Electronic Supplementary Material (ESI) for Organic Chemistry Frontiers. This journal is © the Partner Organisations 2014

Addition of carbon nucleophiles to hemiaminals promoted by a Lewis acidic

polyoxotungstate

Wen-Jing Xuan, Candice Botuha, Bernold Hasenknopf and Serge Thorimbert

a) Sorbonne Universités, UPMC Univ Paris 06. UMR 8232, Institut Parisien de Chimie Moléculaire. F-75005 Paris, France.b) CNRS, UMR 8232, IPCM, F-75005 Paris, France.

E-mail: serge.thorimbert@upmc.fr

Content	
General Remarks	2
General Procedures	2
Descriptions	3
Allylation Reaction	10
NMR Spectra	11

1. General remarks

Reagents and chemicals were purchased from commercial sources and used as received. The Hf substituted polyoxotungstate (POM/Hf), *N*-Boc-2-hydroxypyrrolidine¹ and *N*-Boc-2-hydroxypiperidine¹ were prepared as described previously. Unless otherwise noted, reactions were carried out under argon atmosphere with magnetic stirring in redistilled solvents when necessary. Solvents were purified and dried by standard procedures. Merck 60F254 silica gel was used for thin-layer chromatography (TLC) and Merck Geduran SI 60 Å silica gel 60 (40-63 µM) was used for flash column chromatography.

Melting points were measured on a Stuart Scientific Melting Point SMP3 apparatus in open capillaries. IR spectra were recorded from a Bruker Tensor 27 ATR diamond PIKE spectrophotometer. NMR ¹H, ³¹P, ¹³C spectra were recorded at 400, 162, and 100 MHz, respectively, using a Bruker AVANCE 400 spectrometer equipped with a BBFO probe. Some ¹³C NMR spectra were recorded at 50 MHz using a Bruker AVANCE 200. Chemical shifts are reported in ppm, using, for ¹H and ¹³C, solvent residual peak as internal standard references and external H₃PO₄ for ³¹P. Coupling constants (*J*) are given in Hertz (Hz), multiplicity (s = singlet, d = doublet, t = triplet, q = quartet, m = multiplet).

Mass spectrometry experiments have been carried out at the Institut Parisien de Chimie Moléculaire (FR2769) on an electrospray-ion trap instrument

2. General Procedures

General Procedure 1 (GP1). *POM/Hf catalyzed addition of Carbon Nucleophiles to hemiaminal 1*. To a solution of POM/Hf (1 mol%, 0.004 mmol) in CH₃CN (1 mL) were added *N*-Boc-2-hydroxypyrrolidine 1a (0.4 mmol, 1 equiv.), the silyl enol ether 2 (ketene-acetals) (0.4 mmol, 1 equiv.), 1,3-dicarbonyl compounds 6 (0.4 mmol, 1 equiv.) allytrimethylsilane (2 mmol, 5 equiv.). After completion, 2 mL of a solution of acetone/ethanol (1/1) were added, followed by 20 mL of diethyl ether. The white precipitate (catalyst) was recovered by filtration or by centrifugation and the remaining organic solution was concentrated under reduced pressure. The residue was purified by flash column chromatography (EtOAc/Pentane) to afford the desired product.

3. Descriptions

Following **GP1**, from N-Boc-2-hydroxypyrrolidine **1a** (30 mg, 0.16 mmol), 1-phenylvinyl trimethylsilyl ether **2a** (34 μ L, 0.16 mmol) and POM/Hf (1 mol%, 0.0016 mmol), to give the desired product **3a** as a clear oil (33 mg, 0.12 mmol, 72% yield). Spectral data correspond to those described in the literature. ² [*Tetrahedron*, **1996**, *52*, 2629-2646]

IR υ max (neat) / cm⁻¹ 1677, 1391; ¹H NMR (400 MHz, CDCl₃) δ 1.39 (s, 9H, *t*-Bu), 1.64-1.72 (m, 1H, CHH), 1.73 –1.87 (m, 2H, CH₂), 1.99 (ddd, *J* = 16.7, 12.4, 7.6 Hz, 1H, CH*H*), 2.77 (dd, *J* = 15.4, 9.9 Hz, 1H, COC*H*H), 3.30 (t, *J* = 6.5 Hz, 2H, NCH₂), 3.57 (bs, 1H, COCH*H*), 4.26 (ddt, *J* = 10.8, 7.6, 3.2 Hz, 1H, NC*H*), 7.37 –7.41 (td, *J* = 7.0, 1.5 Hz, 2H, Harom), 7.47 – 7.50 (t, *J* = 7.4 Hz, 1H, Harom), 7.93 (d, *J* = 7.4 Hz, 2H, Harom); ¹³C NMR (100 MHz, CDCl₃) δ 23.2 (CH₂), 28.5 (CH₃, *t*-Bu), 30.7 (CH₂), 43.4 (CH₂), 46.5 (CH₂), 54.3 (CH), 79.5 (*Ct*-Bu), 128.3 (CHarom), 128.6 (CHarom), 133.1 (CHarom), 136.9 (Carom), 154.4 (CO₂), 198.9 (CO).

