) are investigated
numerically at very large Reynolds numbers thanks to the EDQNM modelling presented
in the previous section. Firstly, basic properties of homogeneous skew-isotropic flows are
recovered and some features regarding inverse transfers are addressed. Then, non-local
interactions are considered in the infrared range of the spectra (for wavenumbers smaller
than the integral one kL) and non-local expansions are made in order to study the large
scales dynamics. These results will be directly used in section 4 to predict the decay of
kinetic energy and helicity in homogeneous turbulence.

3.1. Joint cascades - Direct and inverse non-linear transfers

Since the numerical work of Chen et al. (2003), the joint cascades of the kinetic energy
and helicity in k−5/3 inertial ranges have been well assessed. This section aims at explor-
ing large Reynolds numbers with EDQNM, as done in the pioneering study of André &
Lesieur (1977): more precisely, higher Reynolds numbers are reached, the assumptions
and physics behind the k−5/3 scaling of the kinetic energy and helical spectra are dis-
cussed, and the spectral non-linear transfers of kinetic energy and helicity are investigated
in order to exhibit some inverse transfer mechanisms.
Firstly, the k−5/3 scaling for both E and H is presented in figure 2. The inertial kinetic

and helical ranges both extend from their respective integral wavenumbers kL = 1/L and
kH = 1/LH to the Kolmogorov wavenumber kη. It was argued in Ditlevsen & Giuliani
(2001) that there could be a different cutoff for the helical spectrum, defined as

kHη =

(
ǫ3H
ν3 ǫ2

)1/7

. (3.1)

The opposite was proposed by Chen et al. (2003), i.e. there is only one viscous cutoff
kη. The latter is clearly what is obtained in figure 2: the k−5/3 ranges for E and H both
reach kη. It is worth noting that at moderate Reynolds numbers Reλ ∼ 50, kη is only
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three to four times higher than kHη : consequently, large Reynolds numbers are needed
to assess that the helical inertial range reaches the Kolmogorov wavenumber. Another
interpretation of kHη is proposed in Appendix E. Helicity being a quantity not positive-
definite, a change of sign can be observed in H(k, t): more precisely here, negative values
are obtained at small scales. Such a phenomenon also occurred at large Reynolds numbers
in André & Lesieur (1977), and was observed as well at moderate Reynolds numbers in
DNS (Polifke & Shtilman 1989; Polifke 1991).
The k−5/3 scaling can be deduced from dimensional analysis. The main hypothesis is

that the typical characteristic time in the inertial range τ(k) = (k2ǫ)−1/3 is the same
for both the kinetic and helical spectra. From this assumption results an ”Obukhov-like”
scaling, ǫH(t) = kH(k, t)/τ(k), which directly yields in the inertial range

H(k, t) = CH ǫH ǫ−1/3 k−5/3. (3.2)

The constant CH ≃ 2 is obtained at Reλ = 2.104, whereas the Kolmogorov constant
remains unchanged with respect to HIT simulations. The present value CH ≃ 2 is in
agreement with André & Lesieur (1977). It is worth noting that one could change CE

and CH to fit better with DNS by modifying the eddy-damping constants: this is out of
the scope of the present work, but could be of interest for the development of simplified
models.
One can remark that the scaling (3.2) is very similar to the one of a scalar field being

passively advected by a turbulent flow: indeed, a similar assumption regarding the non-
linear time and the scalar dissipation rate is made in this case (see Lesieur (2008) for
a review). This is one of the reasons why it is often said that helicity cascades linearly

with the kinetic energy (André & Lesieur 1977; Ditlevsen & Giuliani 2001).
The scaling (3.2) can also be obtained by considering that non-linear transfers in the

inertial range are mainly local, i.e. k ∼ p ∼ q in equations (2.27)-(2.30). By dimensional
analysis, and dropping all geometric factors x, y and z, this yields for the kinetic and
helical fluxes Π(k) ∼ θ E(k)2 k4 and ΠH(k) ∼ θ E(k)H(k) k4, where the flux is Π ∼
kSNL

E , and θ = θkkk is the ”local” third-order correlation characteristic time. Using the
hypothesis for the eddy-damping of the helicity field, which is that θkpq is identical for
both E and H , and assuming that at high Reynolds numbers in the inertial range one
has Π ≃ ǫ and ΠH ≃ ǫH , yields

θ ∼ ǫ

k4E2
= τ(k) = (k2ǫ)−1/3. (3.3)
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The latter assumption Π ≃ ǫ is often made at large Reynolds numbers and is well assessed
in figure 2. Finally, using (3.3), one obtains two equivalent relations

ǫ(t)H(k, t) ∼ ǫH(t)E(k, t) and ǫ(t)KH(t) ∼ ǫH(t)K(t). (3.4)

The scaling (3.2) is further recovered by replacing the kinetic energy spectrum by E(k) ∼
ǫ2/3k−5/3. Thus, the joint cascade of kinetic energy and helicity is recovered, and simple
arguments showed that the assumption behind the k−5/3 scaling of H(k, t) is that the
velocity and helical fields have the same characteristic inertial time τ(k) = (k2ǫ)−1/3.
The total non-linear kinetic and helical transfers SNL

E and SNL
H , defined in (2.25) and

(2.26) respectively, are now investigated in figure 3 for Batchelor turbulence (results are
similar for Saffman turbulence). In section 2.3, SNL

E was decomposed into the sum of
a purely kinetic contribution S(iso), identical to the non-linear transfer in HIT, and a
purely helical contribution S(hel). It is found in the EDQNM simulations that the latter
part corresponds in fact to a transfer of energy from small to large scales. This inverse
transfer is nevertheless less intense than the direct one, so that the total kinetic transfer
SNL
E is direct. Moreover, whereas the direct non-linear transfer S(iso) spans on all scales

of the wavenumber space, the inverse transfer S(hel) is very localized at large scales,
which creates a small region where S(iso) is positive at large scales, which is different
from HIT. Nevertheless, the total kinetic energy transfer SNL

E is completely similar to
the one in HIT.
Similarly, SNL

H was decomposed into two contributions S
(dir)
H and S

(inv)
H , which both

span on the entire inertial range. It is revealed in figure 3 that these two parts correspond
to direct and inverse transfers respectively. Once again, the inverse transfer is weaker than
the direct one, so that the total transfer of helicity SNL

H goes from large to small scales.
One can observe that SNL

H is negative around kη, and this explains the negative values
of the helical spectrum H(k, t) at the dissipative scales observed in figure 2: this can be
interpreted as viscous production of helicity, since −2νk3H(k) is positive in this region.
The fact that inverse transfers of kinetic energy and helicity are hidden in the total direct
cascade is in agreement with the recent results of Alexakis (2017).
In this part, it was recovered that in freely decaying HHT, there is a joint cascade of

kinetic energy and helicity towards small scales. The main assumption behind the k−5/3

inertial scaling is that the kinetic and helical fields have the same inertial characteristic
time. Finally, it was shown numerically that despite a direct cascade, some inverse non-
linear transfers occur, less intense than direct ones.

3.2. Non-local interactions - Infrared range dynamics

This section focuses on the permanence of large eddies (PLE) in the presence of helicity,
and on non-local interactions between small and large scales. Consequently, at this point,
one needs to recall the definition of the PLE hypothesis. Both Saffman and Batchelor
turbulence are investigated in this work, whose infrared exponents are respectively σ = 2
and σ = 4, where E(k < kL, t) = Bkσ and H(k < kH , t) = BHkσH . Due to the
initial conditions (2.33) where σH = σ+1, one has for instance in Batchelor turbulence,
E(k < kL, 0) ∼ k4 and H(k < kH , 0) ∼ k5.
The PLE hypothesis is said to be true in decaying turbulence for E(k, t) (for H(k, t))

when both B and σ (BH and σH) remain constant throughout the decay. If a kinetic
energy spectrum with σ 6 4 is imposed initially, then σ remains constant (Lesieur &
Ossia 2000). Regarding B, this prefactor is time dependent for values σ ∈ [σc, 4] where the
critical value is located in the range 3 6 σc 6 4 (Eyink & Thomson 2000; Lesieur & Ossia
2000). Consequently, for Saffman turbulence (σ = 2), the PLE hypothesis is verified,
whereas it is not for Batchelor turbulence (σ = 4): this has been assessed numerically in
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HIT for E(k, t) (Meldi & Sagaut 2013) and for a passive scalar ET (k, t) (Briard et al.

2015).
In what follows, it is proposed to investigate both numerically and theoretically what

are the effects of helicity on the strong backscatter of energy that classically occurs
in Batchelor HIT, and to address the permanence of large eddies at the level of the
helical spectrum. The starting point is figure 4, where the time evolutions of the kinetic
energy and helical spectra E(k, t) andH(k, t) are displayed for Batchelor turbulence. Two
features need to be underlined: firstly, it appears that H experiences no backscatter, so
that the PLE hypothesis is verified in Batchelor HHT for the helical spectrum, unlike
E. Secondly, the backscatter for E is weaker in the presence of helicity than in HIT,
as revealed by the grey curve corresponding to a HIT simulation for E, at the same
time. These two features can be explained analytically, using non-local expansions. These
important results, and especially the fact that the PLE hypothesis is verified for H even
in Batchelor turbulence, are applied in the next section to determine theoretical decay
exponents for K(t) and KH(t).
One can show that the non-local kinetic energy transfer acting in the infrared range,

i.e. coming from small scales, is

T (iso)−(k, t) =
14

15
k4
∫ ∞

kL

θ0pp
E(p)2

p2
dp− 2

15
k2E(k)

∫ ∞

kL

θ0pp

(
5E(p) + p

∂E

∂p

)
dp. (3.5)

Such expressions were derived in Lesieur & Schertzer (1978); Lesieur (2008). The first
rhs term is responsible for the backscatter of energy that breaks the PLE hypothesis.
The second rhs term is classically written under the eddy-viscous form −2νtk

2E, and
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represents a pseudo kinetic energy dissipation, in other words the damping of large scales
by small-scale turbulence. To understand why back transfers of energy on E(k, t) are
decreased with helicity, one has to expand S(hel) when k ≪ p ∼ q, which gives

T (hel)−(k, t) = −14

15
k4
∫ ∞

kL

θ0pp
H(p)2

p4
dp+

2

15
k2H(k)

∫ ∞

kL

θ0pp
p2

(
9H(p)− p

∂H

∂p

)
dp.

