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Abstract 23 

Marine-freshwater and freshwater-marine transitions have been key events in the evolution of 24 

life, and most major groups of organisms have independently undergone such events at least 25 

once in their history. Here we first compile an inventory of bidirectional freshwater and 26 

marine transitions in multicellular photosynthetic eukaryotes. While green and red algae have 27 

mastered multiple transitions in both directions, brown algae have colonized fresh water on 28 

maximally six known occasions, and angiosperms have made the transition to marine 29 

environments only two or three times. Next we review the early evolutionary events leading 30 

to the colonization of current habitats. It is commonly assumed that the conquest of land 31 

proceeded in a sequence from marine to freshwater habitats. However, recent evidence 32 

suggests that early photosynthetic eukaryotes may have arisen in subaerial or freshwater 33 

environments and only later colonized marine environments as hypersaline oceans were 34 

diluted to the contemporary level. Although this hypothesis remains speculative, it is 35 

important to keep these alternative scenarios in mind when interpreting the current habitat 36 

distribution of plants and algae. Finally we discuss the roles of structural and functional 37 

adaptations of the cell wall, reactive oxygen species scavengers, osmoregulation, and 38 

reproduction. These are central for acclimatization to freshwater or to marine environments. 39 

We observe that successful transitions appear to have occurred more frequently in 40 

morphologically simple forms and conclude that, in addition to physiological studies of 41 

euryhaline species, comparative studies of closely related species fully adapted to one or the 42 

other environment are necessary to better understand the adaptive processes. 43 

Keywords: Macroalgae, aquatic plants, marine-freshwater and freshwater-marine transitions, 44 

adaptation, evolution 45 



3 

 

1. FRESHWATER AND MARINE HABITATS 46 

Water bodies cover 71% of the Earth’s surface, either as oceans, lakes, rivers or as ice (Ott 47 

1988). Approximately 97.6% of all water on Earth is saline and only 2.4% is fresh water 48 

(although estimates vary depending on the author). Most of this fresh water is found as 49 

groundwater or as ice, and only 0.009% occurs within lakes and rivers (Wetzel 2001). Fresh 50 

water is defined as water with a salinity ≤ 0.5 g dissolved salts·L-1 (International Symposium 51 

for the Classification of Brackish Waters 1958), and the global average for lakes and rivers is 52 

0.12 g·L-1 of salt (Wetzel 2001). The reason for differences in salinity among water bodies is 53 

the water cycle: surface water (both salty and fresh) evaporates and precipitates as fresh 54 

water. A part of this fresh water precipitates on land and gradually flows back to the sea, 55 

dissolving and transporting salts on its way. In parallel, the evaporation of large basins in 56 

combination with the rise of land masses generates new terrestrial salt reserves. Ocean salinity 57 

has been modeled to have varied over the last 600 My between 30 to 60 g·L-1 with a current 58 

mean of 35 g·L-1 (Hay et al. 2006). Mainly the sodium(Na)/potassium(K) balance in seawater 59 

is thought to have shifted in favor of Na over time due to the higher potential of K to bind to 60 

clay and thus to be removed from seawater (MacIntyre 1970).  61 

Seawater is not just a concentrated version of fresh water, as a number of processes impact 62 

ion distribution in each environment. For one, salts (including nutrients) are washed into the 63 

ocean at different rates. Thus, the availability of macro- and micronutrients differs 64 

significantly between freshwater and marine environments. Primary production in the 65 

majority of freshwater ecosystems is most often limited by the availability of phosphorus 66 

(Schindler 1977), whereas marine environments are primarily limited by nitrogen (Hecky and 67 

Kilham 1988; Zehr and Ward 2002) or trace elements such as iron (Martin et al. 1990). Also, 68 

once eluted from the soil, calcium ions (Ca2+) readily precipitate as calcium carbonate 69 

(CaCO3), whereas Na+ remains in solution and is efficiently transported to the ocean. 70 
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Freshwater environments are therefore mainly Ca2+-dominated whereas seawater is Na+-71 

dominated. Nevertheless, there is usually more total carbonate in marine environments, 72 

compared to fresh water (Table 1).  73 

Fresh water composition depends more on the surrounding terrestrial environment and is 74 

highly variable compared to seawater. Factors that influence fresh water composition include 75 

chemical interactions with the soil, the geological context, weathering, precipitation (quantity 76 

and quality), temperature, stream discharge, nutrient uptake, and physical and biological 77 

transformations (Feller 2009). Geologists distinguish between rock-dominated and 78 

precipitation-dominated fresh water (Gibbs 1970). Rock-dominated fresh water is usually 79 

found at higher altitudes and salt concentrations are highly dependent on the material of the 80 

basin; it is usually rich in silicate (Si) and K. Precipitation-dominated fresh water occurs 81 

primarily in leached areas with high rainfall. Its ion composition reflects that of the rain, with 82 

ions occurring in similar proportions as in seawater, even in water bodies that are far inland. 83 

Finally, evaporation has a strong impact on the ion composition of fresh water, increasing 84 

salinity and removing CaCO3 due to precipitation from solution.  85 

Life on Earth is generally thought to have originated 4 billion years ago in primordial, 86 

hypersaline oceans (Martin et al. 2008) with salinities > 80 g·L-1 (Pinti 2005). From there, 87 

bacteria and eukaryotes gradually colonized freshwater and then terrestrial environments. 88 

Recently, an alternative scenario has been proposed in which life first arose in non-marine 89 

settings (i.e. subaerial or freshwater) (Wellman and Strother 2015) and only later colonized 90 

marine habitats. It is possible that early eukaryotes including the ancestors of the major 91 

macro-algal lineages also originated and diversified in this non-marine setting 2-1.1 Gya, and 92 

that the colonization of marine environments may have been stimulated during times of lethal 93 

land surface conditions. In either scenario, habitat transitions were key events in the early 94 

evolution of photosynthetic, multicellular eukaryotes.  95 
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However, most extant lineages - from archaeans to metazoans - are found in both fresh water 96 

and seawater, indicating that each of them also independently made a transition between these 97 

environments at least once in their recent evolutionary history. When, how often, and under 98 

what conditions these transitions have occurred (and can occur) are questions fundamental to 99 

our understanding of habitat diversification in the broadest sense and to explain the 100 

distribution of marine, freshwater, and terrestrial biodiversity.  101 

In this review, we first compile an inventory of extant marine-freshwater and freshwater-102 

marine transitions in multicellular, photosynthetic eukaryotes (Figure 1) and then discuss our 103 

findings in the context of current hypotheses about their evolutionary and geological history. 104 