2-(2-oxo-2-phenylethyl) -piperidine-1-carboxylic acid tert-Butyl ester (3b)

Following **GP1** from *N*-Boc-2-hydroxypiperidine **1a** (40.8 mg, 0.20 mmol), 1-phenylvinyl trimethylsilyl ether **2a** (42 μ L 0.20 mmol) and POM/Hf (1 mol %, 0.002 mmol), to give the desired product **3b** as a clear oil (10 mg, 0.03 mmol, 16% yield). Spectral data correspond to those described in the literature. ³[*Journal of the American Chemical Society*, **2008**, *130*, 13745-13754] IR υ max (neat) / cm⁻¹ 1684, 1669, 1409. ¹H NMR (400 MHz, CDCl₃) δ 1.39 (s, 9H, *t*-Bu), 1.44 – 1.71 (m, 6H, 3CH₂), 2.91 (td, *J* = 13.2, 2.7 Hz, 1H, NC*H*H), 3.11 (ddd, *J* = 20.5, 14.4, 7.3 Hz, 2H, CH₂Ph), 4.07 (d, *J* = 13.5 Hz, 1H, NCH*H*), 4.75 – 4.94 (m, 1H, NC*H*), 7.50 (t, *J* = 7.4 Hz, 2H, Harom), 7.59(t, *J* = 7.3 Hz, 2H, Harom), 8.02 (t, *J* = 7.2 Hz, 1H, Harom). ¹³C NMR (100 MHz, CDCl₃) δ 18.9 (CH₂), 25.3 (CH₂), 28.2 (CH₂), 28.3 (CH₃, *t*-Bu), 39.2 (CH₂), 39.4 (CH₂), 48.2 (CH), 79.6 (C*t*-Bu), 128.3 (CHarom), 128.6 (CHarom), 133.1 (CHarom), 136.9 (Carom), 154.7 (CO₂), 198.4 (CO).

2-(1-methoxy-2-methyl-1-oxopropan-2-yl)-pyrrolidine-1-carboxylic acid tert-Butyl ester (3c)

Following **GP1** with *N*-Boc-2-hydroxypyrrolidine **1a** (34 mg, 0.18 mmol), 1-Methoxy-2-methyl-1-(trimethylsiloxy)propene **2b** (39 μ L, 0.18 mmol), and POM/Hf (10 mol%, 0.018 mmol), to give the desired product **3c** as a clear oil (28 mg, 0.10 mmol, 58% yield). ⁴, ⁵[*Tetrahedron Lett.* **2006**, *47*, 7853-7856. *Tetrahedron Lett.* **2006**, *47*, 1669–1672.]

IR υ max (neat) / cm⁻¹ 1692, 1377, 1365. ¹H NMR (400 MHz, CDCl₃) δ 1.06 (s, 3H, CH₃), 1.12 (s, 3H, CH₃), 1.39 (s, 9H, *t*-Bu), 1.59 – 1.79 (m, 3H, CH₂CHH), 1.80 – 1.96 (m, 1H, CHH), 3.11 (dt, *J* = 11.2, 6.9 Hz, 1H, NCHH), 3.47 – 3.67 (m, 4H, COOCH₃ + NCHH), 4.18 (dd, *J* = 8.6, 3.0 Hz, 1H, NCH). ¹³C NMR (63 MHz, CDCl₃) δ 21.2 (CH₃). 24.1 (CH₂), 27.5 (CH₂), 28.4 (CH₃, *t*-Bu), 47.8 (CH₂), 51.9 (CO₂CH₃), 62.9 (CH), 79.5 (C*t*-Bu), 155.8 (CO₂), 177.3 (CO).

2-(2-oxocyclohexyl)-pyrrolidine-1-carboxylic acid tert-Butyl ester (3e)

Following **GP1** with *N*-Boc-2-hydroxypyrrolidine **1b** (30 mg, 0.16 mmol), 1-(trimethylsiloxy) cyclohexene **2c** (32 µL, 0.16 mmol), and POM/Hf (1 mol %, 0.0016 mmol), to give the desired product **3e** as a 30/70 mixture of diastereomers (27 mg, 0.10 mmol, 63% yield). With 10 mol% POM/Hf, (42 mg, 0.16 mmol, 98% yield).

IR v max (neat) / cm⁻¹ 1686, 1388. ¹H NMR (250 MHz, CDCl₃, mixture of diastereomers) δ [1.41] (s, 3.4 H, *t*-Bu, 1 *dia. mino*), 1.42 (s, 5.6 H, *t*-Bu, 1 *dia.*), 1.51 – 2.20 (m, 10H, 5CH₂), 2.20 – 2.45 (m, 2 H, CH₂), 3.15 – 3.28 (m, 2 H, CH_H + CH), 3.43 (bs, 1H, CHH), [4.12] (bs, 0.3H, NCH, 1 *dia. mino*), 4.26 (bs, 0.69 H, NCH, 1 *dia.*). ¹³C NMR (101 MHz, CDCl₃) δ 24.4 (CH₂, 1 *dia.*), [24.9] (CH₂, 1 *dia.*), 26.7 (CH₂, 1 *dia.*), [27.1] (CH₂, 1 *dia.*), 27.6 (CH₂, 1 *dia.*), [28.0] (CH₂, 1 *dia.*), 28.5 (CH₃, *t*-Bu), 31.0 (CH₂), 42.0 (CH₂), 42.7 (CH₂), 45.9 (CH₂, 1 *dia.*), [47.2] (CH₂, 1 *dia.*), 52.1 (CH, 1 *dia.*), [53.5] (CH, 1 *dia.*), 56.01 (NCH, 1 *dia.*), [56.7] (NCH, 1 *dia.*), 79.2 (*Ct*-Bu), 154.5 (CO₂, 1 *dia.*), [155.1] (CO₂, 1 *dia.*), 211.9 (CO). HRMS (ESI) m/z calcd for C₁₅H₂₅NO₃ (M + Na)⁺ 290.1727, found 290.1730.