(3.6)
The first rhs term modifies the backscatter of energy whereas the second one can also be
interpreted as a pseudo helical dissipation term in −2νHt k2H . Combining this expression
with (3.5) reveals the impact of helicity on the total inverse non-local kinetic transfer in
HHT

T−

E (k, t) =
14

15
k4
∫ ∞

kL

θ0pp
E(p)2

p2

(
1−

(
H(p)

pE(p)

)2 )
dp

︸ ︷︷ ︸
k4 backscatter

−2νtk
2E(k)− 2νHt k2H(k)︸ ︷︷ ︸

damping of large scales

. (3.7)

The second term indicates a change in the effects of viscous damping on large-scales,
difficult to quantify. However, for the first rhs term, one has, using the realizability
condition (2.22), i.e. 0 6 |H |/kE 6 1,

14

15
k4
∫ ∞

kL

θ0pp
E(p)2

p2

(
1−

(
H(p)

pE(p)

)2 )

︸ ︷︷ ︸
61

dp 6
14

15
k4
∫ ∞

kL

θ0pp
E(p)2

p2
dp

︸ ︷︷ ︸
Non-local transfer in HIT

. (3.8)

Consequently, the k4 backscatter of energy of E(k, t) is decreased by helicity, with respect
to HIT.
Then, similar non-local expansions for SNL

H yield

T−

H (k, t) = − 2

15
k2H(k)

∫ ∞

kL

θ0pp

(
5E(p) + p

∂E

∂p

)
dp+

14

15
k4E(k)

∫ ∞

kL

θ0pp
H(p)

p2
dp.

(3.9)
This inverse non-local helical transfer indicates that there is no strong k4 backscatter
that breaks the PLE hypothesis. The first term can be written −2νtk

2H (and was found
also in Baerenzung et al. (2008)), and the second one is quite original since it involves a
pseudo-enstrophy dissipation and could consequently be written −2νωt k

4E.
The method used now to describe analytically the infrared dynamics of the kinetic

energy and helical spectra in HHT - at first order - is inspired from Lesieur (2008),
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Expression Physical meaning Appears in equations ...

15νt =
∫

∞

kL
θ0pp

(

5E(p) + p ∂E
∂p

)

dp Dissipation of K(t) and KH(t) for E(k, t) and H(k, t)

15νH
t =

∫

∞

kL

θ0pp

p2

(

p ∂H
∂p

− 9H(p)
)

dp Dissipation of KH(t) for E(k, t)

15νω
t = −7

∫

∞

kL
θ0pp

H(p)
p2

dp Dissipation of enstrophy for H(k, t)

Table 1. Summary of the different eddy-viscosities νt, ν
H
t , and νω

t , that intervene in the
non-local expansions of the non-linear transfers SNL

E and SNL
H in HHT.

where a similar reasoning is performed for HIT. When the turbulence is fully developed,
both spectra scale in E(k, t) ∼ B(t)kσ and H(k, t) ∼ BH(t)kσH at large scales. In this
infrared range, viscous dissipation is negligible, and inverse non-local transfers T−

E and
T−

H dominate with respect to local ones SNL
E and SNL

H . Thus, the simplified Lin equations
in the infrared range are ∂tE = T−

E and ∂tH = T−

H , which yields

dB

dt
=

14

15
k4−σ

∫ ∞

kL

(...)dp− 2νtk
2B(t)− 2νHt k2+σH−σBH(t) (3.10)

dBH

dt
= − 2

15
k2BH(t)

∫ ∞

kL

(...)dp+
14

15
k4+σ−σHB(t)

∫ ∞

kL

(...)dp. (3.11)

With the present initial conditions (2.33), one has σH = σ + 1, but one could think of
different initial conditions that would result in a more complex infrared dynamics for
E and B: this is the object of section 4.4. For now, one has σH = σ + 1, and in this
case, whatever the infrared slope σ is, the dissipation terms involving the turbulent eddy
viscosities νt, ν

ω
t and νHt are negligible because k ≪ 1, so that

∀σ, dBH

dt
= −2νωt k

3B(t) − 2νtk
2BH(t) ≃ 0. (3.12)

dBH/dt is not rigorously zero, since the non-local expansion is kept at the lowest order
in k/p ≪ 1 (see Appendix A for details) in the infrared range, as done in Lesieur &
Schertzer (1978), but is equal to some subdominant terms for the dynamics of BH , as
assessed by figure 4. This means that whatever the large scales initial conditions σ are,
the PLE hypothesis holds for the helical spectrum H(k, t) when σH = σ + 1.
Regarding E(k, t): with the same reasoning, for σ 6 3, the rhs terms of (3.10) are

negligible, meaning that the PLE hypothesis holds for E(k, t). Whereas for σ = 4, B(t)
truly depends on time since the first rhs term is stronger than the two others −2νtk

2B
and −2νHt k3BH , so that

∀σ 6 3,
dB

dt
≃ 0, (3.13)

σ = 4,
dB

dt
≃ 14

15

∫ ∞

kL

θ0pp
E(p)2

p2

(
1−

(
H(p)

pE(p)

)2 )
dp. (3.14)

The latter result contains the fact that helicity decreases the backscatter of E(k, t) in
Batchelor HHT. The different turbulent spectral viscosities introduced previously are
summarized in Table 1. Details about the non-local expansions are provided in Appendix
A.
In conclusion, it has been shown numerically and analytically in this part, that firstly

the helical spectrum H(k, t) does not experience any strong backscatter that breaks
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the PLE hypothesis, for initial conditions such that σH = σ + 1: in particular, the
PLE holds in Batchelor turbulence for H(k, t). And secondly that helicity reduces the
backscatter of kinetic energy for E(k, t). These theoretical results regarding the infrared
dynamics ofH(k, t) and the impact of helicity on the infrared dynamics of E(k, t) are both
directly applied in the following section which aims at predicting the decay of the kinetic
energy and helicity at large Reynolds numbers: indeed, the derivation of theoretical decay
exponents require an accurate knowledge of the infrared dynamics.

4. Decay exponents for helicity and kinetic energy

The aim of this part is twofold: first, to predict the decay of helicity KH =< uiωi > /2
in a homogeneous skew-isotropic turbulent flow when the helical spectrum is initially
non-zero, according to (2.33). And secondly to quantify the impact of helicity on the
decay of the kinetic energy K(t) =< uiui > /2.

4.1. About the interest of the helicity decay

The prediction of the decay of helicity is made possible by the determination, at large
Reynolds numbers, of theoretical decay exponents: the method, originally applied in
Comte-Bellot & Corrsin (1966) (CBC) for kinetic energy, relies essentially on dimensional
analysis. Similar theoretical results regarding the decay of the kinetic energy have also
been obtained with self-preservation analysis (George 1992).

Recently, EDQNM has been intensively used to determine these theoretical decay
exponents in different configurations, at high Reynolds numbers and after a large number
of turnover times: the decay of kinetic integrated quantities in HIT (Meldi & Sagaut
2013), the extension to the decay of a passive scalar field in HIT (Briard et al. 2015), and
finally the decay of the velocity-scalar correlation in an isotropic turbulence with a mean
scalar gradient (Briard et al. 2016). The study of the helical case is therefore a natural
extension and our predictions are compared to those of Levshin & Chkhetiani (2013) in
Appendix B.

As a starting point, let’s recall that figure 1 revealed that helicity was slowing down the
filling of small scales with energy in the early times of the simulation. This is a transitory
result for the early stage of the decay, in agreement with (Polifke & Shtilman 1989), and
it will be shown hereafter that the impact of helicity on kinetic energy in fully developed
turbulence is more subtle.

4.2. Effect of helicity on the kinetic energy K(t) decay

The effects of helicity on the kinetic energy decay are firstly addressed. Simulations show
that the decay exponent α of the kinetic energy, where K(t) ∼ tα, is not modified by
helicity, except in the case of Batchelor turbulence (σ = 4), because of the reduction of
the non-local inverse transfers analyzed in section 3.2. Hence, one would expect the decay
of K(t) to be rapider in Batchelor HHT than in Batchelor HIT: indeed, the non-local
inverse transfers bring back less energy to the large scales. This is recovered in figure 5.

To analytically take into account the breakdown of the PLE hypothesis, a backscatter
parameter p is usually introduced (Lesieur & Ossia 2000; Meldi & Sagaut 2013; Briard
et al. 2015). In HIT, one has p(σ = 4) = 0.55 and p(σ 6 3) = 0: in particular, in
Batchelor HIT K(t) ∼ t−1.38. Here, in Batchelor HHT, K(t) ∼ t−1.417 is obtained, and a
least-square fit provides a new backscatter parameter pH = 0.14 for HHT. Consequently,
with respect to HIT, only the backscatter parameter changes from p to pH in HHT for
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the decay of kinetic energy

K(t) ∼ tα, α = −2
σ − pH + 1

σ − pH + 3
,

{
pH(σ = 4) = 0.14

pH(σ 6 3) = 0
. (4.1)

These decay exponents for the kinetic energy, whose values are gathered in Table 2, are
assessed in figure 5 in Saffman and Batchelor turbulence: only the case σ = 4 differs from
HIT, where here in HHT the decay of K(t) is slightly rapider. The fact that helicity does
not influence much the energy cascade once the turbulence is fully developed is in good
agreement with conclusions drawn by Polifke (1991); Borue & Orszag (1997).

4.3. The decay of helicity KH(t)

In the previous part, helicity was shown to impact the kinetic energy decay only in
Batchelor turbulence. The emphasis is now put on the decay of KH itself. The method
to predict the decay of helicity is similar to the one of an advected passive scalar, and
even more simple. Indeed, as revealed in figure 4 and explained in section 3.2, the helical
spectrum H(k, t) experiences no strong back transfers, so that the PLE hypothesis is
verified, from σ = 1 to σ = 4. Therefore, there is no need to introduce a backscatter
parameter. It is recalled that given the initial conditions (2.33), the spectral infrared
slope of H(k, t) is σH = σ + 1, where σ is the infrared slope of E(k, t).
Then, it is reasonable to assume that the kinetic and helical integral scales L(t) and

LH(t) decay similarly, so that their algebraic exponents nL and nLH
are equal

L(H)(t) ∼ t
nL(H) , nLH

=
2

σ + 3
≃ nL =

2

σ − pH + 3
. (4.2)

This assumption is completely assessed in figure 5 in both Saffman and Batchelor turbu-
lence (the same kind of hypothesis for the scalar integral scale is made when it comes to
predict the decay of the scalar variance). Then, using either the continuity of H(k, t) in
kH = 1/LH to determine the decay law for ǫH , or dimensional analysis withKH ∼ K/LH ,
or equation (3.4), one gets

KH(t) ∼ tαH , αH = −2
σ + 2

σ + 3
. (4.3)

Theoretical values of this expression for αH , gathered in Table 2, are in excellent agree-



Dynamics of helicity in homogeneous skew-isotropic turbulence 17

CBC assessed by EDQNM σ = 1 σ = 2 σ = 3 σ = 4
α (4.1) -1 -6/5 -4/5 -1.417
αH (4.3) -3/2 -8/5 -5/3 -12/7

Table 2. Theoretical predictions for the kinetic and helical decay exponents α and αH as a
function of the infrared slope σ.

ment with simulations presented in figure 5 for Saffman and Batchelor turbulence: one
can remark that the more σ increases, the more KH decays rapidly, similarly to the
dynamics of K(t). In addition, the decay exponent of ǫH is αH − 1, according to (2.20).
Interestingly, the theoretical decay exponent of KH is equivalent to the one of the scalar
variance in HIT with an infrared slope σT = σ +1 without any backscatter. Finally, our
predictions for KH are compared to those of Levshin & Chkhetiani (2013) in Appendix
B.
In conclusion, the present theoretical predictions for the decay of helicity and kinetic

energy have been assessed numerically. This is the first time such a result is proposed,
with a careful attention to initial conditions and infrared dynamics.

