A. Sandvig, M. Berry, L. B. Barrett, A. Butt, and A. Logan, Myelin-, reactive glia-, and scar-derived CNS axon growth inhibitors: Expression, receptor signaling, and correlation with axon regeneration, Glia, vol.154, issue.3, pp.225-251, 2004.
DOI : 10.1002/glia.10315

J. W. Fawcett, M. E. Schwab, L. Montani, N. Brazda, and H. W. Muller, Defeating inhibition of regeneration by scar and myelin components, Handb Clin Neurol, vol.109, pp.503-522, 2012.
DOI : 10.1016/B978-0-444-52137-8.00031-0

J. Silver, M. E. Schwab, and P. G. Popovich, Central Nervous System Regenerative Failure: Role of Oligodendrocytes, Astrocytes, and Microglia, Cold Spring Harbor Perspectives in Biology, vol.7, issue.3, p.20602, 2015.
DOI : 10.1101/cshperspect.a020602

URL : http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4355267

S. F. Badylak, J. E. Valentin, A. K. Ravindra, G. P. Mccabe, and A. M. Stewart-akers, Macrophage Phenotype as a Determinant of Biologic Scaffold Remodeling, Tissue Engineering Part A, vol.14, issue.11, pp.1835-1842, 2008.
DOI : 10.1089/ten.tea.2007.0264

B. N. Brown, Macrophage phenotype as a predictor of constructive remodeling following the implantation of biologically derived surgical mesh materials, Acta Biomaterialia, vol.8, issue.3, pp.978-987, 2012.
DOI : 10.1016/j.actbio.2011.11.031

A. Hurtado, Robust CNS regeneration after complete spinal cord transection using aligned poly-l-lactic acid microfibers, Biomaterials, vol.32, issue.26, pp.6068-6079, 2011.
DOI : 10.1016/j.biomaterials.2011.05.006

URL : http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4163047

H. Nomura, Y. Katayama, M. S. Shoichet, and C. H. Tator, Complete Spinal Cord Transection Treated by Implantation of a Reinforced Synthetic Hydrogel Channel Results in Syringomyelia and Caudal Migration of the Rostral Stump, Neurosurgery, vol.59, issue.1, pp.183-92, 2006.
DOI : 10.1227/01.NEU.0000219859.35349.EF

V. Estrada, Long-lasting significant functional improvement in chronic severe spinal cord injury following scar resection and polyethylene glycol implantation, Neurobiology of Disease, vol.67, pp.165-179, 2014.
DOI : 10.1016/j.nbd.2014.03.018

P. Lu, Long-Distance Growth and Connectivity of Neural Stem Cells after Severe Spinal Cord Injury, Cell, vol.150, issue.6, pp.1264-1273, 2012.
DOI : 10.1016/j.cell.2012.08.020

L. N. Novikova, Alginate hydrogel and matrigel as potential cell carriers for neurotransplantation, Journal of Biomedical Materials Research Part A, vol.161, issue.2, pp.242-252, 2006.
DOI : 10.1002/jbm.a.30603

H. Kim, C. H. Tator, and M. S. Shoichet, Chitosan implants in the rat spinal cord: Biocompatibility and biodegradation, Journal of Biomedical Materials Research Part A, vol.23, issue.6, pp.395-404, 2011.
DOI : 10.1002/jbm.a.33070

S. Gnavi, The Use of Chitosan-Based Scaffolds to Enhance Regeneration in the Nervous System, Int Rev Neurobiol, vol.109, pp.1-62, 2013.
DOI : 10.1016/B978-0-12-420045-6.00001-8

A. P. Pego, Regenerative medicine for the treatment of spinal cord injury: more than just promises?, Journal of Cellular and Molecular Medicine, vol.88, issue.334, pp.2564-2582, 2012.
DOI : 10.1111/j.1582-4934.2012.01603.x

T. L. Yang, Chitin-based Materials in Tissue Engineering: Applications in Soft Tissue and Epithelial Organ, International Journal of Molecular Sciences, vol.9, issue.Suppl 1, pp.1936-1963, 2011.
DOI : 10.1016/j.biomaterials.2011.02.057

