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Abstract

Objectives

Several automated algorithms for epidemiological surveillance in hospitals have been pro-

posed. However, the usefulness of these methods to detect nosocomial outbreaks remains

unclear. The goal of this review was to describe outbreak detection algorithms that have

been tested within hospitals, consider how they were evaluated, and synthesize their

results.

Methods

We developed a search query using keywords associated with hospital outbreak detection

and searched the MEDLINE database. To ensure the highest sensitivity, no limitations were

initially imposed on publication languages and dates, although we subsequently excluded

studies published before 2000. Every study that described a method to detect outbreaks

within hospitals was included, without any exclusion based on study design. Additional stud-

ies were identified through citations in retrieved studies.

Results

Twenty-nine studies were included. The detection algorithms were grouped into 5 catego-

ries: simple thresholds (n = 6), statistical process control (n = 12), scan statistics (n = 6), tra-

ditional statistical models (n = 6), and data mining methods (n = 4). The evaluation of the

algorithms was often solely descriptive (n = 15), but more complex epidemiological criteria

were also investigated (n = 10). The performance measures varied widely between studies:

e.g., the sensitivity of an algorithm in a real world setting could vary between 17 and 100%.
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Conclusion

Even if outbreak detection algorithms are useful complementary tools for traditional surveil-

lance, the heterogeneity in results among published studies does not support quantitative

synthesis of their performance. A standardized framework should be followed when evaluat-

ing outbreak detection methods to allow comparison of algorithms across studies and syn-

thesis of results.

Introduction

Hospital information systems are goldmines for infection preventionists and epidemiologists.

The large amount of data that they contain can help to detect adverse events, highlight risk fac-

tors, and evaluate the effectiveness of preventive actions [1]. These big data differ substantially

from the ones that epidemiologists traditionally handle, but thanks to innovative methods bor-

rowed from machine learning, data mining and natural language processing, they can be used

to improve the quality and safety of healthcare [2]. Indeed, recent literature reviews have

shown how these methods have been successfully applied to identify nosocomial infections

[1,3], adverse drug events [4], and a wide range of other complications within hospitals [5].

Identifying nosocomial infections is useful to detect hospital outbreaks, which, given the

potential morbidity, disorganization and cost that they can cause, represent a menace to

patients, caregivers and healthcare systems [6,7]. However, case identification is only the first

step in the surveillance process, and epidemiologists must then search for patterns that sub-

stantiate epidemic spread [8].

Fortunately, a wide range of automated outbreak detection methods is available and rou-

tinely used for community syndromic surveillance. Several infection control teams have also

studied the usefulness of these methods at the scale of their own hospital, but the results were

heterogeneous, precluding straightforward conclusions. The objective of our study was to clar-

ify this issue by summarizing the existing literature on hospital outbreak detection algorithms,

and especially by describing the evaluations approaches and the detection performances when

applicable.

Methods

Study selection

In order to give the most accurate summary of the literature, we followed a systematic litera-

ture review protocol. The search query was built as a union of three sets of terms that related to

the following key words: hospital, outbreak and detection (See S1 Appendix, protocol not

accessible).

The MEDLINE bibliographic database was searched using the PubMed search engine in

April 2016. To ensure the highest sensitivity, no limitations were imposed on publication dates

and languages. The results of the query were screened based successively on the title, the

abstract and the full text. Every reference that described a method used to detect outbreaks

within hospitals was included, without any exclusion based on study design. The references

that related to community outbreak detection or national/regional nosocomial infection sur-

veillance were not included. The citations of every included document were also screened in

search of relevant additional references, a method called snowballing. Complementarily, we
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performed reverse snowballing by identifying relevant documents that cited the included stud-

ies, using the Google Scholar search engine.

One author (BL) extracted data from the included studies using a standardized form. The

variables of interest were the following: date of publication, country, study period, spatial and

temporal scopes of the surveillance, events of interest, data sources, detection algorithms and

evaluation methodology.

Data analysis

To classify the studies according to their methodology, we used a framework developed by

Watkins et al. for early outbreak detection evaluation [9]. According to this framework, four

types of evaluation approaches can be identified: descriptive, derived, epidemiological, and

simulation-based. The descriptive approach does not rely on detection performance measures,

but rather on the description of detected events (frequency, duration, etc.). The “derived”

approach uses the results of a statistical model as a reference standard to evaluate detection

methods. The epidemiological approach uses more complex definitions based on multifacto-

rial and flexible methods such as expert judgment. The last approach is the use of simulations,

i.e. synthetic data. It allows for a complete control of outbreak features, but the validity of the

estimations in the real world is not guaranteed. Besides classification, the methodologies were

also analyzed to determine the risk of specific biases [10].

The performance measures (sensitivity, specificity, positive and negative predictive values)

of the detection algorithms were also extracted, along with their 95% confidence intervals. If

the confidence intervals were not available, we computed them based on the available data.

The inter-algorithm heterogeneity was measured using the I2 statistics, which represents the

percentage of variability that is due to heterogeneity between algorithms. As several studies

used different algorithms, we also calculated an R2 statistic to estimate the proportion of the

inter-algorithm heterogeneity that was due to differences between studies. These R2 were esti-

mated using mixed-effect meta-regressions that included a study effect. All the statistical analy-

ses were done using the R software version 3.2.0 and the metafor package.

The present article was prepared using the PRISMA checklist for items reporting in system-

atic reviews [11] (S2 Appendix).

Results

Twenty-nine studies were included at the end of the selection process (Fig 1). They are

described in details in Table 1. In the next sections, we will describe these studies with regards

to the type of surveillance in which the algorithms were used and to the methods on which

these algorithms relied. Finally, we will examine the observed performances for each evalua-

tion approach.

Surveillance scope

Across the studies, the algorithms were used to detect different types of events. Three studies

aimed to detect every nosocomial outbreaks, without any additional precision regarding their

size, duration or type [22,24,31]. In two other studies, the events corresponded to cases with a

clinical definition, i.e. nosocomial invasive aspergillosis [21] and bloodstream infections [39].