4.4. Robustness of the decay exponents - Altered infrared dynamics

In section 3.2, for kinetic energy and helical spectra scaling in E = Bkσ and H = BHkσH

in fully developed turbulence, the evolution equations of B(t) and BH(t) were derived in
(3.10)-(3.11) in the infrared range, assuming the dominance of inverse non-local transfers
T−

E and T−

H on local ones. For the initial conditions (2.33) where σH = σ+1, it was notably
found that the permanence of large eddies holds for Batchelor turbulence (σ = 4).
Nevertheless, one can wonder if other initial conditions would produce a different in-

frared dynamics, and this could be relevant to test the robustness of the decay exponents
α and αH derived in the previous sections. One can remark that in (3.10), the term
responsible for the backscatter of E is the one where the k() factor vanishes. Thus, it
is legitimate to wonder if in (3.11) one could have 4 + σ − σH = 0 in order to obtain
dtBH 6= 0, and consequently to create backscatter for the helical spectrum. It is worth
noting that 2 + σH − σ = 0 is impossible in (3.10) because of the realizability condition
(2.22).
In order to simplify this study, the maximal helicity condition H = kE is kept, but

the initial kinetic energy spectrum is now changed into a sharply peaked Gaussian one

E(k, t = 0) = C1 exp

(
− 1

(C2)2

[
ln

(
k

kL

)]2)
, (4.4)

with C1 so that one has a unit initial kinetic energy, and C2 = 0.1. After a few turnover
times, the kinetic energy spectrum scales in E ∼ Bk4 in the infrared range (Lesieur &
Ossia 2000). Unlike (2.33), the helical infrared slope σH is now different from σ+1. As a
consequence of (3.11), it follows that σH = 8, and that the helical spectrum experiences
backscatter with

σ = 4,
dBH

dt
=

14

15
B(t)

∫ ∞

kL

θ0pp
H(p)

p2
dp. (4.5)

The theoretical infrared scaling prediction H ∼ k8 is assessed in figure 6, along with the
k4 infrared scaling of E(k, t): in this case, the permanence of large eddies is not verified
anymore for H(k, t) for the initial conditions (4.4). Nevertheless, it is shown in figure 6 as
well that the previous theoretical decay exponents for kinetic energy and helicity are still
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Figure 6. At left, helical spectrum H(k, t) (black) for the initial condition (4.4) (−−) at various
times t/τ0 = 10, 103 and 105; the kinetic energy spectrum E(k, t) is displayed as well (grey) at
t/τ0 = 105. At right, decay exponents α (−) and αH (−−), where ◦ and @ refer to the kinetic
and helical theoretical predictions (4.1) and (4.3) respectively.

valid, which implies that the backscatter of H(k, t) is negligible in the decay. This case
further illustrates the robustness of the theoretical predictions for the decay exponents.
Simulations not presented here show that for Saffman turbulence (E ∼ k2), a k6

infrared scaling for H could be created, but this is out of the maximal helicity framework:
H(k, t = 0) should be Gaussian with E(k, t = 0) ∼ k2 exp(−k2), and the theoretical decay
exponents are still verified.

5. Helicity statistics in physical space

In the introduction, the main theoretical results for high Reynolds numbers HHT in
physical space were recalled: notably two equivalent laws, found independently, which
result from the conservation of helicity in inviscid flows. These two laws are the inertial
scaling for the two-point triple velocity correlation (Chkhetiani 1996)

S(r) =< uLu2u
′
3 >=

r2

30
ǫH , (5.1)

and the inertial scaling for the third-order velocity-velocity-vorticity structure function
(Gomez et al. 2000)

D(uuω)(r) =< δuLδuiδωi > −1

2
< δuiδuiδωL >= −4

3
rǫH , (5.2)

where, as usual, r is the distance between two points located in x and x′ = x + r,
the ()L refers to the component along r, and the prime ′ to quantities expressed in x′

- which should not be misunderstood with the prime of correlations functions, such as
f ′(r), h′(r), which is the derivative with respect to r - and δui = u′

i − ui.
The latter law (5.2) is similar in its derivation to the laws for < δuLδq

2 > and <
δuLδθ

2 > in HIT, which come from the conservation of kinetic energy and scalar variance
respectively in inviscid flows, where δq2 = δuiδui and θ is a fluctuating passive scalar
field (Antonia et al. 1997). These two scalings for HIT are well-known and have been
assessed numerous times, mostly in DNS (Yeung et al. 2002; Watanabe & Gotoh 2004;
Yeung et al. 2005; Bos et al. 2012; Gotoh & Watanabe 2015): a numerical validation
using high Reynolds EDQNM simulations is proposed in Appendix C to underline the
analogy between transport of helicity, kinetic energy and scalar variance.
In this section, formula that allow to compute helical structure functions from spectral
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quantities are derived, similarly to what is usually done for velocity and scalar statistics
in HIT (Monin et al. 2007). This further permits, using the EDQNM model presented
in the previous sections, to assess numerically at high Reynolds numbers the two laws
(5.1) and (5.2). In continuity of these developments in physical space, the evolution
equation of the helical dissipation rate ǫH is addressed: ǫH itself and its production term
are simplified, similarly to what is usually done for the kinetic energy dissipation rate in
HIT. These analytical considerations provide further insights on the derivatives of helical
correlations and skew-isotropic tensors, and leads to the definition of helical Taylor scale
and derivative skewness.

5.1. Inertial scaling for S(r) and D(uuω)(r)

This part aims at recalling the main steps of the derivation of the laws (5.1) and (5.2),
and linking S(r) and D(uuω)(r). The two-point second-order Reynolds tensor reads in
HHT

Rij(r) =< uiu
′
j >= u2

[
f(r)δij +

r

2
f ′(r)

(
δij −

rirj
r2

) ]
+

h(r)

r
ǫijlrl, (5.3)

where f =< uLu
′
L > /u2 is the second-order longitudinal correlation, with u2 = 2K/3,

and h(r) = R23(r). The mixed velocity-vorticity correlation is given by

RH
ij =< uiω

′
j >= ǫjln

∂Rin

∂x′
l

= u2ǫijl

(rl
r
f ′ +

rl
2
f ′′

)
− 2δij

h

r
+

(
h

r
− h′

)(
δij −

rirj
r2

)
.

(5.4)
Also,

RH
ii (r) = −4

h

r
− 2h′, h(r) = −1

3
rKH . (5.5)

The latter expression shows that h(0) = 0. Then, the two-point triple velocity correlation
contains an additional antisymmetric part with respect to HIT, so that (Chkhetiani 1996;
Gomez et al. 2000)

< uiuju
′
k >=

k − rk′

2r3
rirjrk − δij

k

2r
rk +

2k + rk′

4r
(δikrj + δjkri)+S(r)

rl
r2

(ǫiklrj + ǫjklri),

(5.6)
where k(r) =< uLuLu

′
L > and S(r) =< uLu2u

′
3 >: in particular, < u2u3uL

′ >= 0 and
< uLu3u

′
2 >= −S(r), which gives S(0) = 0. Thus, from the evolution equation of Rij(r)

∂Rij

∂t
=

∂

∂rl
(< uiulu

′
j > + < ujulu

′
i >) + 2ν

∂2Rij

∂rl∂rl
, (5.7)

it is possible to compute the evolution equation of the antisymmetric part (Rij−Rji)/2 =
hǫijlrl/r linked to helicity (Chkhetiani 1996; Kurien 2003). The spatial derivative ∂rj
erases the part which contains the third-order longitudinal correlation k(r), so that,
after some algebra and using ∂tKH = −ǫH , one gets

r

3
ǫH =

2

r3
∂

∂r
(r3S) + 2ν

(
− 2

r2
h(r) +

2

r

∂h

∂r
+

∂2h

∂r2

)
. (5.8)

Further neglecting the viscous effects in the inertial range and integrating over r, one
obtains (5.1). Then, it is possible to derive the equation for D(uuω) starting from

∂δui

∂t
+ δuj

∂

∂rj
(δui) = 2ν

∂2

∂rj∂rj
(δui), (5.9)

∂δωi

∂t
+ δuj

∂

∂rj
(δωi) = δωj

∂

∂rj
(δui) + 2ν

∂2

∂rj∂rj
(δui), (5.10)
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where ∂/∂x′

j
= ∂/∂rj = −∂/∂xj

has been used (see Antonia et al. (1997) for further

details on the method). Combining these two equations yields

∂ < δuiδωi >

∂t
+

∂

∂rj

(
< δujδuiδωi > −1

2
< δuiδuiδωj >

)

= 2ν
∂2 < δuiδωi >

∂rj∂rj
− 4 ν <

∂δui

∂rj

∂δωi

∂rj
>

︸ ︷︷ ︸
=ǫH

. (5.11)

Then, < δujδuiδωi >= rj < δuLδuiδωi > /r, and ∂rj (D
(uuω)rj/r) = ∂r(r

2D(uuω))/r2.
Further neglecting the time derivative and the viscous term in the inertial range, inte-
gration over r yields (5.2).
Interestingly, (5.1) and (5.2) can be linked: remarking that < δuiδωi >= 2 < uiωi >

−2 < uiω
′
i >, ∂tR

H
11 = −2ǫH/3, with RH

11 = −2h/r, this provides

1

r2
∂

∂r
(r3RH

11) =< uiω
′
i >= RH

ii ,
1

r

∂

∂r

(
1

r2
∂(r3RH

11)

∂r

)
=

1

r4
∂

∂r

(
r4

∂RH
11

∂r

)
,

and one gets by identification

D(uuω) =< δuLδuiδωi > −1

2
< δuiδuiδωL >= − 8

r3
∂

∂r
(r3S(r)). (5.12)

This important relation is used in the next part, where (5.1) and (5.2) are assessed
numerically at large Reynolds numbers.

5.2. Numerical assessment of S(r) and D(uuω)(r)

Now that the main theoretical results have been recalled, the relations linking spec-
tral quantities to helical structure functions are derived. First, one needs to obtain the
evolution equations of < uiω

′
i > /2: this is done starting from (5.8) since

< uiω
′
i >

2
= − 1

r2
∂(r2h)

∂r
,

rǫH
3

=
∂h

∂t
. (5.13)

One obtains

∂

∂t

(
< uiω

′
i >

2

)
= − 2

r2
∂

∂r

(
1

r

∂

∂r
(r3S)

)
− 2ν

r4
∂

∂r

(
r4

∂2h

∂r2

)
. (5.14)

This equation needs to be identified with the helical Lin equation (2.32), so that

− 2

r2
∂

∂r

(
1

r

∂

∂r
(r3S(r))

)
=

∫ ∞

0

SNL
H (k)

sin(kr)

kr
dk.