We define multicellular photosynthetic protists/algae as a physically connected set of 105 

genetically identical cells with the ability to produce distinctive reproductive structures, 106 

although we also included some siphonous algae in our review. We consider an alga as 107 

marine if it naturally occurs and reproduces in seawater (see above), and as freshwater, if it 108 

naturally occurs and reproduces in fresh water (salinity ≤ 0.5 g·L-1). Species found in brackish 109 

water are, in almost all cases, also able to tolerate marine conditions and were thus considered 110 

marine. Terrestrial species are those found outside of waterbodies, although some species also 111 

occur in fresh water, and some might require regular exposure to fresh water (e.g. abundant 112 

rain for reproduction). Please note that, across the different lineages examined in this review, 113 

particular taxonomic ranks (families, genera, species) are not always equivalent. 114 

2. CENSUS OF MARINE-FRESHWATER AND FRESHWATER-MARINE 115 

TRANSITIONS 116 

Unicellular and non-photosynthetic multicellular organisms 117 

Unicellular protists and bacteria occur in extremely large populations with generally short 118 

generation times and fast evolutionary rates (Baer et al. 2007). These properties facilitate 119 
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large-scale dispersal into different environments. Nevertheless, in a recent study Logares et al. 120 

(2009) demonstrated that among these organisms, separate clades have adapted to either 121 

marine or freshwater environments, a separation probably due in part to the energetic costs 122 

associated with osmoregulation and ion homeostasis. 123 

Multicellular organisms (with exceptions) are generally characterized by comparatively 124 

smaller population sizes, longer generation times and a slower rate of evolution (Baer et al. 125 

2007). Nevertheless, many of these lineages too, are found in both marine and freshwater 126 

environments. In animals, marine to freshwater transitions (and vice versa) have been 127 

particularly well-studied in fish (Vega and Wiens 2012). In addition, several species of fish 128 

are also able to migrate between fresh water and seawater in the course of their lives. These 129 

diadromous fish rely on specialized membrane transporters and compatible osmolytes to 130 

adjust intracellular osmolarity and ion concentrations. Active osmoregulation, however, 131 

depends on a sufficient supply of energy. Plants and macroalgal species that live permanently 132 

submerged have to deal with reduced light quality and quantity and thus reduced energy 133 

supply. Adaptations in photosynthetic pigments (Dawes 1998) and/or specific structural and 134 

physiological adaptations related to osmotolerance for marine vs. freshwater conditions are 135 

therefore required (see section 4). 136 

Archaeplastida 137 

The supergroup Archaeplastida or Plantae (includes: Glaucophyta, the Viridiplantae, and the 138 

Rhodophyta) arose from a primary endosymbiosis event with a cyanobacterium and a 139 

heterotrophic eukaryote (McFadden 2001). It is the most diverse group of multicellular 140 

photosynthetic eukaryotes, reaching substantial abundances in marine, freshwater, and 141 

terrestrial habitats. The Glaucophytes are rare, unicellular organisms at the root of the 142 

Archaeplastida that occur predominantly in fresh water, although recent 18S metabarcoding 143 

data from the Tara Oceans Project revealed glaucophyte sequences in oceanic environments 144 
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(see Supplementary dataset W5 in de Vargas et al. 2015). The Viridiplantae (the green 145 

lineage) split into two monophyletic groups, the Streptophyta, and the Chlorophyta, 146 

approximately 1,200-750 million years ago (Becker and Marin 2009) and includes green 147 

algae, charophytes, and terrestrial plants. Rhodophytes (red algae) are mainly multicellular 148 

marine algae but also comprise freshwater and a very few, partially terrestrial species (Sheath 149 

and Vis 2015).  150 

Streptophyta 151 

The most basal multicellular streptophytes are the Klebsormidiophyceae (Figure 1A). They 152 

are small, filamentous freshwater and terrestrial algae; only 41 different species of this class 153 

are currently registered in AlgaeBase (Guiry and Guiry 2015). Some members of the 154 

Klebsormidiophyceae can survive and grow in saline waters up to 60 g·L-1 (Karsten and Rindi 155 

2010), and Klebsormidium marinum (Deason) P.C.Silva, K.M.Mattox & W.H.Blackwell has 156 

been found close to the sea (Deason 1969). However, we are unaware of any confirmed 157 

findings in marine environments. The Zygnematophyceae (= Conjugatophyceae) is a group of 158 

small unicellular or filamentous algae with over 3000 species (Guiry and Guiry 2015). 159 

Among them, the Zygnematales are generally considered a freshwater order (Lee 2008), 160 

although a few findings of Spirogyra spp. have also been recorded from saline lakes (Hammer 161 

1986) and estuaries (Attrill 1998). The second order within this class, the Desmidiales, 162 

comprises thousands of microscopic freshwater species (Brook 1981; Hall and Mccourt 163 

2015). The multicellular representatives (Spondylosium, Desmidium, Onychonema, 164 

Hyalotheca, Cosmocladium, Groenbladia, Sphaerozosma) (McCourt et al. 2000), are almost 165 

exclusively freshwater organisms. To our knowledge, the only (possible) exception is an 166 

unconfirmed report of Sphaerozosma vertebratum Brébisson ex Ralfs from Indian coastal 167 

waters (Thayalan et al. 2013). The Coleochaetophyceae, with 35 species, are also 168 

predominantly found in fresh water (Cook and Graham 2016). 169 
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Higher morphological complexity, including tissue differentiation and more elaborate body 170 

plans, is found in the Charophyceae, comprising only a single order, the Charales (Lee 2008). 171 

Charales, also called stoneworts due to the fact that some species in the group can become 172 

heavily calcified, are closely related to terrestrial plants. Their thalli can be up to 1 m long, 173 

and they form underwater meadows in freshwater ponds and streams. Although the vast 174 

majority of the ~700 known species of Charales (Guiry and Guiry 2015) grow in fresh water 175 

(John and Rindi 2015), there are also examples from brackish water, notably in the upper 176 

Baltic Sea (Schubert and Blindow 2004) and salt-contaminated lakes in Australia (Burne et al. 177 

1980). Lamprothamnium spp. generally inhabit estuaries and coastal pools where the salinity 178 

can vary rapidly between fresh and full strength seawater. Tolypella salina R.Corillion is 179 

found in salt marshes along the French Atlantic coast (Lambert et al. 2013), while the 180 

majority of Tolypella species occur in fresh water. It may be assumed that within the Charales 181 

at least two independent transitions from freshwater to marine environments have taken place. 182 