2-(1-oxobut-3-en-2-yl)-pyrrolidine-1-carboxylic acid tert-Butyl ester (3g)

Following **GP1** with *N*-Boc-2-hydroxypyrrolidine **1a** (96.4 mg, 0.51 mmol), 1-(trimethylsiloxy)-1,3-butadiene **2d** (98 μ L, 0.55 mmol), and POM/Hf (1 mol%, 0.005 mmol), to give the desired product **3g** as a clear oil (83 mg, 0.35 mmol, 69% yield). IR υ max (neat) / cm⁻¹ 1683. ¹H NMR (400 MHz, CDCl₃) δ 1.39 (s, 9H, *t*-Bu), 1.59 (bs, 1H, *CH*H), 1.71 – 1.84 (m, 2H, CH₂), 1.86 – 2.00 (m, 1H, CH*H*), 2.38 – 2.42 (m, 1H, *CH*HCH=CH), 2.68 (bs, 1H, *CHHCH*=CH), 3.24 – 3.33 (m, 2H, NCH₂), 3.91 (bs, 1H, NCH), 6.02 – 6.09(m, 1H, *CH*CHO), 6.75 (dt, *J* = 15.0, 7.0 Hz, 1H, *CH*=CHCHO), 9.44 (d, *J* = 7.0 Hz, 1H, CHO). ¹³C NMR (100 MHz, CDCl₃, mixture of rotamers) δ 22.9 (CH₂), [23.6] (CH₂), 28.5 (CH₃, *t*-Bu), 30.0 (CH₂), [30.7] (CH₂), 37.7 (*CH*₂CH=CH), [38.1] (*CH*₂CH=CH), 46.4 (NCH₂), [46.6] (NCH₂), 56.0 (NCH), 79.4 (C*t*-Bu), [79.6] (C*t*-Bu), 134.5 (*CH*CHO), 154.5 (*CH*=CHCHO + CO₂), [155.0] (*CH*=CHCHO + CO₂), 193.6 (CHO), [193.8] (CHO). HRMS (ESI) m/z calcd for C₁₃H₂₁NO₃ (M + Na)⁺ 262.1414, found 262.1416.

2-(1-oxobut-3-en-2-yl)-piperidine-1-carboxylic acid tert-Butyl ester (3h)

Following **GP1** with *N*-Boc-2-hydroxypiperidine **1b** (98.7 mg, 0.49 mmol), 1-(trimethylsiloxy)-1,3-butadiene **2d** (96 μ L, 0.54 mmol) and POM/Hf (114 mg, 4 mol%, 0.02 mmol), to give the desired product **3h** as a clear oil (30 mg, 0.12 mmol, 24% yield).

IR υ max (neat) / cm⁻¹ 1684. ¹H NMR (400 MHz, CDCl₃) δ 1.36 (s, 9H, *t*-Bu), 1.40 – 1.67 (m, 6H, 3CH₂), 2.45 (dddd, *J* = 14.5, 7.3, 6.2, 1.4 Hz, 1H, C*H*HCH=CH), 2.69 – 2.84 (m, 2H, CH*H*CH=CH+NC*H*H), 4.00 (d, *J* = 13.1 Hz, 1H, NCH*H*), 4.49 (bs, 1H, NCH), 6.13 (dd, *J* = 15.5, 7.9 Hz, 1H, C*H*CHO), 6.81 (dt, *J* = 15.5, 7.4 Hz, 1H, C*H*=CHCHO), 9.49 (d, *J* = 7.9 Hz, 1H, CHO). ¹³C NMR (100 MHz, CDCl₃) δ 18.8 (CH₂), 25.3 (CH₂), 28.3 (CH₂), 28.4 (CH₃, *t*-Bu), 33.7 (*CH*₂CH=CH), 39.0 (NCH₂), 49.4 (NCH), 79.6 (*Ct*-Bu), 134.3 (*CH*CHO), 154.9 (CO₂), 155.1 (*CH*=CHCHO), 193.7 (CHO). HRMS (ESI) m/z calcd for C₁₄H₂₃NO₃ (M + Na)⁺ 276.1570, found 276.1574

2-(2-oxobut-3-en-1-yl)-pyrrolidine-1-carboxylic acid tert-Butyl ester (3i)