After some algebra, one obtains

S(r) =
1

2

∫ ∞

0

SNL
H

k2

[sin(kr)
kr

− 3
sin(kr)

(kr)3
+ 3

cos(kr)

(kr)2

]
dk, (5.15)

D(uuω)(r) = 4

∫ ∞

0

SNL
H

k

[sin(kr)
(kr)2

− cos(kr)

kr

]
dk. (5.16)

Notice that these two formulas are valid for both decaying and forced HHT, and the
latter expression for D(uuω) is very similar to the ones for < δuLδq

2 > and < δuLδθ
2 >

which can be found in Appendix C, which is expected since they all refer to conservation
laws. The relevance of the two previous formula (5.15) and (5.16) is illustrated in figure
7, where the compensated helical third-order correlations −D(uuω)/(rǫH) and S/(r2ǫH)
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Figure 7. Third-order helical correlations D(uuω) and S, for σ = 2 at Reλ = 3.104, along
with the integral and Kolmogorov scales L and η. Top row: at left, −D(uuω)/(rǫH) and

− < δuLδq
2 > /(rǫ); at right, S/(r2ǫH). Bottom: different scalings of D(uuω) and S: the scale

λH is defined later on, in (5.22).

are displayed at high Reynolds numbers. The theoretical values 4/3 and 1/30 are almost
recovered at Reλ = 3.104: the slight difference is comparable to the difference observed
for the −4/5 law in decaying turbulence (Bos et al. 2012). Interestingly, D(uuω) is slightly
closer to 4/3 than < δuLδq

2 > in HHT. Simulations not presented here revealed that at
the same high Reynolds numbers, − < δuLδq

2 > /(ǫr) is as close to 4/3 in HIT and in
HHT. Let’s mention that an equivalent scaling for S (the 2/15 law) was already assessed
in DNS (Kurien et al. 2004b). But so far, to our knowledge, the scaling for D(uuω) was
not verified numerically, at least for freely decaying turbulence: the present simulations
show a very good agreement between EDQNM results and the theoretical expectations.
Finally, it is revealed in figure 7 that S ∼ r4 at small scales, which is straightforward
using (5.12), unlike < δu3

L >, < δuLδq
2 >, < δuLδθ

2 > and D(uuω) which scale in r3

(see figures 12 and 13).

5.3. Evolution equation of ǫH

In this part, the evolution equation of the helicity dissipation rate is addressed. The ob-
jective is to simplify this equation, in a manner similar to what is usually done for the
kinetic energy dissipation rate ǫ in HIT (Pope 2000). More precisely, ǫH itself and its pro-
duction term are greatly simplified, and expressed as simple functions of the derivatives
of the fluctuating velocity and vorticity fields. The final expressions (5.20) and (5.29)
constitute one of the main new theoretical contributions of the present work, and ap-
plications are proposed as well. The calculations being rather lengthy, the intermediate
steps are gathered in Appendix D for the sake of clarity. The evolution equation of ǫH
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reads

∂

∂t

(ǫH
ν

)
+D[u, ω] = −2ν <

∂2ui

∂xj∂xl

∂2ωi

∂xj∂xl
>, (5.17)

D[u, ω] =<
∂ui

∂xj

∂ul

∂xj

∂ωi

∂xl
> + <

∂ui

∂xl

∂ul

∂xj

∂ωi

∂xj
> − <

∂ui

∂xj

∂ui

∂xl

∂ωl

∂xj
>, (5.18)

where the production term D[u, ω] contains contributions from spatial derivatives of
skew-isotropic tensors such as < uiujω

′
l > and < ωiuju

′
l >. In the two following subsec-

tions, both ǫH and D[u, ω] are simplified. This procedure consists into two steps: first,
expressing ǫH and D[u, ω] as functions of the derivatives of h(r) and S(r) respectively;
and then expressing these derivatives as functions of particular components of the fluctu-
ating velocity and vorticity fields. Obviously, this is much more lengthy for D[u, ω] since
it is a third-order moment, composed of three different terms. All results of this part
remain valid whether the turbulence is forced or decaying.

5.3.1. Derivatives of RH
ij (r) - Determination of ǫH

The first step to simplify ǫH consists into expressing it as a function of the derivatives
of h(r). To do so, one first needs to know the derivatives of RH

ij , analogously to what
George & Hussein (1991) did for ǫ in axisymmetric turbulence. One has,

∂2RH
ij

∂rp∂rq
= − <

∂ui

∂xp

∂ω′
j

∂x′
q

>,
ǫH
ν

= −
(

∂2RH
ii

∂rj∂rj

)

r=0

=<
∂ui

∂xj

∂ωi

∂xj
> . (5.19)

After some algebra gathered in Appendix D, one gets the general expression of ∂2
pqR

H
ij ,

from which one can obtain some relations between the derivatives of h(r). Then, using
a Taylor expansion of h(r) for r → 0 (with h(0) = 0) yields the important theoretical
result

ǫH = 10νh′′′(0) = 15ν <
∂u1

∂x1

∂ω1

∂x1
>, (5.20)

where the prime ′ denotes a spatial derivative ∂/∂r. This expression permits to determine
the helicity dissipation rate with one term instead of nine, and is equivalent to ǫ = 15ν <
(∂1u1)

2 > for the kinetic energy dissipation rate in HIT.
The natural application of the previous calculations for the dissipation rate of helicity

is the definition of a helical Taylor scale λH . Its expression is found analogously to
what is usually done for the longitudinal Taylor scale λ (Pope 2000), i.e. considering the
osculating curve PH(r) of h(r) in r = 0, which reads

PH(r) = h(0) + rh′(0) +
r2

2
h′′(0) +

r3

6
h′′′(0) = −r

KH

3
+ r3

ǫH
60ν

, (5.21)

and λH is further defined by PH(λH) = 0 and λH 6= 0, which yields

λH =

√
20νKH

ǫH
. (5.22)

It is worth noting that this new expression obtained by analytical considerations is anal-
ogous to the classical one for the velocity λ =

√
20νK/ǫ. The relevance of this formula

is illustrated in figure 8. Both λ and λH are displayed, at large and moderate Reynolds
numbers for Saffman turbulence. Both scales indicate the beginning of a region where
viscous dissipation balances non-linear transfers. At high Reynolds numbers, λ and λH

cannot be distinguished, whereas λH is a bit smaller at moderate Reynolds numbers.
The wavenumber kHη , defined in (3.1) and proposed by Ditlevsen & Giuliani (2001), is
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Figure 8. Taylor scales for kinetic energy and helicity λ and λH , along with the corresponding
spectral viscous fluxes −2νk3E and −2νk3H and the non-linear transfers kSNL

E and kSNL
H for

σ = 2. The wavenumbers kH
η (3.1) and kη are displayed as well. The black curves are for the

kinetic field, and the grey ones for the helical one. At left, Reλ = 104. At right, Reλ = 400.

presented as well: it seems to have a similar physical meaning as λH , at least at large
Reynolds numbers, and some explanations are provided in Appendix E. Moreover, figure
8 illustrates the viscous production of helicity, already observed in figure 2 where the he-
lical spectrum was negative around kη: indeed, −2νk3H is positive near kη here. Finally,
λH is displayed as well in figure 7, and is located at scales larger than the separation
between the r and r3 scalings for D(uuω).
A secondary application of these calculations is to express analytically the impact of

helicity on the second-order longitudinal correlation f(r → 0). Indeed, unlike HIT where
all odd derivatives of f(r) for r = 0 are zero, one can show that f ′′′(0) is a priori different
from zero in HHT (one has always f ′(0) = 0 because of homogeneity). Expressing ∂2

11R
H
23

and ∂2
33R

H
23 thanks to (D 2) yields

f ′′′(0) = −1

2
<

∂u2

∂x1

∂ω3

∂x1
>= − <

∂u2

∂x3

∂ω3

∂x3
>, (5.23)

so that the Taylor expansion of f(r) reads

f(r) = 1− r2

2

ǫ

15νu2
+
r3

6
f ′′′(0)

︸ ︷︷ ︸
Additional HHT term

+
r4

24

2P

35u2
, (5.24)

where P =
∫∞

0 k4E(k)dk is the palinstrophy.

5.3.2. Determination of the production term D[u, ω]

The procedure used to determine ǫH is now applied to the production term D[u, ω]:
since this term is complex and involves derivatives of two different tensors < uiujω

′
l >

and < ωiuju
′
l >, the determination is divided into two steps. First, D[u, ω] is expressed

as a function of the derivatives of S(r), and it will be shown that only S(iv)(0) remains.
Then, S(iv)(0) is expressed as a function of the derivatives of the fluctuating velocity and
vorticity fields.
As pointed out in Gomez et al. (2000), the tensor < ωiuju

′
l > is much more complicated

to handle than < uiujω
′
l >, which can be linked easily to < uiuju

′
l > given in (5.6)

φ
(uuω)
ijl =< uiujω

′
l >= ǫlpq

∂ < uiuju
′
q >

∂rp
, φ

(ωuu)
ijl =< ωiuju

′
l > . (5.25)
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Calculations detailed in Appendix D first permit to link derivatives of φ
(uuω)
ijl and φ

(ωuu)
ijl

to D[u, ω] according to

D[u, ω] =
( ∂3

∂rj∂rj∂rl

[
φ
(uuω)
ili + φ

(ωuu)
ili − φ

(ωuu)
lii

])
r=0

, (5.26)

where the derivatives of φ
(uuω)
ijl and φ

(ωuu)
ijl contain derivatives of S(r). Taylor expansions

of S(r) for r → 0 further give

D[u, ω] =<
∂ui

∂xj

∂ul

∂xj

∂ωi

∂xl
> + <

∂ui

∂xl

∂ul

∂xj

∂ωi

∂xj
> − <

∂ui

∂xj

∂ui

∂xl

∂ωl

∂xj
>= −35S(iv)(0).