The remaining studies focused on infections caused by specific organisms such as multidrug

resistant (MDR) bacteria or organisms known to cause nosocomial infections. Additional data

allowed some algorithms to be stratified by infection site (bloodstream, urinary tract, etc.),

organism or resistance pattern [13–15,19,23,28,29,31,32,34,35,37].
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In most of the included studies (n = 24), the surveillance was implemented at the level of an

entire hospital, but larger and smaller scopes were also reported. One study was conducted in

a health trust consisting of 10 hospitals [31], and another one examined hospital-level outbreak

detection based on the national surveillance data in England [23]. Conversely, in three studies,

outbreaks were monitored at the level of a single intensive care unit [12,16,22]. Additional data

allowed in six studies to stratify outbreak detection at different spatial levels, from the whole

hospital to services and units [25–27,33–35].

Nearly every algorithm relied on either bacteriological laboratory results (n = 17) or noso-

comial infection counts estimated by active surveillance from the infection control team

(n = 10). Two studies additionally extracted admission-discharge-transfer data to provide a

denominator for computing incidence rates [27,33]. Kikuchi et al. tested a more syndromic

approach: instead of positive cases, their algorithm relied on counts of new occurrences of

symptoms found in the electronic medical records [40].

The periods covered by these data varied between studies from 3 to 120 months, with a

median of 24 months (inter-quartile range: 12.25–58.75).

Detection algorithms

Many different algorithms were implemented in the included studies, but they could all be

classified into five categories: simple thresholds, statistical process control (SPC), statistical

modeling, scan statistics and data mining methods. The trends of these categories over time

are depicted in Fig 2.

With simple thresholds, an alert is triggered when the number of cases exceeded a threshold

over which the number of infections in a given space and time is considered abnormal. These

simple rules were used in six studies [24,28,32,34,38,39] and could either be an arbitrary

threshold chosen by experts (e.g. three infections in two weeks in the same ward in the study

by Huang et al. [27]) or a simple mathematical rule (e.g. a doubling of the ward’s average

monthly culture rate in the study by Schifman and Palmer [28]).

Algorithms based on SPC were the most commonly used in the included studies (n = 12).

For these algorithms, the alert threshold is not defined arbitrarily but based on statistical varia-

tions of cases frequency in the past. SPC offers the possibility to monitor different types of sta-

tistical parameter, such as incidence count or rate [14,16,17,22,28,32,37], cumulative sums

(CuSums) [21,22,30,35] or moving averages [30,35,37].

Fig 1. Study selection flow diagram.

https://doi.org/10.1371/journal.pone.0176438.g001

Automated detection of hospital outbreaks

PLOS ONE | https://doi.org/10.1371/journal.pone.0176438 April 25, 2017 4 / 16

https://doi.org/10.1371/journal.pone.0176438.g001
https://doi.org/10.1371/journal.pone.0176438


T
a
b

le
1
.

D
e
s
c
ri

p
ti

o
n

o
f
th

e
in

c
lu

d
e
d

s
tu

d
ie

s
.

S
tu

d
y

C
o

u
n

tr
y

s
p

a
ti

a
l
s
c
o

p
e

o
f

s
u

rv
e
il
la

n
c
e

s
p

a
ti

a
l

s
tr

a
ti

fi
c
a
ti

o
n

ti
m

e
u

n
it

o
f

d
e
te

c
ti

o
n

fr
e
q

u
e
n

c
y

m
o

n
it

o
re

d

ty
p

e
s

o
f

in
fe

c
ti

o
n

m
o

n
it

o
re

d

m
e
a
s
u

re
s

d
a
ta

s
o

u
rc

e
s

ty
p

e
o

f
d

e
te

c
ti

o
n

a
lg

o
ri

th
m

s

ty
p

e
o

f

e
v
a
lu

a
ti

o
n

le
n

g
th

o
f

e
v
a
lu

a
ti

o
n

in
m

o
n

th

C
h
ild

re
s
s

a
n
d

C
h
ild

re
s
s

(1
9
8
1
)
[1

2
]

U
S

A
in

te
n
s
iv

e
c
a
re

u
n
it

o
f
a

u
n
iv

e
rs

it
y

h
o
s
p
it
a
l

n
o
t
a
p
p
lic

a
b
le

m
o
n
th

S
e
rr

a
ti
a

m
a
rc

e
s
c
e
n
s

in
fe

c
ti
o
n
s

n
u
m

b
e
r
o
f

is
o
la

te
s

b
a
c
te

ri
o
lo

g
ic

a
l

la
b

re
s
u
lt
s

S
P

C
(t

h
re

s
h
o
ld

s
b
a
s
e
d

o
n

e
n
d
e
m

ic
ra

te
)

d
e
s
c
ri
p
ti
v
e

1
2

D
e
s
s
a
u

a
n
d

S
te

e
n
b
e
rg

(1
9
9
3
)
[1

3
]

D
e
n
m

a
rk

u
n
iv

e
rs

it
y

h
o
s
p
it
a
l

n
o
n
e

w
e
e
k

o
rg

a
n
is

m

s
p
e
c
ifi

c

in
fe

c
ti
o
n
s

n
u
m

b
e
r
o
f

is
o
la

te
s

m
ic

ro
b
io

lo
g
y

la
b

re
s
u
lt
s

s
ta

ti
s
ti
c
a
lm

o
d
e
lin

g

(t
im

e
s
e
ri
e
s

a
n
a
ly

s
is

)

d
e
s
c
ri
p
ti
v
e

1
2

M
y
lo

tt
e

(1
9
9
6
)
[1

4
]

U
S

A
u
n
iv

e
rs

it
y

lo
n
g

te
rm

c
a
re

fa
c
ili

ty
(1

2
0

b
e
d
s
)

n
o
n
e

m
o
n
th

lo
c
a
ti
o
n
-s

p
e
c
ifi

c

n
o
s
o
c
o
m

ia
l

in
fe

c
ti
o
n
s

n
u
m

b
e
r
o
f

c
a
s
e
s

IC
P

s
u
rv

e
ill

a
n
c
e

S
P

C
(t

h
re

s
h
o
ld

s
b
a
s
e
d

o
n

e
n
d
e
m

ic
ra

te
)

d
e
s
c
ri
p
ti
v
e

9
6

B
ro

s
s
e
tt
e

e
t
a
l.