Following **GP1** with *N*-Boc-2-hydroxypyrrolidine **1a** (123.2 mg, 0.66 mmol), 2-trimethylsiloxy-1,3-butadiene **2e** (178 μL, 0.99 mmol), and POM/Hf (10 mol%, 0.066 mmol), to give the desired product **3i** as a clear oil (71 mg, 0.30 mmol, 45% yield). IR υ max (neat) / cm⁻¹ 1684, 1391. ¹H NMR (400 MHz, CDCl₃) δ 1.45 (s, 9H, *t*-Bu), 1.61 – 1.73 (m, 1H, CHH), 1.74 – 1.89 (m, 2H, CH₂), 1.94 – 2.10 (m, 1H, CHH), 2.52 (bs, 1H, CHHCO), 3.03 – 3.53 (m, 3H, NCH₂+CHHCO), 4.17 (ddt, *J* = 11.0, 7.6, 3.2 Hz, 1H, NCH), 5.82 – 5.91 (m, 1H, CH=CHH_{cis}), 6.31 (bs, 2H, CH=CHH_{trans}). ¹³C NMR (100 MHz, CDCl₃, mixture of rotamers) δ 22.8 (CH₂), [23.5] (CH₂), 28.5 (CH₃, *t*-Bu), 30.3 (CH₂), [31.3] (CH₂), 43.7 (CH₂), [44.5] (CH₂), 46.2 (CH₂), [46.5] (CH₂), 53.8 (CH), [54.1] (CH), 79.2 (C, *t*-Bu), [79.6] (C*t*-Bu), 128.6 (CH₂), [128.9] (CH₂), 136.8 (CH), 154.3 (CO₂), 199.2 (CO), [199.7] (CO). HRMS (ESI) m/z calcd for C₁₃H₂₁NO₃ (M + Na)⁺ 262.1414, found 262.1412.

2-(2-oxobut-3-en-1-yl)-piperidine-1-carboxylic acid tert-Butyl ester (3j)

Following **GP1** with *N*-Boc-2-hydroxypiperidine **1b** (104.7 mg, 0.52 mmol), 2-(trimethylsiloxy)-1,3-butadiene **2e** (140 μ L, 0.78 mmol), and POM/Hf (10 mol%, 0.052 mmol), to give the desired product **3j** as a clear oil (13 mg, 0.05 mmol, 10% yield).

IR υ max (neat) / cm⁻¹ 1687. ¹H NMR (400 MHz, CDCl₃) δ 1.44 (s, 9H, *t*-Bu), 1.53 – 1.69 (m, 6H, 3CH₂), 2.74 – 2.87 (m, 3H, NC*H*H + CH₂CO), 3.99 (m, 1H, NCH*H*), 4.71 (dd, *J* = 12.2, 5.6 Hz, 1H, NCH), 5.85 (dd, *J* = 10.3, 1.2 Hz, 1H, CH=CH*H*_{cis}), 6.26 (dd, *J* = 13.0, 1.2 Hz, 1H, CH=CH*H*_{trans}), 6.38 (dd, *J* = 13.0, 10.3 Hz, 1H, COC*H*=CH₂). ¹³C NMR (100 MHz, CDCl₃) δ 18.8 (CH₂), 25.3 (CH₂), 28.2 (CH₂), 28.4 (CH₃, *t*-Bu), 39.5 (NC*H*₂), 40.3 (*CH*₂CO), 47.8 (N*CH*), 79.7

(Ct-Bu), 128.6 (CH= CH_2), 136.5 (CH=CH₂), 154.7 (CO₂), 198.9 (CO). HRMS (ESI) m/z calcd for C₁₄H₂₃NO₃ (M + Na)⁺ 276.1570, found 276.1573.

2-(2,4-dioxophentane-3-yl)-pyrrolidine-1-carboxylic acid tert-Butyl ester (7a)

Following **GP1** with *N*-Boc-2-hydroxypyrrolidine **1a** (39mg, 0.21 mmol), 2,4-pentanedione **6a** (21.4 μ L, 0.21 mmol), and POM/Hf (10 mol%, 0.021 mmol), to give the desired product **7a** as a clear oil (35 mg, 0.13 mmol, 63% yield). Spectral data correspond to those described in the literature. ⁶[*Journal of Organic Chemistry*, **1983**, *48*, 4058-4067.]

IR υ max (neat) / cm⁻¹ 1686, 1389, 1364. ¹H NMR (400 MHz, C₆D₆) δ 1.12 – 1.23 (m, 1H, CHH), 1.24 – 1.33 (m, 1H, CHH), 1.42 (s, 9H, *t*-Bu), 1.70 (bs, 2H, CH₂), 1.84 (s, 3H, COCH₃), 1.88 (s, 3H, COCH₃), 2.94 – 3.25 (m, 2H, NCH₂), 4.41 – 4.45 (m, 2H, 2CH). ¹³C NMR (101 MHz, C₆D₆) δ 22.3 (CH₂), 27.0 (CH₂ + CH₃, *t*-Bu), 27.8 (CH₃), 30.3 (CH₃), 45.5 (CH₂), 55.9 (NCH), 67.4 (CH), 77.9 (*Ct*-Bu), 153.1 (CO₂), 200.5 (CO), 203.3 (CO).