The largest group of streptophytes are the Embryophyta (land plants). They separated from 183 

the charophytes and the Zygnematophyceae (Wodniok et al. 2011), and colonized a terrestrial 184 

habitat approximately 470 million years ago (Sanderson et al. 2004). Embryophytes are 185 

currently estimated to comprise 200,000 to 450,000 species (Scotland and Wortley 2003). 186 

About 4,500 of them live in aquatic1 environments. However, Les et al. (1997) estimated that 187 

only 130 species of land plants have entirely returned to fully submerged aquatic 188 

environments. This is presumed to have happened during several independent transitions, 189 

which have occurred in the Alismatidae, the Ceratophyllaceae (Ceratophyllales), and 190 

Callitrichaceae (Asterids). While in the cases of Ceratophyllaceae and Callitrichaceae the 191 

entire families are restricted to fresh water (possibly due to their lack of roots and rhizomes) 192 

(Arber 1920), five families within the lower monocot order Alismatales made the transition to 193 

                                                 
1 Please note that our use of aquatic includes both fresh water and seawater 
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marine environments on at least two occasions (Figure 1B). As the sister-group of each of the 194 

marine groups of seagrasses is found in fresh water, and as freshwater forms are clearly more 195 

common than marine forms, a transition from fresh water to seawater is more parsimonious 196 

than a direct transition from terrestrial environments as noted by Les et al. (1997). In addition, 197 

there may have been a secondary re-colonization of freshwater environments by a marine 198 

ancestor within the Potamogetonaceae (suggested in Figure 1).  199 

Chlorophyta 200 

Approximately 80% of the >6,000 green algal species (Guiry and Guiry 2015) are freshwater 201 

and about 20% are marine or brackish species (John and Rindi 2015). Microscopic species are 202 

usually found in fresh water and macrophytic taxa in marine waters (John and Rindi 2015). 203 

Multicellular chlorophytes have developed in four lineages, the Palmophyllales 204 

(Mamiellophyceae), the Trebouxiophyceae, the Chlorophyceae, and the Ulvophyceae 205 

(Leliaert et al. 2012). Here, we attempt to give an overview of marine-freshwater or 206 

freshwater-marine transitions in these classes, keeping in mind that for many of the species, 207 

molecular phylogenies are lacking and highly convergent morphology severely limits the 208 

utility of morphological classification.  209 

The Palmophyllales constitute a small group of early-branching chlorophytes with only three 210 

genera (Palmophyllum, Verdigellas, and Palmoclathrus) restricted to deep-water or low light 211 

marine environments (Zechman et al. 2010; Leliaert et al. 2011).  212 

The Trebouxiophyceae comprise 700 species (Guiry and Guiry 2015), of which some 213 

members enter symbiotic relationships with fungi to form lichens, while others are common 214 

in freshwater plankton. Although this group consists mainly of unicellular or simple colony-215 

forming representatives, the Microthamniales, Phyllosiphonales, and Prasiolales also form 216 

filaments and simple thalli. Freshwater forms comprise the majority of the Trebouxiophyceae, 217 
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and multicellular representatives include only freshwater (Microthamniales) and terrestrial 218 

forms (Phyllosiphonales). To our knowledge, there are no known multicellular marine forms 219 

within the Trebouxiophyceae (Leliaert et al. 2012). At least one clade of the Prasiolales, 220 

however, frequently occurs in the supralittoral of cold-temperate and polar oceans, and a few 221 

species can be cultivated in vitro in full-strength seawater medium (Rindi et al. 2007; Heesch 222 

et al. 2016). 223 

The Chlorophyceae comprise ~3,500 species (Guiry and Guiry 2015), many of which are 224 

unicellular or colonial (notably the Chlamydomonadales). These groups are not included in 225 

this review. Among the filamentous forms, most occur primarily in fresh water (John and 226 

Rindi 2015), although several freshwater to marine transitions have occurred. One freshwater 227 

to seawater transition probably arose in the Chaetopeltidales, a freshwater/terrestrial order that 228 

also comprises marine species in the genus Pseudulvella (Sanchez-Puerta et al. 2006). While 229 

mostly from fresh water, the Chaetophorales (Caisová et al. 2011 and references therein), 230 

comprise eleven marine or partially marine genera (Arthrochaete, Didymosporangium, 231 

Elaterodiscus, Endophyton, Entodictyon, Gongrosira, Kymatotrichon, Protoderma, 232 

Sporocladopsis, Uronema, Thamniochloris; see e.g. Lee 1980; Nielsen 1988; Stuercke and 233 

McDermid 2004). 234 

The Ulvophyceae are a very diverse group of multicellular green algae with 1,700 species 235 

(Guiry and Guiry 2015), including unicellular, multicellular, siphonous/coenocytic (single cell 236 

with multiple nuclei), and siphonocladous (several cells each with multiple nuclei) forms. 237 

Different groups are thought to have independently evolved multicellularity (Cocquyt et al. 238 

2010a). The Ulvophyceae are mainly marine, but some species are also found in freshwater 239 

(Ichihara et al. 2009a) or terrestrial habitats. A few orders of Ulvophyceae such as the 240 

Scotinosphaerales and the Oltmannsiellopsidales are not included here as they comprise only 241 

simple or unicellular algae (e.g. Škaloud et al. 2013 and references therein).  242 
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Within the multicellular Ulvophyceae, only the Trentepohliaceae (100 species; Guiry and 243 

Guiry 2015) are thought to contain exclusively terrestrial/freshwater species (Lopez-Bautista 244 

2006). Its sister clade, comprising the Cladophorales, Bryopsidales, and Dasycladales 245 

(Cocquyt et al. 2010b), together accounting for >1,000 species (Guiry and Guiry 2015), is 246 

predominantly marine. The Bryopsidales include siphonous and siphonocladous algae that 247 

can form dense seabed meadows. All known members are marine. This order also comprises 248 

the invasive species Caulerpa taxifolia (M.Vahl) C.Agardh. The Cladophorales are generally 249 

considered a marine order, but freshwater taxa are known from both of its principal clades 250 

(Hanyuda et al. 2002), thus corresponding to at least two independent adaptations. One clade 251 

comprises the genera Aegagropila (freshwater, including the so-called lake balls or Marimo 252 

balls), Pithophora (freshwater), Arnodiella (freshwater), Wittrockiella (marine), and some 253 