(1
9
9
8
)
[1

5
]

U
S

A
u
n
iv

e
rs

it
y

h
o
s
p
it
a
l

n
o
n
e

m
o
n
th

P
s
e
u
d
o
m

o
n
a
s

a
e
ru

g
in

o
s
a

in
fe

c
ti
o
n
s

p
ro

p
o
rt

io
n

o
f

c
a
s
e
s

b
a
c
te

ri
o
lo

g
ic

a
l

la
b

re
s
u
lt
s

a
n
d

p
a
ti
e
n
t

d
e
m

o
g
ra

p
h
ic

s

d
a
ta

m
in

in
g

(a
s
s
o
c
ia

ti
o
n

ru
le

s
)

d
e
s
c
ri
p
ti
v
e

1
2

A
ra

n
te

s

e
t
a
l.

(2
0
0
3
)
[1

6
]

B
ra

z
il

p
e
d
ia

tr
ic

in
te

n
s
iv

e
c
a
re

u
n
it

o
f
a

u
n
iv

e
rs

it
y

h
o
s
p
it
a
l

n
o
t
a
p
p
lic

a
b
le

m
o
n
th

n
o
s
o
c
o
m

ia
l

in
fe

c
ti
o
n
s

in
c
id

e
n
c
e

ra
te

o
f
c
a
s
e
s

IC
s
u
rv

e
ill

a
n
c
e

S
P

C
(u

-c
h
a
rt

)
d
e
s
c
ri
p
ti
v
e

3
6

S
a
g
e
le

t
a
l.

(2
0
0
4
)
[1

7
]

G
e
rm

a
n
y

te
rt

ia
ry

-c
a
re

h
o
s
p
it
a
l(

9
0
0

b
e
d
s
)

n
o
n
e

w
e
e
k

M
R

S
A

in
fe

c
ti
o
n
s

n
u
m

b
e
r
o
f

is
o
la

te
s

IC
s
u
rv

e
ill

a
n
c
e

S
P

C
(c

-c
h
a
rt

)
d
e
s
c
ri
p
ti
v
e

1
2

P
e
n
tl
a
n
d

e
t
a
l.

(2
0
0
6
)
[1

8
]

U
S

A
u
n
iv

e
rs

it
y

h
o
s
p
it
a
l

n
o
n
e

d
a
y

M
D

R
-G

N

in
fe

c
ti
o
n
s

n
u
m

b
e
r
o
f

is
o
la

te
s

b
a
c
te

ri
o
lo

g
ic

a
l

la
b

re
s
u
lt
s

s
c
a
n

s
ta

ti
s
ti
c
s

d
e
s
c
ri
p
ti
v
e

2
4

L
a
m

m
a

e
t
a
l.

(2
0
0
6
)

[1
9
,2

0
]

It
a
ly

u
n
iv

e
rs

it
y

h
o
s
p
it
a
l

w
a
rd

s
w

e
e
k

o
rg

a
n
is

m

s
p
e
c
ifi

c

in
fe

c
ti
o
n
s

n
u
m

b
e
r
o
f

c
a
s
e
s

b
a
c
te

ri
o
lo

g
ic

a
l

la
b

re
s
u
lt
s

s
ta

ti
s
ti
c
a
lm

o
d
e
lin

g

(t
im

e
s
e
ri
e
s

a
n
a
ly

s
is

)

d
e
s
c
ri
p
ti
v
e

M
e
n
o
tt
i

e
t
a
l.

(2
0
1
0
)
[2

1
]

F
ra

n
c
e

u
n
iv

e
rs

it
y

h
o
s
p
it
a
l

n
o
n
e

m
o
n
th

n
o
s
o
c
o
m

ia
l

in
v
a
s
iv

e

a
s
p
e
rg

ill
o
s
is

n
u
m

b
e
r
o
f

c
a
s
e
s

IC
s
u
rv

e
ill

a
n
c
e

S
P

C
(C

u
S

u
m

,

L
C

-C
u
S

u
m

)

d
e
s
c
ri
p
ti
v
e

2
4

G
o
m

e
s

e
t
a
l.

(2
0
1
1
)
[2

2
]

B
ra

z
il

in
te

n
s
iv

e
c
a
re

u
n
it

o
f
a

u
n
iv

e
rs

it
y

h
o
s
p
it
a
l

n
o
n
e

w
e
e
k

n
o
s
o
c
o
m

ia
l

in
fe

c
ti
o
n
s

n
u
m

b
e
r
o
f

c
a
s
e
s

IC
s
u
rv

e
ill

a
n
c
e

S
P

C
(C

u
S

u
m

,
u
-c

h
a
rt

,

E
W

M
A

)

d
e
s
c
ri
p
ti
v
e

2
4

F
re

e
m

a
n

e
t
a
l.

(2
0
1
3
)
[2

3
]

E
n
g
la

n
d

h
o
s
p
it
a
ls

p
a
rt

ic
ip

a
ti
n
g

in
n
a
ti
o
n
a
l

s
u
rv

e
ill

a
n
c
e

n
o
n
e

w
e
e
k

1
2

s
p
e
c
ie

s
-

s
p
e
c
ifi

c

in
fe

c
ti
o
n
s

7

M
D

R
O

in
fe

c
ti
o
n
s

n
u
m

b
e
r
o
f

c
a
s
e
s

n
a
ti
o
n
a
l
IC

s
u
rv

e
ill

a
n
c
e

s
ta

ti
s
ti
c
a
lm

o
d
e
lin

g

(q
u
a
s
i-
P

o
is

s
o
n

m
o
d
e
l)

a
n
d

S
P

C
(C

u
S

u
m

a
n
d
)

d
e
s
c
ri
p
ti
v
e

3
6

(C
o
n
ti
n
u
e
d

)

Automated detection of hospital outbreaks

PLOS ONE | https://doi.org/10.1371/journal.pone.0176438 April 25, 2017 5 / 16

https://doi.org/10.1371/journal.pone.0176438


T
a
b

le
1
.

(C
o
n
ti
n
u
e
d

)

S
tu

d
y

C
o

u
n

tr
y

s
p

a
ti

a
l
s
c
o

p
e

o
f

s
u

rv
e
il
la

n
c
e

s
p

a
ti

a
l

s
tr

a
ti

fi
c
a
ti

o
n

ti
m

e
u

n
it

o
f

d
e
te

c
ti

o
n

fr
e
q

u
e
n

c
y

m
o

n
it

o
re

d

ty
p

e
s

o
f

in
fe

c
ti

o
n

m
o

n
it

o
re

d

m
e
a
s
u

re
s

d
a
ta

s
o

u
rc

e
s

ty
p

e
o

f
d

e
te

c
ti

o
n

a
lg

o
ri

th
m

s

ty
p

e
o

f

e
v
a
lu

a
ti

o
n

le
n

g
th

o
f

e
v
a
lu

a
ti

o
n

in
m

o
n

th

D
u

e
t
a
l.