A. Montembault, A material decoy of??biological media based on??chitosan physical hydrogels: application to??cartilage tissue engineering, Biochimie, vol.88, issue.5, pp.551-564, 2006.
DOI : 10.1016/j.biochi.2006.03.002

S. G. Ladet, K. Tahiri, A. S. Montembault, A. J. Domard, and M. T. Corvol, Multi-membrane chitosan hydrogels as chondrocytic cell bioreactors, Biomaterials, vol.32, issue.23, pp.5354-5364, 2011.
DOI : 10.1016/j.biomaterials.2011.04.012

URL : https://hal.archives-ouvertes.fr/hal-00649105

X. Li, Z. Yang, A. Zhang, T. Wang, and W. Chen, Repair of thoracic spinal cord injury by chitosan tube implantation in adult rats, Biomaterials, vol.30, issue.6, pp.1121-1132, 2009.
DOI : 10.1016/j.biomaterials.2008.10.063

G. Bozkurt, Chitosan Channels Containing Spinal Cord-Derived Stem/Progenitor Cells for Repair of Subacute Spinal Cord Injury in the Rat, Neurosurgery, vol.67, issue.6, pp.1733-1744, 2010.
DOI : 10.1227/NEU.0b013e3181f9af35

Z. Yang, NT3-chitosan elicits robust endogenous neurogenesis to enable functional recovery after spinal cord injury, Proceedings of the National Academy of Sciences, vol.49, issue.3, pp.13354-13359, 2015.
DOI : 10.1016/S0165-0270(99)00113-2

URL : http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4629318

J. Zhang, Chitosan scaffolds induce human dental pulp stem cells to neural differentiation: potential roles for spinal cord injury therapy, Cell and Tissue Research, vol.43, issue.1, 2016.
DOI : 10.1007/s00441-016-2402-1

A. Montembault, C. Viton, and A. Domard, Rheometric Study of the Gelation of Chitosan in Aqueous Solution without Cross-Linking Agent, Biomacromolecules, vol.6, issue.2, pp.653-662, 2005.
DOI : 10.1021/bm049593m

A. Hirai, H. Odani, and A. Nakajima, Determination of degree of deacetylation of chitosan by 1H NMR spectroscopy, Polymer Bulletin, vol.I, issue.1, pp.87-94, 1991.
DOI : 10.1007/BF00299352

A. Fiamingo, A. Montembault, S. Boitard, H. Naemetalla, O. Agbulut et al., Chitosan Hydrogels for the Regeneration of Infarcted Myocardium: Preparation, Physicochemical Characterization, and Biological Evaluation, Biomacromolecules, vol.17, issue.5, pp.1662-72, 2016.
DOI : 10.1021/acs.biomac.6b00075

URL : https://hal.archives-ouvertes.fr/hal-01396644

F. Nothias, S. Soares, L. David, and A. Montembault, Chitosan hydrogel for repairing nerve tissue, p.2874672, 2016.

K. Sharp, A. Dickson, S. Marchenko, K. Yee, P. Emery et al., Salmon fibrin treatment of spinal cord injury promotes functional recovery and density of serotonergic innervation, Experimental Neurology, vol.235, issue.1, pp.345-356, 2012.
DOI : 10.1016/j.expneurol.2012.02.016

C. Fouquet, Improving Axial Resolution in Confocal Microscopy with New High Refractive Index Mounting Media, PLOS ONE, vol.43, issue.1 Suppl, p.121096, 2015.
DOI : 10.1371/journal.pone.0121096.t001

URL : https://hal.archives-ouvertes.fr/hal-01233480

F. A. Pickworth, A New Method of Study of the Brain Capillaries and its Application to the Regional Localisation of Mental Disorder, J Anat, vol.69, pp.62-71, 1934.