Cladophora (marine and freshwater). Of the species examined by Hanyuda et al. (2002), the 254 

second clade comprises only two species (Rhizoclonium hieroglyphicum (C.Agardh) Kützing 255 

and Cladophora glomerata (L.) Kützing) that occur in seawater and fresh water, and the 256 

remaining 29 are marine. The Dasycladales are mainly unicellular or siphonous and are 257 

dominantly marine (Lee 2008), although e.g. Batophora oerstedii J.Agardh was also found in 258 

freshwater environments (Valet 1979). 259 

The Ulotrichales are a heterogeneous group of primarily uniseriate, filamentous green algae 260 

comprising 170 species (Guiry and Guiry 2015). They are found in marine, brackish, 261 

freshwater, and terrestrial environments (e.g. Friedl and O’Kelly 2002; Lee 2008 and 262 

references therein). As the morphology of these species is highly variable and few molecular 263 

phylogenies are available, the number of transitions between freshwater and marine 264 

environments cannot be estimated. In some cases species thought to belong to the same genus 265 

have different habitat preferences (e.g. Codiolum kuckuckii Skottsberg & Levring (freshwater; 266 

Silva and Chacana 2005) vs. Codiolum brevipes Foslie (marine; Lokhorst and Trask 1981); 267 
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Ulothrix zonata (F.Weber & Mohr) Kützing (freshwater; Graham et al. 2004) vs. Ulothrix 268 

implexa (Kützing) Kützing (marine; Bartsch and Kuhlenkamp 2000)).  269 

The Ulvales, represented by >300 species (Guiry and Guiry 2015), are characterized by a 270 

cylindrical or sheet-like morphology (Lee 2008). The Bolbocoleaceae and the Phaeophilaceae 271 

are considered marine (e.g. Hauck 1876; Wynne 2011), while the Cloniophoraceae are found 272 

only in freshwater or brackish environments. Members of the genus Dilabifilum are found 273 

mainly in freshwater or terrestrial habitats (John and Rindi 2015) but also hypersaline 274 

environments (Vinogradova and Darienko 2008). The largest families within the Ulvales, i.e. 275 

the Kornmanniaceae, Ulvaceae, and Ulvellaceae, are represented by both freshwater and 276 

marine taxa, though they are mainly marine (Wehr and Sheath 2003). In each of these 277 

families, it is likely that multiple independent colonizations of fresh water have occurred. For 278 

example, most members of the genus Blidingia are marine, but some populations of the 279 

otherwise marine Blidingia marginata (J.Agardh) P.J.L.Dangeard ex Bliding have been 280 

encountered in fresh water (as Blidingia minima var. ramifera Bliding, nom. inval.) (Iima et 281 

al. 2004). Four species in the genus Pseudendoclonium (P. akinetum Tupa, P. basiliense 282 

Vischer, P. laxum D.M.John & L.R.Johnson, and P. prostratum Tupa) have been described 283 

from fresh water (Tupa 1974; Whitton and John 2014). This may well constitute another 284 

transition, although the monophyly of the genus remains questionable (Mullins 2007). Most 285 

species within the Ulvaceae are marine or brackish water species, but several independent 286 

transitions to fresh water have occurred in the genus Ulva. U. flexuosa Wulfen (comprising U. 287 

intestinalis L.; Mareš et al. 2011) and its sister species U. meridionalis R.Horimoto & 288 

S.Shimada (Horimoto et al. 2011) constitute the most common freshwater clade, frequently 289 

forming blooms in eutrophicated or salt-contaminated waters. A second clade consists of U. 290 

limnetica K. Ichihara & S. Shimada (Ichihara et al. 2009a). It is only known from freshwater 291 

bodies in Japan. Finally, U. maeotica (Proshkina-Lavrenko) P.Tsarenko and U. simplex 292 
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(K.L.Vinogradova) H.S.Hayden, Blomster, Maggs, P.C.Silva, M.J.Stanhope & J.R.Waaland 293 

have been described in marine and freshwater habitats in the Ukraine (Burova et al. 2011), but 294 

their phylogenetic relationship has not been investigated.  295 

Within the Ulvellaceae, only two genera have freshwater representatives: Entocladia and 296 

Ulvella. Entocladia gracilis Hansgirg is the only freshwater species in the genus (John and 297 

Rindi 2015), whereas at least three species of Ulvella have colonized fresh water, i.e., U. 298 

bullata (C.-C.Jao) H.Zhu & G.Liu, U. tongshanensis H.Zhu & G.Liu, and U. prasina (C.-299 

C.Jao) H.Zhu & G.Liu (Zhu et al. 2015). 300 

Rhodophyta  301 

Red algae occur in both freshwater and marine environments (Hirano 1965; Vis and Sheath 302 

1996). Approximately 97% of the 7,000 described species (Guiry and Guiry 2015) are 303 

marine, occurring in both intertidal and subtidal zones. Compared with green algae, there are 304 

only very few unicellular representatives. 305 

Freshwater species exist in almost all red algal orders (Sheath and Vis 2015): only one higher 306 

taxon of red algae, the subclass Ahnfeltiophycidae with its 11 described species, lacks 307 

freshwater representatives (Figure 1A). Most freshwater red algae live in rivers and streams 308 

rather than in lakes (Wehr and Sheath 2003). They are usually filamentous (Figure 2) and 309 

smaller than marine species, with a narrower size range from 1-10 cm vs. <1-30 cm for 310 

marine species (Sheath and Hambrook 1990).  311 

There are also red algal species that occur in both fresh water and seawater, e.g. Bangia 312 

atropurpurea (Mertens ex Roth) C.Agardh and Bostrychia moritziana (Sonder ex Kützing) 313 

J.Agardh (Youngs et al. 1998). The related species, Bostrychia scorpioides (Hudson) 314 

Montagne, is common in saltmarshes worldwide. Members of the genus Hildenbrandia (but 315 

different species) are likewise present in both environments. Based on a molecular phylogeny 316 
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of North American taxa there are several independent marine and freshwater clades 317 

(Sherwood and Sheath 1999). In European Hildenbrandia spp., the freshwater species form a 318 

monophyletic group, suggesting that only one transition to fresh water took place in Europe 319 

(Sherwood et al. 2002) and that the ancestral state was marine.  320 

The Porphyridiophyceae, the Stylonematophyceae, the Compsopogonophyceae, and the 321 