(5.27)
Now that D[u, ω] has been linked to S(iv)(0), the final step is to express the fourth
derivative of S(r) as derivatives of the fluctuating velocity and vorticity fields, so that
D[u, ω] can be evaluated in DNS for instance. For this purpose, the explicit sixth-order

tensor ∂3
npqφ

(uuω)
ijl is needed, and given in Appendix D. From this lengthy expression, one

notably gets (
∂3φ

(uuω)
111

∂r31

)

r=0

= −S(iv)(0), (5.28)

from which one finally obtains the second important result of this section

D[u, ω] = −35S(iv)(0) = 35 <
∂2u2

1

∂x2
1

∂ω1

∂x1
>, (5.29)

which permits notably to compute D[u, ω] with only one term, instead of eighty-one.
Further proceeding as in Kerr (1985), i.e. identifying (5.17) with the spectral evolution
equation of ǫH

∂ǫH
∂t

= 2ν

∫ ∞

0

k2SNL
H (k, t)dk − 4ν2

∫ ∞

0

k4H(k, t)dk, (5.30)

provides

S(iv)(0) =
2

35

∫ ∞

0

k2SNL
H (k, t)dk. (5.31)

Hence, one can define, analogously to the mixed-derivative skewness of a passive scalar
in HIT, a helical derivative skewness as

Suuω =<
∂2u2

1

∂x2
1

∂ω1

∂x1
>
/(

<
∂u1

∂x1

∂ω1

∂x1
>

√
<

(
∂u1

∂x1

)2

>

)
(5.32)

= −3
√
30

14

∫∞

0
k2SNL

H dk√∫∞

0 k2Edk
∫∞

0 k2Hdk
. (5.33)

Interestingly, the factor 3
√
30/14 is identical to the one of the velocity derivative skewness

in HIT.
The helical derivative skewness Suuω is displayed in figure 9 as a function of the

Reynolds number Reλ. Only Saffman turbulence is presented, because the curve for
Batchelor turbulence is identical at high Reynolds numbers, similarly to the velocity and
mixed derivative skewnesses in HIT. The initial oscillations at large Reλ correspond to
the first turnover times of the simulation, when the turbulence is not fully developed
yet. As for the velocity and mixed derivative skewnesses, Suuω is negative and reaches
an asymptotic value at large Reynolds numbers S∞

uuω = −0.141. This value S∞
uuω is lower
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Figure 9. Helical derivative skewness Suuω(t) in HHT for σ = 2.

in magnitude than asymptotic values for the velocity and mixed derivative skewnesses
in HIT which are around ≃ −0.5. The knowledge of the helical derivative skewness is
of importance, for two reasons: it is of theoretical interest since it permits to have a
strong analogy between the evolution equations of ǫ in HIT and ǫH in HHT. On a more
practical point of view, the previous developments which led to Suuω show that there
exists, in homogeneous helical turbulence, a quantity which is constant at large Reynolds
numbers: such a result could be used to improve RANS models for helical flows, where
the production term would be linked to Suuω .

6. Effects of helicity in a turbulence with a mean scalar gradient

In this section, the transport of a passive scalar field θ is addressed. However, since
there are no explicit contributions of helicity in its evolution equation, a vertical mean
scalar gradient λ = (0, 0,−Λ) is added. In purely isotropic turbulence with a mean scalar
gradient, the well-known cospectrum, scaling in F ∼ Λǫ−1/3k−7/3 in the inertial range,
appears. When both helicity and a mean scalar gradient are combined, a second spectrum
is created, called the quadrature spectrum Q(k, t), linked to the imaginary antisymmet-
ric part of the scalar flux Fi(k), or spectral two-point velocity-scalar correlation. This
quadrature spectrum was reported in Mydlarski & Warhaft (1998), and shown to be
zero in non-helical turbulence with a mean scalar gradient in O’Gorman & Pullin (2005).
Consequently, we choose here the framework of helical turbulence with a mean scalar
gradient in order to create this quadrature spectrum and analyze its properties. In the
two next parts, it is first proposed to derive the evolution equation of Q(k, t) and its
non-linear transfer terms within the EDQNM framework, and secondly to investigate its
inertial scaling. Analogies with the effects of helicity on the kinetic energy spectrum are
pointed out, and the decay exponent of helicity along with the helical Taylor scale given
in sections 4 and 5.3 are used. A unit Prandtl number is considered, and simulations not
presented here have revealed that the scalar variance spectrum still scales in k−5/3 in the
inertial range despite the presence of helicity.
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6.1. Evolution equation of the quadrature spectrum

The scalar flux can be decomposed similarly to the spectral Reynolds tensor R̂ij in (2.8),
as

Fi(k, t) =
3

2
EF
j (k, t)Pij(k) +

3

2
iεijnαn

EQ
j (k, t)

k
, (6.1)

where both vectors EF
j and EQ

j are real. The first part of the decomposition is usual (see
Briard et al. (2016) and references therein) and is linked to the cospectrum F when a
mean scalar gradient is present

F(k, t) = 4πk2EF
3 (k, t) =

∫

Sk

F3(k, t)d
2k. (6.2)

Whereas the second part is linked to the quadrature spectrum Q, non-zero in the presence
of helicity

Q(k, t) = 4πk2EQ
3 (k, t) =

∫

Sk

iǫ3jlklFj(k, t)d
2k. (6.3)

The phenomenon creating this additional contribution to the scalar flux, parallel to the
mean gradient in the presence of helicity, is called ”skew-diffusion” in Moffatt & Tsi-
nober (1992). It is worth noting that from the decomposition (6.1) and (6.3), imaginary
components of the scalar flux, perpendicular to the mean scalar gradient, are non-zero.
Nevertheless, these components vanish after spherical averaging.

The mixed vorticity-scalar correlation is then < ω3θ >=
∫∞

0 Q(k, t)dk, and its evolu-
tion equation reads

∂ < ω3θ >

∂t
=

2

3
ΛKH+ < θωj

∂u3

∂xj
> −(ν + a) <

∂θ

∂xj

∂ω3

∂xj
> . (6.4)

In the framework of homogeneous helical turbulence with a mean scalar gradient, the
spherically averaged Lin equations for the cospectrum and the quadrature spectrum are

(
∂

∂t
+ 2νk2

)
F(k, t) =

2

3
ΛE(k, t) + SF

3 (k, t) + S
F (hel)
3 (k, t)︸ ︷︷ ︸

SNL
F

(k,t)

, (6.5)

(
∂

∂t
+ 2νk2

)
Q(k, t) =

2

3
ΛH(k, t) + SNL

Q (k, t), (6.6)

where helicity is the production term of the quadrature spectrum. The non-linear transfer
of the cospectrum SF

3 is always present when there is a mean scalar gradient, whereas

S
F (hel)
3 is the additional contribution arising from the presence of helicity

S
F (hel)
i (k, t) = 4π2

∫

∆k

θFkpqk
2(x+ yz)H′′

(
2pzEQ

i − kEQ′

i

)
dpdq

+ 4π2

∫

∆k

θFpkqk(x+ yz)
[
H
(
p2EQ′′

i − q(q − 2ky)EQ′

i

)
− k2H′′EQ′

i

]
dpdq,

(6.7)

where θFkpq is the characteristic relaxation time of the triple velocity-velocity-scalar cor-

relations, given in Briard et al. (2016). The remarkable feature is that S
F (hel)
3 is a conser-

vative transfer, with zero integral over the whole wavenumber space, similarly to S(hel) in
the evolution equation of E(k, t). The spherically-averaged quadrature non-linear transfer
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Figure 10. (a) Decay exponents αQ and αF of < ω3θ > (−−) and < u3θ > (−) respectively,
for σ = 2 (black) and σ = 4 (grey); theoretical predictions, � for αQ (6.9), and ◦ for αF .

SNL
Q = SQ

3 finally reads

SQ
i (k, t) = 4π2

∫

∆k

θFkpqk
3pq
[
E ′′
0

(
EQ′

i (xyz + 2z2 − y2)− 2z(xy + z)EQ
i

)

+ z(xy + z)H′′(2EF
i − EF ′

i )
]
dpdq

+ 4π2

∫

∆k

θFpkqk
2q
[
kpE ′′

0

(
EQ′

i (xyz + 2z2 − y2)− 2(1− y2)EQ
i

)
− kpz(xy + z)H′′EF ′

i

+ kE0
(
EQ′′

i p(1− y2)− EQ′

i q(x− yz − 2xy2)
)

− pqH
(
EF ′′

i y(1− y2) + EF ′

i (xz + y3 − y(1− x2))
)]

dpdq, (6.8)

and is not a conservative transfer, similarly to SF
3 . Its integral over the whole wavenumber

space yields, according to (6.4), the term < θωj∂ju3 >.

6.2. Decay of < ω3θ > and inertial scaling of Q(k, t)

For these numerical simulations, the initial condition (2.33) is used, with Q(k, t = 0) =
F(k, t = 0) = 0. First, the decay of < ω3θ > is addressed. From the Lin equation (6.6)
of Q(k, t), it follows that the decay exponent of < ω3θ > is αQ = αH + 1, where αH is
given in (4.3), because the production term linked to helicity is the one responsible for
the creation of the quadrature spectrum. This yields

< ω3θ >∼ tαQ , αQ = −σ + 1

σ + 3
. (6.9)

It is recalled that the decay exponent of < u3θ > is αF = α + 1, where the backscatter
parameter pH = 0.14 of section 4 should be used for consistency. Both αF and αQ are
assessed for Saffman and Batchelor turbulence in figure 10 at large Reynolds numbers.
For a given infrared slope σ, the decay of < ω3θ > is faster than < u3θ >, similarly to
the decay of KH being faster than K.
Regarding the non-linear transfers: the impact of the quadrature spectrum on the

cospectrum is rather weak and can be observed through the conservative non-linear

transfer S
F (hel)
3 . This transfer is linked to an inverse cascade of < u3θ >, localized at

large scales, between the integral and the helical Taylor scales. This can be qualitatively
compared to the impact of helicity on the kinetic energy spectrum dynamics through
S(hel) in figure 3. One could conclude that helicity only slightly reduces the non-linear
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transfers of the cospectrum at large scales. Then, the quadrature non-linear transfer SNL
Q

itself is similar to the cospectrum one SF
3 , but less intense.

Finally, in figure 11, the quadrature spectrum itself is presented. In the infrared range,
it scales in Q ∼ k3 for Saffman turbulence, because the helical spectrum itself evolves in
H ∼ k3: indeed, helicity, through the mean scalar gradient, is the production term of the
quadrature spectrum. In the inertial range, Q(k, t) is first positive for scales larger than
the helical Taylor scale λH , and scales in k−7/3 similarly to F . Whereas for scales smaller
than λH , the spectral slope is close to k−5/3 and the quadrature spectrum is negative: it
is recalled that around kη, H(k, t) is also negative.
One can propose theoretical inertial scalings for the quadrature spectrum. In the pos-

itive region, assuming in (6.6) that ∂tQ ∼ ΛH , with the classical characteristic inertial
time (k2ǫ)−1/3, this gives

Q(k, t) ∼ Λ ǫH ǫ−2/3 k−7/3, kL < k < λ−1
H . (6.10)

For the negative region of Q(k, t), the quadrature spectrum should only depend on ǫH
since this is the negative small scales of H(k, t) which are responsible for this inertial-

helical range of Q(k, t). Thus, one gets

Q(k, t) ∼ Λ ǫ
1/3
H k−5/3, λ−1

H < k < kη. (6.11)

This change of slope, from k−7/3 for kλH < 1, to k−5/3 for kλH > 1, observed in figure
11, and justified with dimensional and physical arguments, can also be interpreted in
terms of a change in characteristic time scales, from τ = (k2ǫ)−1/3 to τH = (kǫH)−1/3.
The latter time scale was notably proposed by Kurien et al. (2004a) for an alternative
scaling of H(k, t) at small scales. This characteristic time scale τH is relevant for the
inertial-helical scaling of Q when it is negative. Indeed, for kλH > 1, the equation (6.6)
of Q can be written ∂tQ ∼ SNL

Q . For the non-linear term, using the inertial scalings

(3.2) for H and F , along with θFkpq ∼ τH , gives SNL
Q ∼ Λk−4/3ǫ

2/3
H . Finally, one has

Q ∼ τHSNL
Q so that (6.11) is recovered.