Y. Von-boxberg, Giant scaffolding protein AHNAK1 interacts with ??-dystroglycan and controls motility and mechanical properties of schwann cells, Glia, vol.32, issue.Mar 27, pp.1392-1406, 2014.
DOI : 10.1002/glia.22685

Y. Boxberg, Protein analysis on two-dimensional polyacrylamide gels in the femtogram range: Use of a new sulfur-labeling reagent, Analytical Biochemistry, vol.169, issue.2, pp.372-375, 1988.
DOI : 10.1016/0003-2697(88)90298-9

X. Zhang, R. Goncalves, and D. M. Mosser, The Isolation and Characterization of Murine Macrophages, Curr Protoc Immunol Chapter, vol.35, 2008.
DOI : 10.1002/0471142735.im1401s83

D. M. Basso, M. S. Beattie, and J. C. Bresnahan, A Sensitive and Reliable Locomotor Rating Scale for Open Field Testing in Rats, Journal of Neurotrauma, vol.12, issue.1, pp.1-21, 1995.
DOI : 10.1089/neu.1995.12.1

F. P. Hamers, G. C. Koopmans, and E. A. Joosten, CatWalk-Assisted Gait Analysis in the Assessment of Spinal Cord Injury, Journal of Neurotrauma, vol.23, issue.3-4, pp.537-548, 2006.
DOI : 10.1089/neu.2006.23.537

U. Milbreta, Y. Von-boxberg, P. Mailly, F. Nothias, and S. Soares, Astrocytic and Vascular Remodeling in the Injured Adult Rat Spinal Cord after Chondroitinase ABC Treatment, Journal of Neurotrauma, vol.31, issue.9, pp.803-818, 2014.
DOI : 10.1089/neu.2013.3143

S. Soares, Extensive structural remodeling of the injured spinal cord revealed by phosphorylated MAP1B in sprouting axons and degenerating neurons, European Journal of Neuroscience, vol.20, issue.6, pp.1446-1461, 2007.
DOI : 10.1111/j.1460-9568.2007.05794.x

URL : https://hal.archives-ouvertes.fr/hal-00181436

Y. Ren and W. Young, Managing Inflammation after Spinal Cord Injury through Manipulation of Macrophage Function, Neural Plasticity, vol.172, issue.7, p.945034, 2013.
DOI : 10.1038/nrn3053

URL : http://doi.org/10.1155/2013/945034

D. Bastien and S. Lacroix, Cytokine pathways regulating glial and leukocyte function after spinal cord and peripheral nerve injury, Experimental Neurology, vol.258, pp.62-77, 2014.
DOI : 10.1016/j.expneurol.2014.04.006

D. J. Donnelly and P. G. Popovich, Inflammation and its role in neuroprotection, axonal regeneration and functional recovery after spinal cord injury, Experimental Neurology, vol.209, issue.2, pp.378-388, 2008.
DOI : 10.1016/j.expneurol.2007.06.009

URL : http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2692462

A. L. Hawthorne and P. G. Popovich, Emerging Concepts in Myeloid Cell Biology after Spinal Cord Injury, Neurotherapeutics, vol.20, issue.Pt 7, pp.252-261, 2011.
DOI : 10.1007/s13311-011-0032-6

URL : http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3101835

R. D. Stout and J. Suttles, Functional plasticity of macrophages: reversible adaptation to changing microenvironments, Journal of Leukocyte Biology, vol.76, issue.3, pp.509-513, 2004.
DOI : 10.1189/jlb.0504272

F. M. Menzies, F. L. Henriquez, J. Alexander, and C. W. Roberts, Sequential expression of macrophage anti-microbial/inflammatory and wound healing markers following innate, alternative and classical activation, Clinical & Experimental Immunology, vol.89, issue.3, pp.369-379, 2010.
DOI : 10.1111/j.1365-2249.2009.04086.x

K. A. Kigerl, Identification of Two Distinct Macrophage Subsets with Divergent Effects Causing either Neurotoxicity or Regeneration in the Injured Mouse Spinal Cord, Journal of Neuroscience, vol.29, issue.43, pp.13435-13444, 2009.
DOI : 10.1523/JNEUROSCI.3257-09.2009