Rhodellophyceae (together comprising 130 species; Guiry and Guiry 2015) contain species 322 

whose unicellular or simple filamentous morphologies occur in both marine and freshwater 323 

environments; as do members of the subclass Nemaliophycidae ( 900 species; Guiry and 324 

Guiry 2015). Of the eight orders three are exclusively freshwater, one is mixed and four are 325 

marine (Lam et al. 2016). Only very few microscopic species of red algae have been reported 326 

as terrestrial, notably Porphyridium purpureum (Bory) K.M.Drew & R.Ross (Hoffmann 327 

1989), P. sordium Geitler, and Rufusia pilicola Wujek & Timpano (Sheath and Vis 2015). 328 

 Exclusively marine groups have mainly been confined to the Corallinophycidae (>700 329 

species; Guiry and Guiry 2015) since members of this group have calcified cell walls (Lee 330 

2008) (but see Charales). It was only in 2013 that the first freshwater species of 331 

Corallinophycidae, Pneophyllum cetinaensis Kaleb, Zuljevic & Peña, was discovered in a 332 

Croatian river characterized by extremely high pH and concentrations of calcium carbonate 333 

(Žuljević et al. 2016). Among most freshwater habitats, there is a general over-representation 334 

of red algae in softer water, however, it has been suggested that recent invaders of fresh water 335 

are restricted to ion-rich environments (Sheath and Hambrook 1990).  336 

Stramenopila 337 

 Phaeophyceae 338 

The largest class among multicellular stramenopiles is the Phaeophyceae, which comprises 339 

forms from tiny filaments to giant kelps. Brown algae are very rare in fresh water. Of 2,000 340 
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currently accepted brown algal species (Guiry and Guiry 2015), only seven (0.35%) have 341 

been found in fresh water, and all are small, filamentous or crust-forming (Figure 2; see 342 

below). They have been classified within three families (although one genus, Porterinema, is 343 

currently incertae sedis): the Ectocarpaceae, the Lithodermataceae, and the Sphacelariaceae, 344 

the latter two families both members of the order Sphacelariales (Silberfeld et al. 2014).  345 

The Ectocarpaceae are small and filamentous. Two species have independently colonized 346 

fresh water. One transition was made by Pleurocladia lacustris A. Braun, which has been 347 

found in both marine and in freshwater environments, but more frequently in freshwater 348 

(Wehr et al. 2013). Its sister species, P. lucifuga (Kuckuck) Wilce, is exclusively marine. The 349 

second transition may have occurred in Ectocarpus. A strain of E. subulatus Kützing (Peters 350 

et al. 2015) isolated from a freshwater environment in Australia (West and Kraft 1996) is still 351 

able to grow in full marine medium (Dittami et al. 2012). It is currently the only freshwater 352 

report of Ectocarpus, with the exception of one report from a highly salt-contaminated river in 353 

Germany (Geissler 1983). Given the phylogenetic position of the freshwater strains of 354 

Ectocarpaceae, the most parsimonious explanation for these results would be two independent 355 

colonizations of fresh water within the family. 356 

Two additional and probably independent transitions to fresh water have occurred within the 357 

Sphacelariales. At least one occurred in the Lithodermaceae, which comprises four genera of 358 

small crust- or tuft- forming algae; two of which (Lithoderma and Pseudolithoderma) are 359 

exclusively marine, and two others (Bodanella and Heribaudiella), with one species each, are 360 

restricted to fresh water. Heribaudiella fluviatilis (Areschoug) Svedelius can, at times, be one 361 

of the dominant species of benthic algae in smaller rivers (Wehr and Sheath 2003). Within the 362 

Sphacelariaceae, Sphacelaria has two freshwater species: Sphacelaria lacustris Schloesser & 363 

Blum reported from Lake Michigan, USA (Schloesser and Blum 1980); and S. fluviatilis C.-364 

C. Jao recorded from China and the United States (McCauley and Wehr 2007; Necchi 2016).  365 
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A fifth marine-freshwater transition in brown algae probably occurred within the species 366 

Porterinema fluviatile (H.C.Porter) Waern, an alga which branches very early in the brown 367 

algal tree (McCauley and Wehr 2007) and is currently not attributed to a specific order. This 368 

species has a global distribution with populations occurring both in freshwater and in marine 369 

environments in North America and in Europe. A possible sixth example is a strain of 370 

Ectocarpus-like brown algae tentatively named Ectocarpoides piscinalis nom. nud. isolated 371 

from a domestic freshwater aquarium in Northampton, UK. Preliminary molecular analyses 372 

indicate that this isolate constitutes a yet undescribed brown algal species, possibly in a new 373 

order (Belcher et al. 2009).  374 

Among the larger brown algae, especially among species belonging to the Fucales, temporary 375 

tolerance for low salinity is commonly observed. For example, Fucus ceranoides var. 376 

limnicola S.M.Baker & M.H.Bohling is frequently found in upper estuaries with high 377 

freshwater influence (Khfaji and Norton 1979) and F. radicans L.Bergström & L.Kautsky is 378 

permanently submerged in waters of low salinity (3–5 g·L-1) in the northern Baltic 379 

(Bergstrom et al. 2005). Also, populations of F. vesiculosus L. have been observed at low 380 

salinities in the Baltic, but have lost sexual reproduction (Tatarenkov et al. 2005). Several 381 

ecophenes of Fucus are also known from salt marshes and have previously been referred to as 382 

F. cottonii M.J.Wynne & Magne (Neiva et al. 2012). There is no documented occurrence of 383 

wracks/rockweeds in freshwater or terrestrial habitats. Likewise, the largest brown algae, 384 

belonging to the Laminariales (or kelps), are exclusively marine.  385 

In summary, we know of maximally six marine-freshwater transitions in brown algae. None 386 

have led to diversification or wide-spread dominance in freshwater systems. Given the 387 

overwhelming dominance of marine representatives it is likely that the common ancestor of 388 

brown algae was indeed marine; however, this does not extend to all stramenopiles.  389 
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Schizocladiophyceae, Phaeothamniophyceae, and Tribophyceae  390 

The Schizocladiophyceae comprise only one member, Schizocladia ischiensis E.C.Henry, 391 

K.Okuda & H.Kawai, which is marine and was collected at the Island of Ischia, Gulf of 392 

Naples, in the Mediterranean (Kawai et al. 2003).  393 

The Phaeothamniales have previously been considered part of the Chrysophyceae, but based 394 

on molecular phylogenetic data have been erected as a new class, the Phaeothamniophyceae 395 