As a conclusion, the combined effects of helicity and mean scalar gradient were investi-
gated. Non-linear transfer terms were derived for the evolution equations of the quadra-
ture spectrum Q(k, t) and of the cospectrum F(k, t) within the EDQNM framework.
Fundamental properties of Q(k, t) were tackled: a prediction for the decay of < ω3θ >
was proposed and assessed numerically, Q(k, t) was found to slightly decrease the large
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scale non-linear transfers of F through helicity, and finally, the main theoretical result
is that Q(k, t) has two different scalings in the inertial range, which could be associated
with two different characteristic time scales.

7. Conclusion

The classical framework of decaying homogeneous helical turbulence (HHT) where
mirror symmetry is broken (skew-isotropic turbulence) at large Reynolds numbers was
addressed using an eddy-damped quasi-normal Markovian (EDQNM) closure.
Some existing results were recovered here for decaying skew-isotropic turbulence, in

order to validate the use of EDQNM for HHT, which could be summarized in three
features. First, when helicity is initially present at large scales, helicity cascades towards
small scales along with the kinetic energy, creating a k−5/3 inertial range that extends up
to the Kolmogorov wavenumber kη. The k−5/3 scaling of the helical spectrum H(k, t) is
similar to the one of an advected passive scalar, also obtained with dimensional analysis
by assuming that the inertial characteristic time τ(k) = (k2ǫ)−1/3 is identical for both
the kinetic and helical fields. Secondly, in the early stage of the decay, helicity slows
down the filling of the kinetic energy spectrum at small scales. Consequently, there is
an initial reduction of the kinetic energy transfers: this is a transitory effect, since once
the turbulence is fully developed, the effects of helicity on the kinetic energy decay
are rather weak. Finally, two-point third-order helical correlations were investigated:
notably, the ”four-thirds” law for helical structure functions, and the 1/30 law for the
helical correlation S(r), were assessed with EDQNM at very high Reynolds numbers in
decaying turbulence. It is worth noting that the two formula linking helical correlations
in physical space and spectral non-linear helical transfers are new results of this work.
Then, EDQNM simulations were used to assess some new theoretical predictions of

fundamental interest for helical turbulence. First, the infrared dynamics of the kinetic
energy and helical spectra was investigated theoretically using non-local expansions in the
non-linear transfers. It clearly appears that in Batchelor HHT, helicity reduces the back
transfers of kinetic energy with respect to HIT: consequently, inverse non-local transfers
are weakened and bring back less energy to large scales. Furthermore, the permanence of
large eddies is shown to be verified forH(k, t), even in Batchelor turbulence, with classical
initial conditions such that the kinetic and helical infrared slopes are σH = σ+ 1. These
two features are assessed numerically with EDQNM. An original configuration, with
different initial conditions, also exhibited a k8 infrared scaling for H(k, t), along with
some helical backscatter.
Secondly, as a direct application of the previous infrared dynamics analysis, the impact

of helicity on the long-time kinetic energy decay was shown to be quite subtle: indeed,
the decay of K(t) is not modified with regard to HIT, except in the case of Batchelor
turbulence (E(k < kL, t = 0) ∼ k4) where it is slightly accelerated, because of the less-
intense inverse transfers. In addition, in agreement with dimensional analysis, theoretical
decay exponents for helicity were derived, and assessed numerically at large Reynolds
numbers: in particular, it is found that helicity decays faster than the kinetic energy.
Thirdly, the evolution equation of the helicity dissipation rate ǫH was studied, with a

particular attention on the derivatives of second and third order skew-isotropic tensors
such as < uiω

′
j >, < uiujω

′
l > and < ωiuju

′
l >. As an important result of these analytical

developments, ǫH itself is expressed as a function of h′′′(0) only, where h = R23(r), and
its production term D[u, ω] as a function of S(iv)(0) only, where S =< uLu2u

′
3 >. It

follows that ǫH and D[u, ω] can be expressed with only one term, instead of nine and
eighty-one respectively.
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Fourthly, as a direct application of these fundamental results, a helical Taylor scale
was defined λH =

√
20νKH/ǫH , whose expression is analogous to the longitudinal Taylor

scale λ for kinetic energy. Such a scale is new for the helicity field, and its relevance was
illustrated numerically: λH is the scale from which viscous dissipation of helicity becomes
dynamically important, and at large Reynolds numbers, it is very close to λ. Moreover,
a helical derivative skewness was defined as well, similarly to the velocity derivative and
mixed-derivative skewnesses in HIT, negative and constant at large Reynolds numbers.
Finally, it was shown that combining a mean scalar gradient and helicity produces the

quadrature spectrum Q(k, t), linked to the imaginary antisymmetric part of the scalar
flux. As a consequence, the large scale non-linear transfers of the cospectrum are slightly
reduced. After deriving the non-linear transfer terms within the EDQNM framework,
the main finding for Q(k, t) is that it has two different scalings in the inertial range: for
kλH < 1, Q ∼ k−7/3, and then for kλH > 1, Q ∼ k−5/3: this change in the spectral
slope can be interpreted as the characteristic time evolving from (k2ǫ)−1/3 to (kǫH)−1/3

at smaller scales.
In conclusion, the present work thoroughly validates on the one hand the use of

EDQNM for the study of homogeneous helical turbulence, and brings new important
insights about the fundamental properties of helicity in high Reynolds numbers turbu-
lent flows on the other hand. As stated in the introduction, the next step would be to
combine effects of helicity with other mechanisms such as shear, stratification, rotation
and mean temperature gradient.

Appendix A. Details on non-local expansions

The non-local inverse kinetic and helical transfers T−

E and T−

H , given in (3.7) and
(3.9), are obtained after performing non-local expansions of their associated fluxes. Some
details are provided here, and are inspired by the calculations of Lesieur & Schertzer
(1978).
First, one needs to define the non-local parameter a = r − 1, that marks the limit

between local and non-local transfers, where r = 101/17 has been defined in section 2.4
and depends on the discretization.
Separating the local and non-local contributions, the Lin equation of the kinetic energy

spectrum reads
(

∂

∂t
+ 2νk2

)
E(k, t) = SNL

E︸︷︷︸
Local

(k, t) + T±

E︸︷︷︸
Non-local

(k, t), (A 1)

where the non-local transfer is linked to the non-local flux through

T±

E (k, t) = − ∂

∂k

(
Π+ −Π−

)
. (A 2)

Π+ and Π− are respectively the non-local fluxes of kinetic energy toward very small and
very large scales. Since we are interested in the infrared dynamics, we focus only on the
inverse non-local flux Π−, given by

Π−(k, t) = 2

∫ k

0

dk′
∫ ∞

sup(k,k′/a)

dp

∫ p

p−k′

S(k′, p, q)dq, (A 3)

S(iso)(k, t) =

∫

∆k

θkpq
(xy + z3)

q
E(q)

(
k2E(p)− p2E(k)

)

︸ ︷︷ ︸
S(k,p,q)

dpdq. (A 4)
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These inverse non-local transfers are such that k ≪ p ∼ q, so that the small parameter
considered in the expansion is ζ = k/p ≪ 1. This yields, after some algebra

Π−(k, t) =
14

15

∫ k

0

k′4

[ ∞∫

sup(k,k′/a)

θk′pp
E(p)2

p2
dp

]
dk′

− 2

15

∫ k

0

k′2E(k′)

[ ∞∫

sup(k,k′/a)

θk′pp

(
5E(p) + p

∂E

∂p

)
dp

]
dk′. (A 5)

The derivation of Π− at the lowest order in k/kL yields (3.5). Similarly, expanding S(hel)

when k ≪ p ∼ q, one obtains the inverse non-local helical flux

Π(hel)−(k, t) = −14

15

∫ k

0

k′4
∞∫

sup(k,k′/a)

θk′pp
H(p)2

p4
dpdk′ (A 6)

+
2

15

∫ k

0

k′2H(k′)

∞∫

sup(k,k′/a)

θk′pp

p2

(
9H(p)− p

∂H

∂p

)
dpdk′. (A 7)

The spatial derivative of Π(hel)− yields (3.6). The procedure is similar for the expansion
of SNL

H , and one gets

Π−

H(k, t) = Π−

H1(k, t) + Π−

H2(k, t) =
14

15

∫ k

0

k′4
∞∫

sup(k,k′/a)

θk′pp
H(p)E(p)

p4
dpdk′

− 2

15

∫ k

0

k′2H(k′)

∞∫

sup(k,k′/a)

θk′pp

(
5E(p) + p

∂E

∂p

)
dpdk′

− 14

15

∫ k

0

k′4
∞∫

sup(k,k′/a)

θk′pp
H(p)E(p)

p4
dpdk′ +

14

15

∫ k

0

k′4E(k′)

∞∫

sup(k,k′/a)

θk′pp
H(p)

p2
dpdk′.

(A 8)

One can note that the first and third terms cancel each other, which explains that there
is no strong k4 non-local inverse transfer for H . Then, the derivation of Π−

H gives (3.9).
Similar calculations can be performed for a weakly diffusive passive scalar field, for

non-local transfers from large to very small scales, as done in Briard et al. (2015).

Appendix B. αH : comparison with Levshin & Chkhetiani (2013)

The present theoretical predictions (4.3) for the decay exponent of helicity αH are
compared to those of Levshin & Chkhetiani (2013) (LC13) in Table 3, obtained with
considerations on integral invariants. To fill in Table 3, a very reasonable assumption is
made, since initial conditions are not defined in LC13, so that there is no infrared slope σ.
Hence, when in LC13 a decay exponent for the kinetic energy is proposed, it is associated
here with its corresponding infrared slope according to the CBC theory: K ∼ t−1 → σ =
1, K ∼ t−6/5 → σ = 2, K ∼ t−4/3 → σ = 3, and K ∼ t−10/7 → σ = 4 (backscatter is
not taken into account in LC13). The values of αH from LC13 are the same as the ones
coming from (4.3) (−3/2, −8/5, −5/3 and −12/7), but there are not associated with the
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σ = 1 σ = 2 σ = 3 σ = 4
LC13 Table 1 / −3/2 −8/5 −5/3
LC13 Table 2 −8/5 −5/3 −12/7 /

(4.3) assessed by EDQNM –3/2 –8/5 –5/3 –12/7

Table 3. Comparison of the different theoretical decay exponents αH of helicity, obtained with
classical CBC-like arguments, and by Levshin & Chkhetiani (2013) (LC13), as a function of the
infrared slope σ of the kinetic energy spectrum E(k, t).

correct infrared slopes. For instance in Saffman turbulence (K(t) ∼ t−6/5 and σ = 2),
two laws are proposed in LC13 for helicity: KLC13

H (t) ∼ t−3/2 and KLC13
H (t) ∼ t−5/3.