2-(2,4-dioxopentan-3-yl)-piperidine-1-carboxylic acid tert-Butyl ester (7b)

Following **GP1** with *N*-Boc-2-hydroxypiperidine (78 mg, 0.39 mmol), 2,4-pentanedione (40 μL, 0.39 mmol), and POM/Hf (10 mol%, 0.039 mmol), to give the desired product **7b** as a clear oil (63 mg, 0.22 mmol, 57% yield).

IR υ max (neat) / cm⁻¹ 1686. ¹H NMR (400 MHz, CDCl₃) δ 1.38 – 1.64 (m, 15H, *t*-Bu + 3CH₂), 2.07 (s, 3H, COCH₃), 2.14 (s, 3H, COCH₃), 2.67 (bs, 1H, NCHH), 3.88 (bd, *J* = 51.8 Hz, 1H, NCH*H*), 4.23 (d, *J* = 10.8 Hz, 1H, CH), 5.06 (bd, *J* = 48.8 Hz, 1H, NCH). ¹³C NMR (100 MHz, CDCl₃, mixture of rotamers) δ 19.2 (CH₂), 25.1 (CH₂), 26.9 (COCH₃ + CH₂), 28.3 (CH₃, *t*-Bu), 31.0 (COCH₃), 39.0 (CH₂), [40.3] (CH₂), 49.8 (NCH), [51.1] (NCH), 68.9 (CH), 80.1 (*Ct*-Bu), 154.5 (CO₂), 202.2 (CO). HRMS (ESI) m/z calcd for C₁₅H₂₅NO₄ (M + Na)⁺ 306.1676, found 306.1667.

2-(1,3-dioxo-1-phenylbutan-2-yl)-pyrrolidine-1-carboxylic acid tert-Butyl ester (7c)

Following **GP1** with *N*-Boc-2-hydroxypyrrolidine **1a** (39 mg, 0.21 mmol), 1-phenyl-1,3-butanedione **6b** (35 mg, 0.21 mmol), and POM/Hf (10 mol%, 0.021 mmol), to give the desired product **7c** as a clear oil (44.5 mg, 0.13 mmol, 64% yield).

IR υ max (neat) / cm⁻¹ 1681, 1389. ¹H NMR (400 MHz, CDCl₃, mixture of rotamers and diastereomers) δ 1.20 – 1.73 (m, 11H, CH₂ + *t*-Bu), 1.74 – 2.19(m, 5H, COCH₃ + CH₂), 2.70 – 3.53 (m, 2H, NCH₂), 4.24 – 4.69 (m, 1H, NCH), 4.77 – 5.54 (m, 1H, CH), 7.46 – 7.51 (m, 2H, Harom), 7.57 – 7.64 (m, 1H, Harom), 7.98 (d, *J* = 6.9 Hz, 2H, Harom). ¹³C NMR (100 MHz, CDCl₃, mixture of rotamers and diastereomers) δ 22.7 (CH₂), [23.6] (CH₂), 28.2 (CH₂), 28.3 (CH₃, *t*-Bu), [28.4] (CH₃, *t*-Bu), 29.2 (COCH₃), [31.3] (COCH₃), 46.4 (CH₂), 57.6 (NCH), 63.0 (CH), [63.7] (CH), 79.6 (*Ct*-Bu), [80.3] (*Ct*-Bu), 128.7 (CHarom), [128.8] (CHarom), 133.5 (CHarom), [133.8] (CHarom), 136.7 (Carom), [137.4] (Carom), 154.7 (CO₂), 198.0 (CO), 202.9 (CO). HRMS (ESI) m/z calcd for C₁₉H₂₅NO₄ (M + Na)⁺ 354.1676, found 354.1674.

2-(1,3-dioxo-1-phenylbutan-2-yl)-piperidine-1-carboxylic acid tert-Butyl ester (7d)

Following **GP1** with *N*-Boc-2-hydroxypiperidine **1b** (75.6 mg, 0.38 mmol), and 1-phenyl-1,3-butanedione **6b** (61.5 mg, 0.38 mmol) and POM/Hf (10 mol%, 0.04 mmol), to give the desired product **7d** as a white solid, one diastereomer was separated in 8% (11 mg), the other one was obtained as a mixture with impurities (9.5 mg of product was expected from the ¹H NMR).

IR v max (neat) / cm-1 1687, 1159. ¹H NMR (400 MHz, CDCl₃) δ 1.38 (s, 9H, *t*-Bu), 1.55 – 1.74 (m, 6H, 3CH₂), 2.25 (s, 3H, COCH₃), 2.65 (bs, 1H, NCHH), 3.89 (bs, 1H, NCHH), 5.08 (d, *J* = 11.1 Hz, 1H, CH), 5.33 (d, *J* = 9.8 Hz, 1H, NCH), 7.48 (t, *J* = 7.6 Hz, 2H, Harom), 7.59 (t, *J* = 7.4 Hz, 1H, Harom), 7.97(d, *J* = 8.6 Hz, 2H, Harom). ¹³C NMR (100 MHz, CDCl₃) δ 19.3 (CH₂), 25.2 (CH₂), 27.2 (CH₂), 28.2 (CH₃, *t*-Bu), 28.5 (COCH₃), 39.2 (CH₂), 51.3 (NCH), 63.8 (CH), 79.8 (C*t*-Bu), 128.6 (CHarom), 128.8 (CHarom), 133.5 (CHarom), 136.9 (Carom), 154.2 (CO₂), 193.9 (CO), 202.8 (CO). HRMS (ESI) m/z calcd for C₂₀H₂₇NO₄ (M + Na)⁺ 368.1832, found 368.1831.