(Bailey et al. 1998). The three principal genera are Phaeoschizochlamys, Phaeothamnion, and 396 

Stichogloea, all of which have been described from fresh water. Other genera tentatively 397 

associated with this class are not available in culture, and their placement in this group 398 

remains uncertain (Bailey 2010). The only known marine species of Phaeothamniales is 399 

Chrysophaeum lewisii W.R.Taylor, but its position within this order would need to be 400 

confirmed by molecular data.  401 

Among the Tribophyceae, which comprise mostly freshwater algae, three orders are known to 402 

form filaments or to be siphonous, the Botrydiales (multinucleate cells), the Tribonematales, 403 

and the Vaucheriales. All three of these orders mainly occur in fresh water, and several have 404 

also colonized terrestrial habitats. Within the Vaucheriales 20 species have been found in 405 

marine or brackish environments (South and Whittick 2009). Based on a phylogenetic tree of 406 

32 Vaucheria strains (21 species; Andersen and Bailey 2002), the marine representatives form 407 

two groups: one comprising only Pseudodichotomosiphon sp., a genus closely related to 408 

Vaucheria (exact phylogenetic position uncertain; Fukushi-Fujikura et al. 1991), and the other 409 

comprising all other marine species in this group. The most parsimonious explanation for this 410 

distribution would be two separate transitions from freshwater to marine habitats, one in 411 

Pseudodichotomosiphon and one in Vaucheria. 412 

 413 
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3. MARINE AND FRESHWATER ORIGINS OF PHOTOSYNTHETIC 414 

EUKARYOTES 415 

In order to understand the directionality of transitions between fresh water and seawater in 416 

photosynthetic eukaryotes, we have to understand the evolution of these organisms in their 417 

deep time, ancestral environments. It is generally assumed that photosynthesis was first 418 

acquired by a common eukaryotic ancestor of the red, green and glaucophyte lineages; and 419 

then subsequently transmitted to the haptophyte, cryptophyte, and stramenopile lineages via 420 

secondary or tertiary endosymbiosis events (Archibald 2009). The timing of the primary 421 

endosymbiosis event is still a matter of debate but estimated at between 2.1 Gya and 900 mya, 422 

depending on the methods used and the interpretation of fossils (Han and Runnegar 1992; 423 

Cavalier-Smith 2009; Parfrey et al. 2011; McFadden 2014). The physical environment of the 424 

primary endosymbiosis event remains uncertain, but some indications can be derived from the 425 

cyanobacterium that became the plastid and from the host.  426 

On the plastid side, phylogenetic analyses based on 30 different cyanobacterial taxa have 427 

show that the cyanobacterial group closest to plastids contains both freshwater/terrestrial (e.g. 428 

Synechocystis) and marine genera (e.g. Trichodesmium) (Ochoa de Alda et al. 2014). 429 

However, a more recent and comprehensive study by Ponce-Toledo et al. (2017) has 430 

identified the freshwater cyanobacterium Gloeomargarita lithophora as the closest known 431 

relative of plastids. Moreover, based on ancestral state reconstructions of early plastids and 432 

cyanobacteria, a freshwater origin seems to be more consistent (Blank 2013b). A recent 433 

comparison of cyanobacterial genomes (Dagan et al. 2013) concluded that a freshwater origin 434 

was probably necessary for water-splitting photosynthesis. It has also been suggested that 435 

early cyanobacteria (prior to the primary endosymbiosis event) likely lacked important genes 436 

involved in the synthesis of the compatible solutes trehalose, glucosylglycerol, 437 

glucosylglycerate and glycine betaine (Blank 2013a), implying that they may not have been 438 
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able to colonize seawater at that time. This view is supported by estimates of the chemical 439 

composition of the early oceans at the time of primary endosymbiosis in which ancient 440 

seawater was probably two to three times more saline than today (Huston et al. 2010) and 441 

much richer in Ca2+ and iodine (Pinti 2005). Moreover, in the period from 2500 - 580 mya, 442 

the oceans were likely anoxic or only moderately oxic (Anbar et al. 2002; Johnston et al. 443 

2009). 444 

On the host side, the earliest branching within the Archaeplastida is still not resolved with 445 

certainty (Jackson and Reyes-Prieto 2014) but is thought to have been between the ancestor of 446 

the green and red lineages, and the glaucophytes (Rodríguez-Ezpeleta et al. 2005). The fact 447 

that extant members of the glaucophytes occur almost exclusively in fresh water (Kies and 448 

Kremer 1986) suggests that ancestral glaucophytes may also have been freshwater organisms. 449 

However, even if this is true, it is still unclear whether this also applies to the ancestor of all 450 

Archaeplastida. In the case of red algae, the earliest branching group of the red algae, the 451 

Cyanidales, occurs in hot springs with varying salinity and chemical composition (Reeb and 452 

Bhattacharya 2010). Therefore, and based on their reduced genomes (Collén et al. 2013; Qiu 453 

et al. 2015), it has been suggested that the ancestor of red algae may have also emerged in a 454 

hot spring, i.e. non-marine environment (Qiu et al. 2015). Though it will always remain 455 

speculative, modern marine representatives of ancient Archaeplastida may well be 456 

descendants of non-marine organisms. 457 

A traditional argument against an early freshwater origin of Archaeplastida is based on the 458 

supposition that lakes and rivers were ephemeral along with the probable absence of 459 

biological vectors able to transport algae or spores between freshwater systems at the time. 460 

The oldest known lakes and rivers, such as Lake Baikal (Russia, 25 My) or the Finke River 461 