(2
0
1
4
)
[2

4
]

C
h
in

a
te

rt
ia

ry
-c

a
re

h
o
s
p
it
a
l(

3
5
0
0

b
e
d
s
)

w
a
rd

s
d
a
y

n
o
s
o
c
o
m

ia
l

in
fe

c
ti
o
n
s

n
u
m

b
e
r
o
f

is
o
la

te
s
,

d
ia

rr
h
e
a

c
a
s
e
s

o
r

s
u
rg

ic
a
ls

it
e

in
fe

c
ti
o
n
s

a
u
to

m
a
te

d

n
o
s
o
c
o
m

ia
l

in
fe

c
ti
o
n

s
u
rv

e
ill

a
n
c
e

s
im

p
le

th
re

s
h
o
ld

s
(�

2

to
3

c
a
s
e
s

in
1

to
2
1

w
e
e
k
s
)

d
e
s
c
ri
p
ti
v
e

4
8

F
a
ir
e
s

e
t
a
l.

(2
0
1
4
)A

[2
5
]

C
a
n
a
d
a

c
o
m

m
u
n
it
y

h
o
s
p
it
a
l(

3
5
0

b
e
d
s
)

h
o
s
p
it
a
l,

s
e
rv

ic
e
s

a
n
d

w
a
rd

s

d
a
y

C
lo

s
tr

id
iu

m

d
if
fi
c
ile

in
fe

c
ti
o
n
s

n
u
m

b
e
r
o
f

is
o
la

te
s

b
a
c
te

ri
o
lo

g
ic

a
l

la
b

re
s
u
lt
s

s
c
a
n

s
ta

ti
s
ti
c
s

d
e
s
c
ri
p
ti
v
e

5
5

F
a
ir
e
s

e
t
a
l.

(2
0
1
4
)B

[2
6
]

C
a
n
a
d
a

c
o
m

m
u
n
it
y

h
o
s
p
it
a
l(

3
5
0

b
e
d
s
)

h
o
s
p
it
a
l,

s
e
rv

ic
e
s

a
n
d

w
a
rd

s

d
a
y

M
R

S
A

in
fe

c
ti
o
n
s

n
u
m

b
e
r
o
f

is
o
la

te
s

b
a
c
te

ri
o
lo

g
ic

a
l

la
b

re
s
u
lt
s

s
c
a
n

s
ta

ti
s
ti
c
s

d
e
s
c
ri
p
ti
v
e

5
5

L
e
fe

b
v
re

e
t
a
l.

(2
0
1
5
)
[2

7
]

F
ra

n
c
e

2
u
n
iv

e
rs

it
y

h
o
s
p
it
a
ls

(1
2
0
0

a
n
d

1
8
0
0

b
e
d
s
)

H
o
s
p
it
a
la

n
d

u
n
it
s

d
a
y

P
s
e
u
d
o
m

o
n
a
s

a
e
ru

g
in

o
s
a

in
fe

c
ti
o
n
s

N
u
m

b
e
r
a
n
d

in
c
id

e
n
c
e

ra
te

o
f

is
o
la

te
s

b
a
c
te

ri
o
lo

g
ic

a
l

la
b

re
s
u
lt
s

s
c
a
n

s
ta

ti
s
ti
c
s

d
e
s
c
ri
p
ti
v
e

1
1
2

a
n
d

7
8

(d
e
p
e
n
d
in

g

o
n

th
e

h
o
s
p
it
a
l)

S
c
h
if
m

a
n

a
n
d

P
a
lm

e
r

(1
9
8
4
)
[2

8
]

U
S

A
u
n
iv

e
rs

it
y

h
o
s
p
it
a
l(

3
2
5

b
e
d
s
)

w
a
rd

m
o
n
th

o
rg

a
n
is

m
a
n
d

lo
c
a
ti
o
n

s
p
e
c
ifi

c

in
fe

c
ti
o
n
s

n
u
m

b
e
r
o
f

c
a
s
e
s

IC
P

s
u
rv

e
ill

a
n
c
e

s
im

p
le

th
re

s
h
o
ld

s
(�

2

ti
m

e
s

th
e

a
v
e
ra

g
e

c
u
lt
u
re

ra
te

)

e
p
id

e
m

io
lo

g
ic

a
l

6

B
ro

s
s
e
tt
e

e
t
a
l.

(2
0
0
0
)
[2

9
]

U
S

A
u
n
iv

e
rs

it
y

h
o
s
p
it
a
l

u
n
it

m
o
n
th

o
rg

a
n
is

m
,

lo
c
a
ti
o
n

a
n
d

a
n
ti
b
io

ti
c

re
s
is

ta
n
c
e

s
p
e
c
ifi

c

in
fe

c
ti
o
n
s

p
ro

p
o
rt

io
n

o
f

is
o
la

te
s

b
a
c
te

ri
o
lo

g
ic

a
l

la
b

re
s
u
lt
s

D
a
ta

m
in

in
g

(a
s
s
o
c
ia

ti
o
n

ru
le

s
)

e
p
id

e
m

io
lo

g
ic

a
l

1
5

B
ro

w
n

e
t
a
l.

(2
0
0
2
)
[3

0
]

U
S

A
te

rt
ia

ry
-c

a
re

p
e
d
ia

tr
ic

fa
c
ili

ty
(3

3
0

b
e
d
s
)

n
o
t
a
p
p
lic

a
b
le

is
o
la

te
M

R
S

A
a
n
d

V
R

E

in
fe

c
ti
o
n
s

n
u
m

b
e
r
o
f

is
o
la

te
s

b
a
c
te

ri
o
lo

g
ic

a
l

la
b

re
s
u
lt
s

S
P

C
(C

u
S

u
m

,
m

o
v
in

g

a
v
e
ra

g
e
)

e
p
id

e
m

io
lo

g
ic

a
l

6
9

M
a

e
t
a
l.