2-(1-ethoxy-1,3-dioxobutan-2-yl)-pyrrolidine-1-carboxylic acid tert-Butyl ester (7e)

Following **GP1** with *N*-Boc-2-hydroxypyrrolidine **1a** (51.4 mg, 0.28 mmol), ethyl acetoacetate **6c** (35 μ L, 0.28 mmol), and POM/Hf (10 mol%, 0.028 mmol), to give the desired product **7e** as a 58/42 mixture of diastereomers (46 mg, 0.15 mmol, 55% yield).

IR υ max (neat) / cm⁻¹ 1688, 1390, 1366, 1157. ¹H NMR (400 MHz, CDCl₃, mixture of diastereomers) δ 1.15 – 1.27 (m, 3H, CH₂CH₃), 1.39 (s, 5.2H, *t*-Bu, 1 *dia*.), [1.40] (s, 3.7H, *t*-Bu, 1 *dia*. *mino*), 1.64 – 1.81 (m, 2H, CH₂), 1.82 – 2.09 (m, 2H, CH₂), 2.16 (s, 3H, COCH₃), 3.12 – 3.23 (m, 2H, NCHH), 3.36 (bs, 1H, NCHH), 4.03 – 4.19 (m, 3H, CH + CH₂CH₃), 4.21 – 4.39 (m, 1H, NCH). ¹³C NMR (100 MHz, CDCl₃, mixture of diastereomers) δ 14.0 (CH₃, 1 *dia*.), [14.1] (CH₃, 1 *dia*.), 23.6 (CH₂), 28.5 (CH₃, *t*-Bu), 29.2 (CH₂), 30.9 (COCH₃, 1 *dia*.), [31.8] (COCH₃, 1 *dia*.), 46.7 (CH₂, 1 *dia*.), [47.0] (CH₂, 1 *dia*.), 56.4 (NCH, 1 *dia*.), [57.0] (NCH, 1 *dia*.), 61.2 (CH₂), 61.5 (CH), 79.7 (*Ct*-Bu), 154.5 (CO₂), 168.5 (CO), [169.0] (CO, 1 *dia*.), 201.9 (CO, 1 *dia*.), [203.9] (CO, 1 *dia*.). HRMS (ESI) m/z calcd for C₁₅H₂₅NO₅ (M + Na)⁺ 322.1625, found 322.1617.

Following **GP1** with *N*-Boc-2-hydroxypiperidine **1b** (77.5 mg, 0.39 mmol), ethyl acetoacetate **6c** (50 μ L, 0.39 mmol), and POM/Hf (10 mol%, 0.039 mmol), to give the desired product **7f** as a colorless oil, only one diastereomer was successfully separated in 35% yield (42.4 mg).

IR υ max (neat) / cm⁻¹ 1685, 1156. ¹H NMR (400 MHz, CDCl₃) δ 1.25 (t, *J* = 7.1 Hz, 3H, CH₂CH₃), 1.38 – 1.54 (m, 12H, CH₂ + CHH + t-Bu), 1.59 – 1.69 (m, 3H, CH₂ + CHH), 2.28 (s, 3H, COCH₃), 2.85 (bs, 1H, NCHH), 3.83 – 4.28 (m, 4H, CH₂ + NCHH + CH), 5.02 (bs, 1H, NCH). ¹³C NMR (100 MHz, CDCl₃, mixture of rotamers) δ 13.9 (CH₂CH₃), 19.0 (CH₂), 25.1 (CH₂), 27.1 (CH₂), 28.3 (CH₃, t-Bu), 28.9 (COCH₃), 38.9 (CH₂), [40.4] (CH₂), 49.5 (NCH), [50.3] (NCH), 59.5 (CH), 61.4 (CH₂), 79.7 (*Ct*-Bu), 154.4 (CO₂), 167.6 (CO), [168.4] (CO), 201.4 (CO). HRMS (ESI) m/z calcd for C₁₆H₂₇NO₅ (M + Na)⁺ 336.1781, found 336.1788.

2-(4-chloro-1-methoxy-1,3-dioxobutan-2-yl)-pyrrolidine-1-carboxylic acid tert-Butyl ester (7g)

Following **GP1** with Boc-2-hydroxypyrrolidine **1a** (37 mg, 0.20 mmol), Methyl 4-chloroacetoacetate **6d** (24 μ L, 0.20 mmol), and POM/Hf (10 mol%, 0.02 mmol), to give the desired product **7g** as a 56/44 mixture of diastereomers (31 mg, 0.10 mmol, 49% yield).