(Australia, 350 My) are still “young” (Haines et al. 2001; Colman et al. 2003). Using 462 

geochemical proxies Wellman and Strother (2015) suggest that primary production in 463 
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terrestrial settings was probably established between 3.0 and 2.7 Ga. These aeroterresterial 464 

forms may have created a link between freshwater habitats. Thus, non-marine aquatic and 465 

aeroterresterial forms may have played the pivotal role in primordial times, with only later a 466 

link to the marine environment. Such early aeroterrestrial organisms would have needed 467 

protection against UV radiation (Mulkidjanian et al. 2006), which today comes from the 468 

ozone layer, i.e., the interaction of photosynthetic oxygen with water. Even though oxygen 469 

was not yet plentiful, protection against UV could have been augmented by other UV 470 

absorbing gases, such as methane (Hessen 2008). Accordingly, the aeroterrestrial ‘flora’ 471 

would have been able to take advantage of an increasingly protective habitat and greater 472 

access to newly forming freshwater environments.  473 

The main challenge to resolving the original ancestral habitats is that the earliest divergences 474 

are not known and the deep evolutionary radiations were rapid. The best we can do with class 475 

and ordinal level phylogenies of the three lineages is to examine the transitions that have 476 

occurred in extant taxa (which we do) and estimate directionality based on available taxon 477 

sampling and sister-group observations. Though coarse, it provides some additional 478 

indications for the aeroterrestrial/freshwater - marine sequence. 479 

But what about the stramenopiles? Here the timing of the secondary or tertiary endosymbiosis 480 

events (at the origin of the stramenopiles) is important. We speculate that, if this event (or 481 

events) occurred in seawater, the genes required for fresh water tolerance were not transferred 482 

to the nucleus of the host (or hosts) and therefore lost. If so, this would provide one possible 483 

explanation for why so few brown algae have colonized fresh water. On the other hand, 484 

unicellular stramenopiles such as diatoms are found in both environments with many 485 

transitions, possibly in both directions. Most xanthophytes also occur in fresh water, so that 486 

no clear conclusions about the ancestral state of stramenopiles can be drawn.  487 
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Across all lineages, morphological complexity is clearly a factor that impacts the ease of 488 

environmental transitions. Microscopic (unicellular) representatives of all photosynthetic 489 

lineages have undergone numerous recent back-and-forth transitions between seawater and 490 

freshwater environments. Green algae have many unicellular representatives, and most of 491 

their multicellular morphologies remain simple; they have also frequently transitioned to 492 

marine environments and back (see section 2). In contrast, the red algae have relatively few 493 

unicellular representatives, and the multicellular forms are morphologically complex and 494 

dominant in marine environments; there have been few transitions to fresh water. The brown 495 

algae comprise the most morphologically complex algae and are almost exclusively marine. 496 

Finally, the streptophytes comprise the morphologically most complex plant species 497 

dominating terrestrial and freshwater habitats. Within this group, only the seagrasses (60 498 

species) have made a permanent transition to the marine environment (Les et al. 1997; Olsen 499 

et al. 2016). 500 

 501 

4. PHYSIOLOGICAL AND GENOMIC ADAPTATIONS TO SEAWATER AND 502 

FRESH WATER 503 

It is clear that marine-freshwater or freshwater-marine transitions have been common in 504 

photosynthetic eukaryotes (Figure 1). Still, we have only rudimentary understanding of the 505 

genomic changes underlying the physiological adaptations. Canonical understanding is 506 

usually derived from comparative acclimation experiments with euryhaline species that are 507 

capable of growing in both environments. For example, a recent study in the freshwater green 508 

alga Ulva limnetica used suppression subtractive hybridization in combination with 509 

quantitative real-time-PCR to compare gene expression profiles of freshwater vs. seawater-510 

grown cultures of the same strain (Ichihara et al. 2011). An up-regulation was observed in 511 

enzymes involved in the degradation of sorbitol, probably as a means of reducing intracellular 512 
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osmotic pressure, as well as the activation of reactive oxygen species scavengers. Also, an 513 

earlier study of the same strain under the same conditions detected the accumulation of lectin-514 

like proteins in fresh water-grown cultures (Ichihara et al. 2009b), but the molecular role of 515 

these proteins for fresh water tolerance remains unknown.  516 

Salt tolerant Chara longifolia C.B. Robinson and Lamprothamnium sp. were shown to 517 

respond to salinity changes by increasing vacuolar concentrations of K+, Cl- and sometimes 518 

sucrose, but not Na+ (Beilby 2015). In both taxa, membrane potential is maintained by an 519 

increased activity of proton pumps. In an older study, Lamprothamnium papulosum 520 

(K.Wallroth) J.Groves was also shown to modify levels of cell wall sulfated polysaccharides 521 

with varying salinity (Davis and Lipkin 1986; Shepherd and Beilby 1999). 522 

In red algae, the discovery of the coralline freshwater red alga, Pneophyllum cetinaensis, 523 

constitutes an interesting case study of a recent (probably within the last 120,000 years) but 524 

irreversible transition to fresh water (Žuljević et al. 2016), but so far the necessary genomic 525 

and physiological adaptations have not been studied. Another example is Bangia 526 

atropurpurea, which is able to grow in fresh water (Reed 1980). In acclimation experiments 527 

to full marine salinity, this species was shown to rapidly synthesize large quantities of 528 

floridoside, thought to serve as an osmoprotectant for the cells (Reed 1985). B. atropurpurea 529 

from the Great Lakes (USA) has been shown to exhibit reduced growth in seawater at a 530 

salinity of 26 g·L-1, but this effect was reversed (i.e. reduced growth in fresh water compared 531 

to seawater) after three generations of acclimation to seawater (Sheath and Cole 1980).  532 

By analogy to the Baltic Fucus vesiculosus described in section 2 (Tatarenkov et al. 2005), the 533 

Bangia populations also lack sexual reproduction in fresh water, despite the fact that they 534 

have maintained their presence in the Great Lakes since the 1960s and probably originated 535 

from fresh water-adapted European populations (Shea et al. 2014). Indeed, sexual 536 

reproduction may merit particular attention when studying the adaptation to fresh water, as 537 
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has previously been argued by Raven (1999). Specifically, the fusion of gametes is highly 538 

sensitive to the surrounding osmotic conditions, and mechanisms to block polyspermy in 539 

marine algae frequently rely on the influx of Na+, while freshwater algae generally rely on the 540 

efflux of Cl-. 541 

Within the brown algae, the aforementioned freshwater strain of Ectocarpus subulatus 542 

provides a model for the transition between both environments. Here a combination of 543 

metabolite and transcriptome profiling revealed that over half of all examined genes and most 544 

metabolites were differentially expressed between the two conditions (Dittami et al. 2012). In 545 

this case, changes included the upregulation of genes involved in cell wall sulphation in 546 

seawater, which was confirmed using stained antibodies (Torode et al. 2015). This freshwater 547 

strain of E. subulatus has never been observed to reproduce sexually in the laboratory (A. 548 

Peters, personal communication as well as eight years of observation in our laboratory). 549 