This is impossible: using our theoretical prediction (4.3), KLC13
H (t) ∼ t−3/2 corresponds

to σ = 1, and KLC13
H (t) ∼ t−5/3 to σ = 3, whereas K(t) ∼ t−6/5 corresponds to σ = 2.

Consequently, it seems that the results of LC13 correspond to infrared slopes of E and
H chosen independently, without respecting the realizability condition (2.22) which fixes
the helical slope once and for all, as soon as an infrared slope is chosen for E: (2.22)
forbids initial conditions such as σH = σ and σH = σ − 1.

Appendix C. Third-order structure functions in HIT

In this section, third-order structure functions for velocity and scalar fields are briefly
investigated in HIT, to illustrate the analogy with helicity in HHT. The so-called ”four-
thirds” laws for < δuLδq

2 > and < δuLδθ
2 > are recalled, along with the formula

which allow to compute them from the spherically-averaged non-linear kinetic and scalar
transfers. Multiplying the evolution equation of δui (5.9) by 2δui and using ensemble
average yields

∂

∂t
< δq2 > +

∂

∂rj
< δujδq

2 >= 2ν
∂2

∂rj∂rj
< δq2 > −4 ν <

∂δui

∂rj

∂δui

∂rj
>

︸ ︷︷ ︸
=ǫ

. (C 1)

The pressure contribution is zero because ∂x′

j
= ∂rj = −∂xj

. Further neglecting the time

derivative and writing −4ǫ = −4/3∂rj(ǫrj), one gets

< δujδq
2 >= 2ν

∂

∂rj
< δq2 > −4

3
ǫrj , (C 2)

where the result of de Karman & Howarth (1938) has been used (2φ/r+φ′ = 0 ⇔ φ = 0)
combined with ∂2/(∂rj∂rj) = (2/r∂r + ∂2

rr). At high Reynolds numbers in the inertial
range, this eventually gives

< δuLδq
2 > (r) = −4

3
ǫr, (C 3)

with the usual convention r1 = r, and r2 = r3 = 0. It is possible to make a link between
(C 3) and the ”four-fifths” law

< δu3
L >= −4

5
ǫr. (C 4)

Using < δq2 >= 4K − 4R and further identifying the evolution equations of < δuiδui >
and R = Rii/2 (which is a different writing of the Kármán-Howarth equation)

∂R

∂t
− 1

2r2
∂

∂r

(
1

r

∂

∂r
(r4k)

)
= 2ν

1

r2
∂

∂r

(
r2

∂R

∂r

)
, (C 5)
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Figure 12. Kinetic third-order structure functions < δu3
L > and < δuLδq

2 > for σ = 2 at
Reλ = 2.104, along with the integral and Kolmogorov scales L and η: at left, the different
scalings with the Taylor longitudinal scale λ =

√

20νK/ǫ; at right, the compensated kinetic
structures functions.

yields

3r3 < δuLδq
2 >=

∂

∂r
(r4 < δuL

3 >). (C 6)

Using a method similar to what was proposed in section 5, one gets

< δuLδq
2 > = 4

∫ ∞

0

SNL
E (k)

k

(
sin(kr)

(kr)2
− cos(kr)

kr

)
dk, (C 7)

< δu3
L > = 12r

∫ ∞

0

SNL
E (k)

[3(sin(kr)− (kr) cos(kr)) − (kr)2 sin(kr)

(kr)5

]
dk. (C 8)

One can remark that the formula (C 7) is very similar to (5.16) derived for D(uuω). The
scalings (C 3) and (C 4) are assessed numerically at high Reynolds numbers in figure 12,
along with the small scales and inertial range r3 and r dependence respectively.
The process for a passive scalar field is very similar, and detailed as well in Antonia

et al. (1997). The equation of < δθ2 > is

∂

∂t
< δθ2 > +

∂

∂rj
< δujδθ

2 >= 2a
∂2

∂rj∂rj
< δθ2 > − 4a <

∂δθ

∂rj

∂δθ

∂rj
>

︸ ︷︷ ︸
=2/3∂rj

(ǫT rj)

, (C 9)

where ǫT = 2a < ∂jθ∂jθ > is the scalar variance dissipation rate, and a the scalar
diffusivity. Neglecting the time derivative and using the previous results, one obtains the
Yaglom (1949) equation

< δujδθ
2 >= 2a

∂

∂rj
< δθ2 > −2

3
ǫT rj , (C 10)

which reduces, in the inertial range, to

< δuLδθ
2 > (r) = −2

3
ǫT r. (C 11)

Here, the coefficient is 2/3 instead of 4/3 because ǫT = 2a < ∂jθ∂jθ > and not ǫT = a <
∂jθ∂jθ >. Similarly, one can write the evolution equation for < θθ′ >

∂

∂t
< θθ′ >= 2

(
2

r
+

∂

∂r

)[
< uLθθ

′ > +a
∂

∂r
< θθ′ >

]
, (C 12)
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Figure 13. Scalar third-order structure function < δuLδθ
2 > for σ = 2 at Reλ = 2.104,

along with the integral and Kolmogorov scales L and η: at left, the different scalings with
the scalar Taylor scale λT =

√

6aKT /ǫT ; at right, the compensated scalar structure function

− < δuLδθ
2 > /(rǫT ).

Further using < δuLδθ
2 >= 4 < uLθθ

′ > and rj < uLθθ
′ > /r =< ujθθ

′ >, one can
identify (C 12) and (C 10) so that eventually

< δuLδθ
2 >= 2

∫ ∞

0

SNL
T (k)

k

(
sin(kr)

(kr)2
− cos(kr)

kr

)
dk, (C 13)

where SNL
T is the isotropic spherically-averaged non-linear scalar transfer (Briard et al.

2015). The link between structure functions and non-linear spectral transfer is very sim-
ilar for the scalar and helicity: there is a factor 2 instead of 4 because the scalar cor-
relation is chosen to be < θθ′ > and not < θθ′ > /2. It is revealed in figure 13 that
− < δuLδθ

2 > /(ǫT r) closely approaches 2/3 at very large Reynolds numbers. Further-
more, the linear scaling in r in the inertial range is recovered, along with the r3 scaling
at small scales.

Appendix D. Details on the evolution equation of ǫH
In this appendix, details about the calculations and algebra used in section 5.3 are

gathered. The evolution equation of ǫH is obtained starting from the equations of ui and
ωi in HHT, so that

∂

∂t
<

∂ui

∂xj

∂ωi

∂xj
> +<

∂2ulωi

∂xj∂xl

∂ui

∂xj
> + <

∂2ului

∂xj∂xl

∂ωi

∂xj
> − <

∂2uiωl

∂xj∂xl

∂ui

∂xj
>

︸ ︷︷ ︸
D[u,ω]

= − <
∂2p

∂xi∂xj

∂ωi

∂xj
> +ν

(
<

∂3ωi

∂xj∂xl∂xl

∂ui

∂xj
> + <

∂3ui

∂xj∂xl∂xl

∂ωi

∂xj
>

)
.

To simplify the dissipative term, one uses < ∂2
ll(∂jui ∂jωi) >= 0. The pressure term is

zero since ωi is solenoidal and < ∂i(∂jωi ∂jp) >= 0. The term D[u, ω], arising from the
non-linearity, is the production term of ǫH . One needs to expand < ∂l(ul ∂jui∂jωi) >= 0
and < ∂l(ωl ∂jui∂jui) >= 0, which gives

< ul
∂ui

∂xj

∂2ωi

∂xj∂xl
> + < ul

∂ωi

∂xj

∂2ui

∂xj∂xl
>= 0, < ωl

∂ui

∂xj

∂2ui

∂xj∂xl
>= 0, (D 1)

and yields (5.17).
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D.1. Simplification of ǫH

The explicit derivation of RH
ij reads

∂2RH
ij

∂rp∂rq
= (δipδjq + δiqδjp)

(
h′

r2
− h

r3

)
− δijδpq

(
h′′

r
+

h′

r2
− h

r3

)
+

+
rirjδpq + rirpδjq + rirqδjp + rjrpδiq + rjrqδip

r2

(
h′′

r
− 3

h′

r2
+ 3

h

r3

)

− rprqδij
r2

(
h′′′ − 3

h′

r2
+ 3

h

r3

)
+

rirjrprq
r4

(
h′′′ − 6

h′′

r
+ 15

h′

r
− 15

h

r

)

+ ǫijl

[rlδpq + rpδlq + rqδlp
r

(
f ′′′

2
+

f ′′

r
− f ′

r2

)
+

rlrprq
2r3

(
rf (iv) + f ′′′ − 6

f ′′

r
+ 6

f ′

r2

)]
,

(D 2)

where the prime ′ denotes a spatial derivative ∂/∂r. From this general equation, one
notably obtains the quantity of interest here

<
∂ui

∂xj

∂ω′
i

∂x′
j

>= 2

(
h′′′ + 4

h′′

r

)
, (D 3)

where h′′ and h′′′ can be expressed as specific components of the velocity and vorticity
fields thanks to various relations coming from (D2): one gets

h′′′(0) =<
∂u2

∂x1

∂ω2

∂x1
> −1

2
<

∂u1

∂x1

∂ω1

∂x1
>, (D 4)

h′′′(0) = lim
r→0

∂3

∂r3
< u2u

′
3 >=< u2

∂3u3

∂x3
1

>, (D 5)

where the two expressions are linked using homogeneity and the definition of ωi. Then,
a Taylor expansion of h(r) for r → 0 in (D 3) gives ǫH = 10νh′′′(0), with h′′(0) = 0 since
ǫH is finite. Finally, Taylor expansions give, using only h(0) = 0 since the h′(0) and h′′(0)
terms vanish,

<
∂u2

∂x1

∂ω2

∂x1
>=

4

3
h′′′(0) = 2 <

∂u1

∂x1

∂ω1

∂x1
>, (D 6)

which eventually yields (5.20).