(2
0
0
3
)
[3

1
]

U
S

A
1
0

h
o
s
p
it
a
ls

o
f

a
u
n
iv

e
rs

it
y

m
e
d
ic

a
l

c
e
n
te

r

u
n
it

m
o
n
th

o
rg

a
n
is

m
,

lo
c
a
ti
o
n

a
n
d

a
n
ti
b
io

ti
c

re
s
is

ta
n
c
e

s
p
e
c
ifi

c

in
fe

c
ti
o
n
s

n
u
m

b
e
r
o
f

is
o
la

te
s

b
a
c
te

ri
o
lo

g
ic

a
l

la
b

re
s
u
lt
s

D
a
ta

m
in

in
g

(a
s
s
o
c
ia

ti
o
n

ru
le

s
)

e
p
id

e
m

io
lo

g
ic

a
l

3

H
a
c
e
k

e
t
a
l.

(2
0
0
4
)
[3

2
]

U
S

A
u
n
iv

e
rs

it
y

h
o
s
p
it
a
l(

6
8
8

b
e
d
s
)

n
o
n
e

m
o
n
th

o
rg

a
n
is

m

s
p
e
c
ifi

c

in
fe

c
ti
o
n
s

n
u
m

b
e
r
o
f

is
o
la

te
s

a
n
d

in
c
id

e
n
c
e

ra
te

o
f

is
o
la

te
s

b
a
c
te

ri
o
lo

g
ic

a
l

la
b

re
s
u
lt
s

s
im

p
le

th
re

s
h
o
ld

s

(1
0
0
%

in
c
re

a
s
e

in
2

m
o
n
th

,
�

5
0
%

in
c
re

a
s
e

in
3

m
o
n
th

s
)
a
n
d

S
P

C

(S
h
e
w

a
rt

c
h
a
rt

)

e
p
id

e
m

io
lo

g
ic

a
l

9
6

W
ri
g
h
t

e
t
a
l.

(2
0
0
4
)
[3

3
]

U
S

A
u
n
iv

e
rs

it
y

h
o
s
p
it
a
l(

6
5
6

b
e
d
s
)

h
o
s
p
it
a
l,

s
e
rv

ic
e

a
n
d

w
a
rd

w
e
e
k

lo
c
a
ti
o
n
,

o
rg

a
n
is

m
,
ty

p
e

a
n
d

re
s
is

ta
n
c
e

s
p
e
c
ifi

c

in
fe

c
ti
o
n
s

n
u
m

b
e
r
o
f

is
o
la

te
s

b
a
c
te

ri
o
lo

g
ic

a
l

la
b

re
s
u
lt
s

a
n
d

a
d
m

is
s
io

n
-

d
is

c
h
a
rg

e
-

tr
a
n
s
fe

r

S
P

C
(u

s
e
r-

d
e
fi
n
a
b
le

c
o
n
tr

o
lc

h
a
rt

s
)

e
p
id

e
m

io
lo

g
ic

a
l

1
3

(C
o
n
ti
n
u
e
d

)

Automated detection of hospital outbreaks

PLOS ONE | https://doi.org/10.1371/journal.pone.0176438 April 25, 2017 6 / 16

https://doi.org/10.1371/journal.pone.0176438


T
a
b

le
1
.

(C
o
n
ti
n
u
e
d

)

S
tu

d
y

C
o

u
n

tr
y

s
p

a
ti

a
l
s
c
o

p
e

o
f

s
u

rv
e
il
la

n
c
e

s
p

a
ti

a
l

s
tr

a
ti

fi
c
a
ti

o
n

ti
m

e
u

n
it

o
f

d
e
te

c
ti

o
n

fr
e
q

u
e
n

c
y

m
o

n
it

o
re

d

ty
p

e
s

o
f

in
fe

c
ti

o
n

m
o

n
it

o
re

d

m
e
a
s
u

re
s

d
a
ta

s
o

u
rc

e
s

ty
p

e
o

f
d

e
te

c
ti

o
n

a
lg

o
ri

th
m

s

ty
p

e
o

f

e
v
a
lu

a
ti

o
n

le
n

g
th

o
f

e
v
a
lu

a
ti

o
n

in
m

o
n

th

H
u
a
n
g

e
t
a
l.

(2
0
1
0
)
[3

4
]

U
S

A
u
n
iv

e
rs

it
y

h
o
s
p
it
a
l(

7
5
0

b
e
d
s
)

h
o
s
p
it
a
l,

s
e
rv

ic
e
s

a
n
d

w
a
rd

s

d
a
y

3
1

o
rg

a
n
is

m

s
p
e
c
ifi

c

in
fe

c
ti
o
n
s

n
u
m

b
e
r
o
f

is
o
la

te
s

b
a
c
te

ri
o
lo

g
ic

a
l

la
b

re
s
u
lt
s

s
c
a
n

s
ta

ti
s
ti
c
s

e
p
id

e
m

io
lo

g
ic

a
l

6
0

C
a
rn

e
v
a
le

e
t
a
l.

(2
0
1
1
)
[3

5
]

U
S

A
g
e
n
e
ra

la
n
d

p
e
d
ia

tr
ic

h
o
s
p
it
a
l(

8
0
0

b
e
d
s
)

h
o
s
p
it
a
la

n
d

u
n
it
s

d
a
y

o
rg

a
n
is

m

s
p
e
c
ifi

c

in
fe

c
ti
o
n
s

n
u
m

b
e
r
o
f

is
o
la

te
s

b
a
c
te

ri
o
lo

g
ic

a
l

la
b

re
s
u
lt
s

S
P

C
(C

u
S

u
m

,
E

W
M

A
),

s
c
a
n

s
ta

ti
s
ti
c
s
,
d
a
ta

m
in

in
g

(W
S

A
R

E
)

e
p
id

e
m

io
lo

g
ic

a
l

2
4

N
is

h
iu

ra

(2
0
1
2
)
[3

6
]

J
a
p
a
n

n
o
t

im
p
le

m
e
n
te

d

n
o
n
e

m
o
n
th

-
n
u
m

b
e
r
o
f

is
o
la

te
s

IC
s
u
rv

e
ill

a
n
c
e

s
ta

ti
s
ti
c
a
lm

o
d
e
lin

g

(P
o
is

s
o
n

m
o
d
e
l)

e
p
id

e
m

io
lo

g
ic

a
l

-

T
s
e
n
g

e
t
a
l.