Differential gene expression analyses and physiological characterization of euryhaline 550 

organisms can shed light on the physiological acclimations needed to cope with 551 

osmoregulation and ion homeostasis in fresh water vs. seawater. However, they provide little 552 

information on the adaptations to either environment and their evolution after the initial 553 

transition. It is these adaptations that, once completed, may prevent a move back to the former 554 

environment. Comparisons of sister taxa that are strictly freshwater or strictly marine would 555 

provide valuable information to answer these questions, but are still rare. 556 

An important example for such adaptations to life in marine vs. freshwater environments is 557 

cell wall sulphation. This process is present in all marine algae (red, green, and brown) and 558 

seagrasses (Kloareg and Quatrano 1988), but has not been found in freshwater plants or 559 

freshwater algae. Both aforementioned euryhaline red and brown algal species, L. papulosum 560 

and E. subulatus, have been shown to regulate cell wall sulphation depending on their 561 

environment (Shepherd and Beilby 1999; Torode et al. 2015). Interestingly, in a recent 562 
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genome analysis of the marine angiosperm, the seagrass Zostera marina, Olsen et al. (2016) 563 

showed that the enzymes responsible for cell wall sulphation in Z. marina re-evolved from 564 

carbohydrate sulfatases, which may be active on a wider range of substrates. Such 565 

comparisons illustrate the value of comparative genomics in deciphering the adaptations 566 

related to freshwater-marine habitat preferences and may shed light on the evolutionary 567 

events that have led to or prevented marine-freshwater transitions more recently. 568 

 569 

5. CONCLUSIONS 570 

Bidirectional marine-freshwater transitions have occurred in multicellular photosynthetic 571 

eukaryotes all across the eukaryotic tree, but branches that are specialized to one or the other 572 

habitat have clearly emerged. At one extreme, streptophytes dominate freshwater and 573 

terrestrial habitats, with only a few species (the seagrasses) having colonized the sea from 574 

freshwater ancestors. At the other extreme, brown algae, with the exception of a few 575 

morphologically simple species, are found only in seawater. Green and red algae hold an 576 

intermediate position and have successfully made the transition between seawater and fresh 577 

water many times. As a general trend, successful transitions appear to occur more frequently 578 

in morphologically simple organisms, as illustrated in the case of brown algae, but also to a 579 

certain extent in green algae and plants. Unicellular organisms have not been treated in this 580 

review but follow in parallel with this observation, frequently found in both types of habitats. 581 

It is commonly assumed that the colonization of fresh water was the intermediate step that 582 

allowed a gradual colonization of land by a marine, green algal lineage (Becker and Marin 583 

2009). While there is little doubt that plants have colonized terrestrial environments from 584 

fresh water, we cannot rule out the possibility of an original freshwater/terrestrial origin of 585 

photosynthetic eukaryotes followed by secondary colonization of marine habitats. To learn 586 

more about these early and later evolutionary transitions and the underlying mechanisms 587 
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responsible for habitat constraint, the availability of omics resources, in combination with 588 

comparative and experimental approaches, will allow us to unravel the determinants of these 589 

fundamentally different evolutionary trajectories.  590 
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TABLE LEGENDS 970 

Table 1: Overview of the typical composition of seawater and fresh water in selected streams. 971 

An asterisk (*) indicates global averages of major ions in river waters according to Wetzel 972 

(2001), followed by ranges found in the literature for different water bodies (Goldberg 1965; 973 

Ott 1988; Wetzel 2001; Wehr and Sheath 2003; Salminen et al. 2005). The term brackish 974 

water refers to a mixture of seawater and fresh water with salinities ranging from 0.5 to 30 975 

g·L-1. 976 

 Seawater Fresh water 

Overall salinity 30-40 g·L-1 <0.5 g·L-1 

Chloride (Cl-) 540 nM 0.22 mM* (< 8.6 mM) 

Sodium (Na+) 500 mM 0.27 mM* (< 10 mM) 

Sulfate (SO4
2-) 28 mM 0.12 mM* (< 5 mM) 

Magnesium (Mg2+) 54 mM 0.17 mM* (0.002-2 mM) 

Calcium (Ca2+) 10 mM 0.37 mM* (0.005-10 mM) 

Potassium (K+) 9.7 mM 0.06 mM* (< 1.3 mM) 

Bicarbonate (HCO3
-) 2.3 mM < 16 mM 

Bromide (Br-) 800 µM < 12 µM 

Boric acid (H3BO3) 400 µM < 90µM 

Strontium (Sr2+) 90 µM < 50µM 

Nitrate (NO3
-) 0.01-50 µM < 1 mM 

Nitrite (NO2
-) 0.01-5 µM < 100 µM 
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Ammonium (NH4
+) 0.1-5 µM < 20µM 

Phosphate(PO4
3-) 2.5 µM <10 µM 

Silicate (SiO4
4-) 0-180 µM 1-500 µM 

Iodine (I-) 0.5 µM 0.1-40 nM 
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FIGURES 978 

 979 

Figure 1: A) Backbone taxonomic relationships at the class and order levels according to 980 

Kawai et al. (2007), Brown and Sorhannus (2010), Silberfeld et al. (2010, 2011) for 981 

stramenopiles; Friedl and O’Kelly (2002), Cocquyt et al. (2010b), Leliaert et al. (2012) for the 982 

green lineage; and Le Gall and Saunders (2007), Scott et al. (2011) for red algae. The tree 983 

shows only the branching order; branch length has no significance and taxon sampling within 984 
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branches varies widely. Yellow background indicates a probable freshwater/terrestrial habitat, 985 

blue background a marine/brackish water habitat, and green the intermediate branches with 986 

both marine and freshwater representatives. Presumed marine-freshwater and freshwater-987 

marine transitions are marked by * and the minimum number of putative transitions is 988 

indicated where possible. ° denotes branches with no multicellular representatives; F, 989 

freshwater; M, marine; T, terrestrial. For example F/M means that both freshwater and marine 990 

representatives are found in a branch. B) Zoom on Alismatales after Les et al. (1997) with 991 

modifications according to (APG 2009). Note: There is no absolute proof for the ancestral 992 

habitats of the different lineages. 993 
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995 
Figure 2: Examples of the morphological complexity reached by representatives of the green, 996 

red, and brown lineages in marine, freshwater, and terrestrial habitats, respectively. 1 Photo 997 

courtesy of Thorsten Reusch; 2 photo courtesy of Chris Carter; 3 photo courtesy of Marina 998 

Aboal Sanjurjo; 4 photo courtesy of the Roscoff Culture Collection (strain RCC 653); 5 strain 999 

SAG 25.93 1000 