IR υ max (neat) / cm⁻¹ 1684, 1391, 1158. ¹H NMR (400 MHz, CDCl₃, mixture of diastereomers) δ 1.41 (s, 5H, *t*-Bu, 1 *dia.*), [1.42] (s, 4H, *t*-Bu, 1 *dia.*), 1.68 – 1.89 (m, 2.6H, CH₂ + C*H*H (1 *dia.*)), 1.96 – 2.06 (m, 0.6 H, CH*H*, 1 *dia.*), 2.06 – 2.16 (m, 1H, C*H*H, 2 *dias.*)3.18 – 3.28 (m, 1H, NC*H*H), 3.37 (bs, 1H, NC*HH*), 3.68 (s, 1.3H, COOC*H*₃, 1 *dia.*), [3.70] (s, 1.7 H, COOC*H*₃, 1 *dia.*), 4.06 – 4.63 (m, 4H, NCH + CH + CH₂Cl). ¹³C NMR (100 MHz, CDCl₃, mixture of diastereomers) δ 23.5 (CH₂), 28.3 (CH₃, *t*-Bu), 28.5 (CH₂, 1 *dia.*), [29.21 *dia.*] (CH₂), 46.5 (CH₂, 1 *dia.*), [46.9] (CH₂, 1 *dia.*), 47.7 (CH₂, *1 dia.*), [49.2] (CH₂, 1 *dia.*), 52.5 (COOC*H*₃, 1 *dia.*), [52.5] (COOC*H*₃, 1 *dia.*), 55.9 (NCH), 56.8 (CH, 1 *dia.*), [57.0] (CH, 1 *dia.*), 79.9 (*Ct*-Bu), 154.4 (CO₂), 167.9 (CO, 1 *dia.*), [168.5] (CO, 1 *dia.*), 195.7 (*CO*CH₂, 1 *dia.*), [196.9] (*CO*CH₂, 1 *dia.*). HRMS (ESI) m/z calcd for C₁₄H₂₂ClNO₅ (M + Na)⁺ 342.1079, found 342.1082.

Following **GP1** with *N*-Boc-2-hydroxypyrrolidine **1a** (39 mg, 0.21 mmol), 1,3-cyclopentanedione **6e** (21 mg, 0.21 mmol) and POM/Hf (12 mg, 1 mol%, 0.002 mmol), to give the desired product **7i** as a white solid (54 mg, 0.20 mmol, 95% yield), which is mainly in its enol form.

IR υ max (neat) / cm⁻¹ 1625, 1388, 1160. ¹H NMR (400 MHz, CDCl₃) δ 1.38 (s, 9H, *t*-Bu), 1.72 – 1.89 (m, 2H, 2C*H*H), 2.27 (bs, 1H, CH*H*), 2.34 (bs, 4H, 2CH₂), 2.56 (bs, 1H, CH*H*), 3.19 – 3.38 (m, 2H, NCH₂), 4.46 – 4.56 (m, 1H, NCH).¹³C NMR (100 MHz, C₆D₆) δ 25.7 (CH₂). 27.4 (CH₂), 28.2 (CH₃, *t*-Bu), 30.0 (2CH₂), 46.7 (CH₂), 52.3 (CH), 80.9 (*Ct*-Bu), 116.5 (C), 157.7 (CO₂), 195.9 (CO + *C*OH). HRMS (ESI) m/z calcd for C₁₄H₂₁NO₄ (M + Na)⁺ 290.1363, found 290.1365.

2-(2,5-dioxocyclopentyl)-piperidine-1-carboxylic acid tert-Butyl ester (7j)

Following **GP1** with *N*-Boc-2-hydroxypiperidine **1b** (58.4 mg, 0.29 mmol), 1,3-cyclopentanedione **6e** (29.2 mg, 0.29 mmol) and POM/Hf (1 mol%, 0.003 mmol), to give the desired product **7j** as a white solid (67.7 mg, 0.24 mmol, 83% yield), which is mainly in its enol form. ⁷[*Tetrahedron Letters*, 2004, *45*, 2821-2823]

IR υ max (neat) / cm⁻¹ 1690, 1581, 1401, 1371. ¹H NMR (400 MHz, CDCl₃, mixture of rotamers) δ 1.36 – 1.58 (m, 10H, *t*-Bu + C*H*H), 1.58 – 1.77 (m, 3H, 2C*H*H + CH*H*), 2.23 – 2.37 (m, 2H, 2CH*H*), 2.49 (m, 4H, 2CH₂), 2.75 (t, *J* = 11.9 Hz, 1H, NC*H*H), 3.87 (d, *J* = 12.3 Hz, 1H, NCH*H*), 4.88 (d, *J* = 6.4 Hz, 1H, CH). ¹³C NMR (100 MHz, CDCl₃) δ 21.4 (CH₂). 24.7 (CH₂), 25.3 (CH₂), 28.4 (CH₃, *t*-Bu), 41.4 (CH₂), 46.2 (CH), 81.7 (*Ct*-Bu), 117.2 (C), 158.1 (CO₂). HRMS (ESI) m/z calcd for C₁₅H₂₃NO₄ (M + Na)⁺ 304.1519, found 304.1518.