D.2. Simplification of D[u, ω]

Classical algebra yields

φ
(uuω)
ijl =

ǫlpq
2r3

(k − rk′)(δiprjrq + δjprirq) +
ǫlpq
4r

[
(2k + rk′)(δiqδjp + δjqδip)

+
−2k + 2rk′ + r2k′′

r2
(δiqrjrp + δjqrirp)

]
+ S′

[
2
rirjrl
r3

− δil
rj
r

− δjl
ri
r

]

− S

r

[
4
rirjrl
r3

− 2δij
rl
r
+ δil

rj
r

+ δjl
ri
r

]
. (D 7)

From this expression, one notably obtains

φ
(uuω)
LNN = −S′ − S

r
, φ

(uuω)
LLL = −4

S

r
, φ

(uuω)
LLN = 2

S

r
, φ

(uuω)
LNL = 0, (D 8)

where L is the longitudinal component, i.e. r1 = r, and N is either the second or third
component, with r2 = r3 = 0 as usual. The second tensor used in Gomez et al. (2000)
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reads

φ
(ωuu)
ijl = A

rirjrl
r3

+Bδjl
ri
r
+ Cδil

rj
r

+Dδij
rl
r
+ Eǫilm

rjrm
r2

+ Fǫjlm
rirm
r2

+Gǫijm
rlrm
r2

,

(D 9)

where A, B, C, D, E, F and G are functions of r only. Unlike φ
(uuω)
ijl which is expressed

as a function of k(r) and S(r), φ
(ωuu)
ijl depends on unknown functions, and is not sym-

metric in is two first indices. Nevertheless, some words can be said about φ
(ωuu)
ijl : using

incompressibility ∂rlφ
(ωuu)
iil = 0 and some algebra given in de Karman & Howarth (1938),

one obtains A+B + C + 3D = 0, which notably implies that

φ
(ωuu)
iiL = 0, φ

(ωuu)
NNL = −1

2
φ
(ωuu)
LLL . (D 10)

Combining this with relations such as < uLu
′
Lω

′
L >= − < uLωLu

′
L >, one obtains an

expression already given in Gomez et al. (2000),

D(uuω) = 4φ
(uuω)
LNN + 2φ

(uuω)
LLL + 4φ

(ωuu)
NLN − 4φ

(ωuu)
LNN . (D 11)

Using the results (5.12) and (D8), one gets

∆φ = φ
(ωuu)
NLN − φ

(ωuu)
LNN = −S′ − 3

S

r
. (D 12)

This expression of ∆φ is essential since it links φ
(ωuu)
ijl to S(r), as for φ

(uuω)
ijl . Now, let’s

express D[u, ω] as a function of the derivatives of φ
(uuω)
ijl and φ

(ωuu)
ijl . One has

∂3φ
(uuω)
ijl

∂rn∂rp∂rq
=<

∂ui

∂xq

∂uj

∂xp

∂ω′
l

∂x′
n

> + <
∂ui

∂xp

∂uj

∂xq

∂ω′
l

∂x′
n

>

+ < ui
∂ω′

l

∂x′
n

∂2uj

∂xp∂xq
> + < uj

∂ω′
l

∂x′
n

∂2ui

∂xp∂xq
>, (D 13)

∂3φ
(ωuu)
ijl

∂rn∂rp∂rq
=<

∂u′
l

∂x′
n

∂uj

∂xq

∂ωi

∂xp
> + <

∂u′
l

∂x′
n

∂uj

∂xp

∂ωi

∂xq
>

+ < uj
∂u′

l

∂x′
n

∂2ωi

∂xp∂xq
> + < ωi

∂ω′
l

∂x′
n

∂2uj

∂xp∂xq
> . (D 14)

Using (D1), one obtains (5.26), with φ
(ωuu)
ili −φ

(ωuu)
lii = 2rl∆φ/r. The explicit calculation

of the above expression yields

∂3

∂rj∂rj∂rl

[
φ
(uuω)
ili + φ

(ωuu)
ili − φ

(ωuu)
lii

]

=
1

r2
∂

∂r

(
r2

∂

∂r

[
−2

(
S′′ + 5

S′

r
+ 3

S

r2

)

︸ ︷︷ ︸
∂rl

φ
(uuω)
ili

+2

(
∆φ′ +

2

r
∆φ

)

︸ ︷︷ ︸
∂rl

(∆φ rl/r)

])

= − 4

r4

[
r4S(iv) + 7r3S′′′ + 3r2S′′ − 6rS′ + 6S

]
= 2

∂3φ
(uuω)
ili

∂rj∂rj∂rl
. (D 15)

It is worth noting, afterwards, that only derivatives of φ
(uuω)
ijl are necessary to compute

D[u, ω]. To conclude the first step, i.e. expressing D[u, ω] as a function of the derivatives
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of S(r), one uses a Taylor expansion for S(r) when r → 0, remembering that S(0) = 0,

D[u, ω] = −32

r
S′′′(0)− 35S(iv)(0) +O(r). (D 16)

Since D[u, ω] is finite, because ǫH is, one has S′′′(0) = 0. In the end, one gets (5.27),
where only S(0) = S′′′(0) = 0 was used.

The general form of ∂3
npqφ

(uuω)
ijl is now derived to obtain the explicit expression of

S(iv)(0): this is a lengthy calculation. Nevertheless, since we search for derivatives of
S(r), only the corresponding part is considered in (D 7): the part with derivatives of k(r)
vanishes with the appropriate indices contractions. This yields

∂3φ
(uuω)
ijl

∂rn∂rp∂rq
=

(
2S(iv) − 28

S′′′

r
+ 174

S′′

r2
− 558

S′

r3
+ 768

S

r4

)
rirjrlrnrprq

r6

+
1

r4

(
2
S′′′

r
− 18

S′′

r2
+ 66

S′

r3
− 96

S

r4

)[
δinrjrlrprq + δjn . . .+ δln . . .+ δpn . . .+ δqn . . .+

δip . . .+ δiq . . .+ δjp . . .+ δjq . . .+ δij . . .+ δpl . . .+ δql . . .+ δpq . . .
]

− 1

r4

(
S(iv) − 5

S′′′

r
+ 6

S′′

r2
+ 18

S′

r3
− 48

S

r4

)[
δilrjrnrprq + δjlrirnrprq

]

+
1

r2

(
2
S′′

r2
− 10

S′

r3
+ 16

S

r4

)[
rirjP

(3)
lnpq + rirlP

(3)
jnpq + rjrlP

(3)
inpq + rlrpP

(3)
ijnq + rlrqP

(3)
ijnp+

rlrnP
(3)
ijpq + rirp(δjnδlq + δlnδjq) + rirq(δjnδlp + δlnδjp) + rjrp(δinδlq + δlnδiq)+

rjrq(δinδlp + δlnδip) + rirn(δjpδlq + δlpδjq) + rjrn(δipδlq + δlpδiq)+

δij(rprnδlq + rqrnδlp + rprqδln)
]

− 1

r2

(
S′′′

r
− 2

S′′

r2
− 2

S′

r3
+ 8

S

r4

)[
rnrp(δilδjq + δjlδiq) + rnrq(δilδjp + δjlδip)+

rprq(δilδjn + δjlδin) + rjδil(rnδpq + rpδqn + rqδpn) + riδjl(rnδpq + rpδqn + rqδpn)
]

+

(
2
S′

r3
− 4

S

r4

)[
δin(δjqδlp + δjpδlq) + δjn(δiqδlp + δipδlq) + δij(δlqδpn + δlpδqn) + δlnP

(3)
ijpq

]

−
(
S′′

r2
− 2

S

r4

)[
δilP

(3)
jnpq + δjlP

(3)
inpq

]
, (D 17)

where P
(3)
ijpq = δijδpq + δipδjq + δiqδjp. With this equation, one can obviously recover

(D 15). Even though this would be tedious, this expression (D17), combined with (D 13),

can determine each non-zero component of ∂3
npqφ

(uuω)
ijl as a function of derivatives of

S(r). This equation is of course an important result of the present work, and could be
used for further theoretical developments, but more interestingly, one gets in particular

∂3φ
(uuω)
111

∂r31
= −4

S′′′

r
+ 12

S′′

r2
− 24

S′

r3
+ 24

S

r4
. (D 18)

Using as before a Taylor expansion of S(r) when r → 0, the S′(0), S′′(0) and S′′′(0) terms
vanish, and with S(0) = 0, this yields (5.28). Furthermore, using (D 13), one obtains
(
∂3φ

(uuω)
111

∂r31

)

r=0

= 2 <

(
∂u1

∂x1

)2
∂ω1

∂x1
> +2 < u1

∂2u1

∂x2
1

∂ω1

∂x1
>=<

∂2u2
1

∂x2
1

∂ω1

∂x1
> . (D 19)
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The two previous equations give (5.29).

Appendix E. Re-interpretation of the helical viscous cutoff kHη

In this section, another interpretation of the wavenumber kHη , defined in (3.1), is pro-
posed. This wavenumber was originally derived by Ditlevsen & Giuliani (2001) as a
helical viscous cutoff. However, it was revealed in figure 2 that kHη is not a wavenumber

equivalent to kη for the helical spectrum, since both E and H have a k−5/3 inertial range
which extends up to kη.
Here are some elements, based on the demonstration of Ditlevsen & Giuliani (2001),

to explain why kHη cannot be a helical viscous cutoff. First, it is assumed in the latter
reference that H(k, t) scales as kE(k, t) in the spectral definition of ǫH , and that the
dominant contribution of the integral comes from the largest wavenumber,

ǫH = 2ν

∫ ∞

0

k2H(k, t)dk ∼ νkHη
4
E(kHη , t) = νkHη

7/3
ǫ2/3, (E 1)

which yields (3.1). However, a scaling like H ∼ kE would imply that H ∼ k−2/3 in the
inertial range, which is not the case as illustrated in figure 2. Hence, the assumption
H ∼ kE in the inertial range is wrong, and moreover, it is worth noting that if the
scaling (3.2) is used in the previous integral, one recovers kHη = kη, as shown by Chen
et al. (2003).
Instead, it is shown hereafter analytically that kHη can be seen as the wavenumber at

which viscous dissipation of helicity balances non-linear helical transfers. In the kinetic
and helical Lin evolution equations (2.31) and (2.32), writing that at k = kHη there is

a balance between convection and viscous dissipation yields νkHη
2
E(kHη ) ∼ θkHη H(kHη )2,

where θ = θkkk . With the relation (3.4), one further has E/H ∼ ǫ/ǫH. Then, for the

characteristic time, θ ∼ 1/(νkHη
2
) is chosen, in agreement with dissipation being prepon-

derant at large wavenumbers in the definition (2.24) of θkpq . Finally, the classical inertial
scaling (3.2) is used for H , so that

νkHη
2 E(kHη )

H(kHη )
∼ 1

νkHη
2 k

H
η

(
ǫHǫ−1/3kHη

−5/3
)

⇔ kHη
14/3 ∼ ǫ2Hǫ−4/3ν−2, (E 2)

from which one recovers (3.1). Here, the evolution equation of E has been used: the final
result can also be obtained starting from the evolution equation of H(k), and writing

νkHη
2
H(kHη ) ∼ θkHη

3
E(kHη )H(kHη ). The wavenumber kHη was shown to be quite relevant

in figure 8 at large Reynolds numbers: indeed, from kHη , there is a balance between

−2νk3H and kSNL
H . However, this is much less relevant at moderate Reynolds numbers:

this is expected since in the previous demonstration, inertial scalings were used, which
are valid only at large Reynolds numbers.
As a conclusion, the original helical viscous cutoff kHη proposed by Ditlevsen & Giuliani

(2001) was re-interpreted here in terms of high Reynolds numbers balance between the
viscous dissipation of helicity and non-linear helical transfer.
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