(2
0
1
2
)
[3

7
]

T
a
iw

a
n

u
n
iv

e
rs

it
y

h
o
s
p
it
a
l(

2
2
0
0

b
e
d
s
)

n
o
n
e

w
e
e
k

M
D

R
o
rg

a
n
is

m

in
fe

c
ti
o
n
s

n
u
m

b
e
r
o
f

is
o
la

te
s

b
a
c
te

ri
o
lo

g
ic

a
l

la
b

re
s
u
lt
s

S
P

C
(c

o
n
tr

o
l

c
h
a
rt

s
±

h
ie

ra
rc

h
ic

a
l

c
lu

s
te

ri
n
g
)

e
p
id

e
m

io
lo

g
ic

a
l

1
2

M
e
llm

a
n
n

e
t
a
l.

(2
0
0
6
)
[3

8
]

G
e
rm

a
n
y

u
n
iv

e
rs

it
y

h
o
s
p
it
a
l(

1
4
8
0

b
e
d
s
)

w
a
rd

s
w

e
e
k

M
R

S
A

in
fe

c
ti
o
n
s

n
u
m

b
e
r
o
f

is
o
la

te
s

b
a
c
te

ri
o
lo

g
ic

a
l

la
b

re
s
u
lt
s

s
im

p
le

th
re

s
h
o
ld

s
(2

is
o
la

te
s

in
2

w
e
e
k
s
,
±

m
o
le

c
u
la

r
ty

p
in

g
)

d
e
ri
v
e
d

6
0

C
h
a
rv

a
t

e
t
a
l.

(2
0
0
9
)
[3

9
]

F
ra

n
c
e

u
n
iv

e
rs

it
y

h
o
s
p
it
a
l(

8
7
8

b
e
d
s
)

n
o
n
e

d
a
y

b
lo

o
d
s
tr

e
a
m

in
fe

c
ti
o
n
s

n
u
m

b
e
r
o
f

c
a
s
e
s

IC
s
u
rv

e
ill

a
n
c
e

s
im

p
le

th
re

s
h
o
ld

s

(d
e
la

y
b
e
tw

e
e
n

c
a
s
e
s
)

d
e
ri
v
e
d

1
2
0

K
ik

u
c
h
i

e
t
a
l.

(2
0
0
7
)
[4

0
]

J
a
p
a
n

p
re

fe
c
to

ra
l

c
e
n
tr

a
l

h
o
s
p
it
a
l

w
a
rd

s
d
a
y

s
y
m

p
to

m
s

n
u
m

b
e
r
o
f

c
a
s
e
s

e
le

c
tr

o
n
ic

m
e
d
ic

a
lr

e
c
o
rd

s

(s
y
m

p
to

m
s
)

s
ta

ti
s
ti
c
a
lm

o
d
e
lin

g

(l
in

e
a
r
m

o
d
e
l)

s
im

u
la

ti
o
n

1
5

S
k
ip

p
e
r.

(2
0
0
9
)
[4

1
]

D
a
n
e
m

a
rk

u
n
iv

e
rs

it
y

h
o
s
p
it
a
l

n
o
n
e

d
a
y

s
im

u
la

te
d

n
u
m

b
e
r
o
f

is
o
la

te
s

b
a
c
te

ri
o
lo

g
ic

a
l

la
b

re
s
u
lt
s

s
ta

ti
s
ti
c
a
lm

o
d
e
lin

g

(P
o
is

s
o
n

m
o
d
e
l)

s
im

u
la

ti
o
n

M
R

S
A

:
m

e
th

ic
ill

in
re

s
is

ta
n
t
S

ta
p
h
y
lo

c
o
c
c
u
s

a
u
re

u
s
,
V

R
E

:
v
a
n
c
o
m

y
c
in

re
s
is

ta
n
t
E

n
te

ro
c
o
c
c
u
s
,
IC

:
in

fe
c
ti
o
n

c
o
n
tr

o
l,

M
D

R
:
m

u
lt
i-
d
ru

g
re

s
is

ta
n
t,

G
N

:
G

ra
m

n
e
g
a
ti
v
e
,
S

P
C

:
s
ta

ti
s
ti
c
a
l

p
ro

c
e
s
s

c
o
n
tr

o
l,

E
W

M
A

:
e
x
p
o
n
e
n
ti
a
lly

-w
e
ig

h
te

d
m

o
v
in

g
a
v
e
ra

g
e
,
W

S
A

R
E

:
‘W

h
a
t’
s

S
tr

a
n
g
e

A
b
o
u
t
R

e
c
e
n
t
E

v
e
n
ts

?
’a

lg
o
ri
th

m
,
(L

C
-)

C
u
S

u
m

:
(L

e
a
rn

in
g

c
u
rv

e
)
c
u
m

u
la

ti
v
e

s
u
m

s
.

h
tt

p
s:

//
d
o
i.o

rg
/1

0
.1

3
7
1
/jo

u
rn

al
.p

o
n
e.

0
1
7
6
4
3
8
.t
0
0
1

Automated detection of hospital outbreaks

PLOS ONE | https://doi.org/10.1371/journal.pone.0176438 April 25, 2017 7 / 16

https://doi.org/10.1371/journal.pone.0176438.t001
https://doi.org/10.1371/journal.pone.0176438


Statistical models were used in six studies [13,19,23,36,40,41]. They mostly consisted of

multivariate Poisson regressions that allowed taking into account predictable factors of fluctu-

ation in the number of infection cases, such as seasonality.

Elaborating on these models, scan statistics represented another popular category of algo-

rithms (n = 6) [18,25–27,34,35]. It even served as a reference standard in an additional study

by Mellmann et al. [38]. Because they use adjustable surveillance windows, they are more

flexible than traditional statistical modeling and can detect events at different space and time

scales.

Data mining methods constituted the last category of algorithms, which was used in four

studies. Three related studies used association rules to automatically detect interesting changes

in infection occurrence and resistance patterns [15,29,31]. A third tested an algorithm called

‘What’s Strange About Recent Events?’ (WSARE) [35], which relies on Bayesian networks and

associations rules [42].

Evaluation results

Descriptive approach. Fifteen of the included studies provided a descriptive evaluation of

the algorithms’ results [12–19,21–27]. All of them showed that detection algorithms imple-

mented in real hospital settings were able to generate relevant alerts, and some of them

reported interesting additional observations. For example, Gomes et al. noted a complemen-

tarity between SPC algorithms: Shewart charts were better for detecting large deviations from

Fig 2. Cumulative count of detection algorithms found in the literature over time, by category. SPC: statistical process control.

https://doi.org/10.1371/journal.pone.0176438.g002
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the mean number of infections, while CuSums and exponentially-weighted moving averages

were more suitable for detecting smaller deviations [22].