2-(2-hydroxy-6-oxocyclohex-1-en-1-yl)-pyrrolidine-1-carboxylic acid tert-Butyl ester (7k)

C₁₅H₂₃NO₄ M = 281.3474

Following **GP1** with N-Boc-2-hydroxypyrrolidine **1a** (115 mg, 0.61 mmol), 1,3-Cyclohexanedione **6f** (71 μ L, 0.61 mmol) and POM/Hf (34 mg, 1 mol%, 0.006 mmol), to give the desired product **7k** as a white solid (146 mg, 0.52 mmol, 85% yield), which is mainly in its enol form.

IR υ max (neat) / cm⁻¹ 1633, 1383. ¹H NMR (400 MHz, C₆D₆) δ 1.20 – 1.49 (m, 12H, CH₂ + C*H*H+ *t*-Bu), 1.69 – 1.89 (m, 2H, 2C*H*H), 2.01 – 2.25 (m, 4H, CH₂ + 2CH*H*), 2.29 – 2.38 (m, 1H, CH*H*), 3.44 – 3.60 (m, 1H, NC*H*H), 3.60 – 3.67 (m, 1H, NCH*H*), 4.79 (dd, *J* = 9.3, 5.4 Hz, 1H, CH), 11.47 (s, 1H, OH). ¹³C NMR (100 MHz, C₆D₆) δ 19.8 (CH₂), 25.5 (CH₂),

28.3 (CH₃, *t*-Bu), 29.4 (CH₂), 30.2 (CH₂), 37.6 (CH₂), 47.5 (NCH₂), 53.2 (CH), 80.4 (C*t*-Bu), 117.2 (C), 156.9 (CO₂), 175.9 (COH), 196.3 (CO). HRMS (ESI) m/z calcd for $C_{15}H_{23}NO_4$ (M + Na)⁺ 304.1519, found 304.1527.

4. Allylation Reaction.

2-Allylpyrrolidine-1-carboxylic acid tert-butyl ester (8a)

Following **GP1** with *N*-Boc-2-hydroxypyrrolidine **1a** (116.2 mg, 0.62 mmol), allyltrimethylsilane (0.5 mL, 3.1 mmol) and POM/Hf (702 mg, 20 mol%, 0.12 mmol), to give the desired product **8a** as a clear oil (22.7 mg, 0.11 mmol, 17% yield). ⁸[*Org. Lett.*, 2010, *12*, 4176–4179]

¹H NMR (400 MHz, CDCl₃) δ 1.49 (s, 9H, *t*-Bu), 1.63 – 1.99 (m, 4H, 2CH₂), 2.06 – 2.23 (m, 1H, CH*H*CH=CH₂), 2.42 – 2.59 (m, 1H, C*H*HCH=CH₂), 3.25 – 3.47 (m, 2H, NCH₂), 3.76 – 3.90 (m, 1H, NCH), 5.00 – 5.14 (m, 2H, CH=CH₂), 5.67 – 5.87(m, 1H, C*H*=CH₂). ¹³C NMR (100 MHz, CDCl₃) δ 23.2 (CH₂), 28.5 (CH₃, *t*-Bu), 29.7 (CH₂), 38.7 (CH₂), 46.5 (NCH₂), 56.8 (NCH), 79.0 (*Ct*-Bu), 116.9 (CH=*CH₂*), 135.3 (*CH*=CH₂), 154.5 (CO₂).

¹H and ¹³C NMR Spectra of **3a**

¹H and ¹³C NMR Spectra of **3b**

¹H and ¹³C NMR Spectra of **3e**

¹H and ¹³C NMR Spectra of **3g**

¹H and ¹³C NMR Spectra of **7b**

¹H and ¹³C NMR Spectra of 7c

¹H and ¹³C NMR Spectra of 7d

¹H and ¹³C NMR Spectra of **7f**

¹H and ¹³C NMR Spectra of **7**k

References:

- 1 M. J. Niphakis and G. I. Georg, Org. Lett., 2011, 13, 196-199.
- 2 S. Louwrier, A. Tuynman and H. Hiemstra, Tetrahedron, 1996, 52, 2629-2646.
- 3 S. Krishnan, J. T. Bagdanoff, D. C. Ebner, Y. K. Ramtohul, U. K. Tambar, and B. M. Stoltz, *J. Am. Chem. Soc.*, **2008**, *130*, 13745–13754.
- 4 L. A. F. de Godoy, N. S. Camilo and R. A. Pilli, Tetrahedron Lett. 2006, 47, 7853-7856.
- 5 R. A. Pilli, L. G. Robello, N. S. Camilo, J. Dupont, A. A. Moreira Lapis, and B. A. da Silveira Neto. *Tetrahedron Lett.* **2006**, *47*, 1669–1672.
- 6 M. Mori, Y. Washioka, T. Urayama, K. Yoshiura, K. Chiba, and Y. Ban, J. Org. Chem. 1983, 48, 4058-4067.
- 7 N. S. Camilo, and R. A. Pilli, Tetrahedron Lett. 2004, 45, 2821–2823.
- 8 G. Barker, P. O'Brien, and K. R. Campos, Org. Lett. 2010, 12, 4176-4179.