Freeman et al. noted that adding data about antibiotic resistance more than doubled the

overall number of alerts generated by a Poisson-based model [23].

More recently, two studies by Faires et al. provided interesting insights about how a scan

statistic-based algorithm compared to traditional infection control surveillance: it retrospec-

tively identified most of the outbreaks already investigated by the infection control team but

also flagged other potentially undetected epidemic events [25,26].

Epidemiological approach. The epidemiological approach was the second most fre-

quently used evaluation design (n = 10). Its implementation, however, differed quite noticeably

between studies. Some of them relied on the judgment of one [28,29,31] or several experts

[30,33–35] to classify the alerts while others compared them to a list of previously identified

outbreaks [36,37]. A last one used molecular typing, a common method for confirming clonal

outbreaks, i.e. infections caused by the same strain [32].

Experts’ evaluation of the alerts allowed the computation of positive predictive values

(PPVs). As PPVs depend on the prevalence of the outbreaks, it was difficult to compare them

across different surveillance settings, but they were overall superior to 75%, reaching a maxi-

mum at 96.5% for the CuSum algorithm in the study by Brown et al. [30]. Additionally, Carne-

vale et al. [35] combined multiple sources of alert to estimate the overall number of true

positives. This allowed the estimation of sensitivity measures, which varied from 21 to 31%

(Fig 3).

Out of the four studies that relied on a panel of experts, three reported inter-rater agree-

ment estimated by Cohen’s kappa. Using binary classifications, Wright et al. [33] and Huang

et al. [34] reported good agreement (κ = 0.82 and 0.76 respectively) whereas Carnevale et al

[35] reported lower results (from 0.11 to 0.49 on multiple pairs of raters).

Two studies provided estimates of the four traditional performance measures by comparing

their algorithms to an “epidemiological” reference standard. Hacek et al. [32] used molecular

typing, in a subset of potential alerts selected by the infection control team. Using this method,

they reported that traditional surveillance was less specific than simple thresholds and SPC

methods, with comparable sensitivity levels (Fig 3).

Fig 3. Sensitivity and specificity of the detection algorithms evaluated with the epidemiological approach (with 95%

confidence intervals). Patient criterion: control chart based on the number of infected patients; incidence patient criterion: control

chart based on the incidence of infected patients; germ criterion: control chart based on the number of positive results; MI: monthly

increase; ICP: infection control surveillance; 2SD: control chart based on the number of positive results; WSARE: What’s Strange

About Recent Events?; SaTScan: scan statistics; EWMA: Exponentially-Weighted Moving Average; CUSUM: Cumulative sum.

https://doi.org/10.1371/journal.pone.0176438.g003
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Alternatively, Tseng et al. [37] evaluated several SPC methods in comparison to the tradi-

tional infection control surveillance of vancomycin-resistant enterococcal infections. With the

best parameters, the sensitivity and specificity of the algorithms ranged respectively from 77 to

100% and from 83 to 87% (Fig 3).

For these epidemiological approaches, we were able to estimate the inter-algorithm hetero-

geneity for sensitivity and specificity: according to the I2 statistic, this heterogeneity accounted

for respectively 83.5% and 67.4% of the overall variability. In the meta-regressions, the study

effect explained respectively 100% and 45.33% of this heterogeneity (R2 statistics).

Derived and simulation approaches. With the ‘derived’ and ‘simulation’ approaches,

outbreaks are either statistically defined or identified in advance in the simulated datasets. The

detection performances are thus more easily calculated and can even be estimated for different

situations by modifying the parameters of the statistical definitions or the simulated datasets.

As a result, the studies that used these approaches often reported ranges of performance mea-

sures as opposed to point estimates. For example, Kikuchi et al. [40] reported sensitivity and

specificity measures for a linear model varying from 80 to 100% and 10 to 95% respectively,

depending on the attack rates of the simulated outbreaks, while Skipper [41] reported sensitiv-

ity varying from 0 to 100% depending on the type of outbreak simulated, and on the parame-

ters of their multistate Poisson model.

The derived approach also provided a straightforward reference standard for Mellmann

et al. [38] to compare different detection methods. They estimated that traditional surveillance

was more specific (97.3% vs. 47.3%) but less sensitive (62.1% vs. 100%) than a simple rule

based on the frequency of cases. A rule based on both the frequency of cases and the results of

molecular typing gave the best overall performance with a sensitivity of 100% and a specificity

of 95.2%.

Discussion

Our literature review yielded 29 studies published between 1981 and 2015 that described algo-

rithms for automated detection of nosocomial outbreaks. Among the different types of algo-

rithms, those that were based on SPC were the most commonly used over the reviewed period.

They have been applied for a long time in various fields of quality control and have been rec-

ommended for infection control surveillance for about two decades [43]. In the most recent

studies, however, scan statistics have been used increasingly, as the popularity of the SaTScan

package [44] rose in epidemiological research.

The surveillance scopes and settings in which these algorithms were implemented as well

as the methods used to evaluate their performance varied quite noticeably between studies.

According to our meta-regressions, the differences between studies explained a large part of

the heterogeneity between of the results of this review. This heterogeneity did not allow us to

estimate pooled accuracy measures using meta-analysis, and also precluded the comparison of

the different algorithm categories. We acknowledge that our literature review might suffer

from a selection bias: due to time and material constrains, we only searched one bibliographic

database and a single author selected the studies and extracted the data. Despite snowballing,

we might therefore have missed relevant studies. However, including more studies would

likely further increase the observed heterogeneity.

With so many differences between the studies, it is difficult to draw firm conclusions about

the performance of these algorithms for hospital-level surveillance. Nonetheless, they did

appear as useful supplements to traditional surveillance carried out by the infection control

teams. In fact, as long as one of these algorithms can detect or confirm outbreaks without gen-

erating too many false alarms, it can be considered a useful complementary tool. And because
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infection control professionals can more easily investigate an alert than epidemiologists can in

the community, a higher rate of false alerts—and therefore a lower PPV—might be acceptable

for hospital-level surveillance. But even if high performances are not required, researchers still

need a valid and reproducible framework to evaluate and compare these algorithms.

First, researchers need to determine which performance measures they would like to eval-

uate, as it will have a great impact on the choice of the evaluation approach. Depending on

the study design, estimating the four traditional accuracy measures (sensitivity, specificity,

positive and negative predictive value) might be difficult. In the context of outbreak detec-

tion, however, this may no be an important issue. Indeed, as “non-outbreaks” are by far

more frequent than outbreaks, researchers must deal with what are called imbalanced data-

sets. In these situations, it has been shown that precision-recall plots, based precisely on VPP

and sensitivity, give accurate information about classification performance and are more

informative than the traditional ROC curves, based on sensitivity and specificity [45]. We

also believe that timeliness is an important feature of any outbreak detection system [46,47],

and that it should be evaluated along with the traditional detection performance measures.

Although some attempts to evaluate timeliness were made in the studies that we included

[30,34,36,41], the results are difficult to interpret and future studies should try to address this

question more systematically.

The choice of the evaluation approach is also an important aspect of the framework. The

evaluation approaches described by Watkins at al. [9] all offer different insights, but the epide-

miological approach is preferable for evaluating detection algorithms in real-life settings,

because it provides the best face validity. However, the epidemiological approach also has

some drawbacks that should be carefully addressed. First, it might suffer from a lack of statisti-

cal power, given the relative scarcity of hospital outbreaks in real settings. Sufficiently large

surveillance scopes and periods should thus be available to precisely estimate and compare the

algorithms’ accuracy. A second problem with the epidemiological approach is that it does not

provide any obvious reference standard, contrary to the simulation and derived approaches. In

the present review, two of the nine studies that followed this approach used a reference stan-

dard, but neither of them seemed to us fully satisfactory. Tseng et al. used the results of tradi-

tional surveillance [37], which, as shown in some of the included studies, is unfortunately an

imperfect reference standard. Hacek et al. used molecular typing [32], but did not apply it to

every isolate: it was only considered if an alert was generated, and the final decision was taken

by infection control professionals. While this strategy is perfectly understandable from an eco-

nomic point of view, it introduces a partial verification bias, which leads to an overestimation

of the detection performances [29].

The main problem with evaluating detection algorithms is that outbreaks do not have a

standard definition [47]. According to recommendations for diagnostic studies by Rutjes et al.

[48], one appropriate strategy in such situations is to use expert panels. In order to estimate

the validity of the panel’s choices, researchers should always report them along with a measure

of the inter-rater agreement. Out of the four included studies that used an expert panel, three

reported Cohen’s kappa coefficients. But, again, differences in how the experts’ opinions were

collected did not allow direct comparison of the results. The two main approaches were: 1) to

ask the experts about the probability that a given alert corresponds to a real outbreak, or 2) to

ask the experts what actions should be initiated in response to a given alert. Carnevale et al.

[35] used a combination of these two approaches, which complicated the validation process

and might partly explain why they measured lower inter-rater agreement. The choice between

the two approaches should depend on the expected use of the algorithm. For example, if its

purpose is to be used as a practical tool for surveillance, the second approach, which focuses

on action, is preferable.
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Using experts’ knowledge to discern between true and false positives only allows computing

VPPs. To estimate the other performance measures, one solution is to use the panel of experts

as a real reference standard by asking them to distinguish between “outbreak” and “non-out-

break” periods, as it was done for community outbreak detection in the Bio-ALIRT project

[49]. Another solution can be to combine the information brought by various algorithms or

data sources. Carnevale et al. [35], for example, gathered the results of different algorithms to

estimate the true number of outbreaks and compute sensitivity measures. It is possible how-

ever that some outbreaks were missed by all of these sources and that the computed sensitivi-

ties were therefore overestimated. In such situations, capture-recapture analyses should be

implemented, as proposed in the CDC recommendations for early outbreak detection systems

evaluation [47]. Other advanced statistical modeling such as latent class analysis can also com-

bine information from different sources. They are commonly used for diagnostic test evalua-

tion in the absence of a reference standard [48], and it may be interesting to try to use them in

the context of outbreak detection.

Another advantage of combining information sources is that it can improve detection per-

formance. For instance, as noted by Carnevale et al. [35], clonal and non-clonal outbreaks

have different dynamics and infection control teams may have to use different algorithms to

detect each type. This complementarity is well established for control charts: traditional She-

wart charts are better for detecting large and sudden deviations from the mean whereas

CuSum and exponentially weighted moving averages are better suited for small continuous

ones [22].

Several studies also showed that including covariates such as culture site, hospital location

and antibiotic resistance can improve the detection performance of the algorithms [23,35,37].

The majority of the studies that we reviewed, however, solely relied on simple time series of

cases to trigger alerts. Even though additional sources of data such as electronic medical rec-

ords and electronic prescriptions might not be readily available for surveillance in all centers, a

more thorough investigation of the utility of individual covariates for outbreak detection

appears to be another interesting direction for future research.

In addition to a standardized framework, studies on detection algorithms would greatly

benefit from a quality assessment tool. We originally wanted to evaluate the quality of the

included studies using either the STARD checklist [50] for diagnostic studies or the TRIPOD

checklist [51] for prediction model development and validation. Unfortunately, a lot of the

items of these tools were not applicable to the context of outbreak detection evaluation. One

reason is the variety of the evaluation approaches: the relevant information to be reported is

quite different between descriptive, simulation and epidemiological approaches. Another rea-

son is that many items of these checklists address issues about study participants (inclusion,

flow, baseline characteristics, adverse events, missing data, etc.), which is not of concern in

studies on outbreak detection. Nonetheless, some items of these quality reporting tools address

very interesting issues. For example, the TRIPOD checklist differentiates between the develop-

ment and validation phases for a predictive model. This distinction is important to avoid

reporting overly optimistic performances and was only done in seven of the studies that we

included. Other examples are the items that relate to statistical power and precision: none of

the studies that we included reported a statistical justification of their sample size, and only

one of them provided the 95% confidence intervals of their performance measures. Future

studies on outbreak detection evaluation should be careful to report these elements.

Undoubtedly, research on the automated detection of hospital outbreak has not yet made

the most of the great opportunity offered by modern hospital information systems. More

importantly, the evaluation methodology needs to be standardized in order to accurately mea-

sure and compare the performances of the detection algorithms. In particular, the different
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types of algorithm should be compared in a large study using a valid epidemiological reference

standard. With these improvements, we believe that these algorithms can become useful deci-

sion-making tools for infection control professionals. They can also help to better understand

how outbreaks spread within hospitals, ultimately improving patient safety in healthcare.
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