M. Oudega, Molecular and cellular mechanisms underlying the role of blood vessels in spinal cord injury and repair, Cell and Tissue Research, vol.94, issue.3, pp.269-288, 2012.
DOI : 10.1007/s00441-012-1440-6

R. L. Benton, M. A. Maddie, D. R. Minnillo, T. Hagg, and S. R. Whittemore, Griffonia simplicifolia isolectin B4 identifies a specific subpopulation of angiogenic blood vessels following contusive spinal cord injury in the adult mouse, The Journal of Comparative Neurology, vol.21, issue.1, pp.1031-1052, 2008.
DOI : 10.1002/cne.21570

D. N. Loy, Temporal progression of angiogenesis and basal lamina deposition after contusive spinal cord injury in the adult rat, The Journal of Comparative Neurology, vol.78, issue.4, pp.308-324, 2002.
DOI : 10.1002/cne.10168

S. Fereol, Micropatterned ECM substrates reveal complementary contribution of low and high affinity ligands to neurite outgrowth, Cytoskeleton, vol.127, issue.6 Pt 2, pp.373-388, 2011.
DOI : 10.1002/cm.20518

S. A. Busch, Adult NG2+ Cells Are Permissive to Neurite Outgrowth and Stabilize Sensory Axons during Macrophage-Induced Axonal Dieback after Spinal Cord Injury, Journal of Neuroscience, vol.30, issue.1, pp.255-265, 2010.
DOI : 10.1523/JNEUROSCI.3705-09.2010

URL : http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2823089

A. R. Filous, Entrapment via Synaptic-Like Connections between NG2 Proteoglycan+ Cells and Dystrophic Axons in the Lesion Plays a Role in Regeneration Failure after Spinal Cord Injury, Journal of Neuroscience, vol.34, issue.49, pp.16369-16384, 2014.
DOI : 10.1523/JNEUROSCI.1309-14.2014

G. A. Brook, Spontaneous longitudinally orientated axonal regeneration is associated with the Schwann cell framework within the lesion site following spinal cord compression injury of the rat, Journal of Neuroscience Research, vol.53, issue.1, pp.51-65, 1998.
DOI : 10.1002/(SICI)1097-4547(19980701)53:1<51::AID-JNR6>3.0.CO;2-I

F. P. Hamers, A. J. Lankhorst, T. J. Van-laar, W. B. Veldhuis, and W. H. Gispen, Automated Quantitative Gait Analysis During Overground Locomotion in the Rat: Its Application to Spinal Cord Contusion and Transection Injuries, Journal of Neurotrauma, vol.18, issue.2, pp.187-201, 2001.
DOI : 10.1089/08977150150502613

M. V. Sofroniew, Molecular dissection of reactive astrogliosis and glial scar formation, Trends in Neurosciences, vol.32, issue.12, pp.638-647, 2009.
DOI : 10.1016/j.tins.2009.08.002

M. A. Anderson, Astrocyte scar formation aids central nervous system axon regeneration, Nature, vol.34, issue.7598, pp.195-200, 2016.
DOI : 10.1038/nature17623

URL : http://www.ncbi.nlm.nih.gov/pmc/articles/PMC5243141

I. B. Wanner, Glial Scar Borders Are Formed by Newly Proliferated, Elongated Astrocytes That Interact to Corral Inflammatory and Fibrotic Cells via STAT3-Dependent Mechanisms after Spinal Cord Injury, Journal of Neuroscience, vol.33, issue.31, pp.12870-12886, 2013.
DOI : 10.1523/JNEUROSCI.2121-13.2013

URL : http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3728693

J. Silver and J. H. Miller, Regeneration beyond the glial scar, Nature Reviews Neuroscience, vol.5, issue.2, pp.146-156, 2004.
DOI : 10.1038/nrn1326

X. Yuan, J. Y. Haas, C. Yao, L. Hayakawa, K. Wang et al., Guiding migration of transplanted glial progenitor cells in the injured spinal cord, Scientific Reports, vol.161, issue.1, p.22576, 2016.
DOI : 10.1016/S0079-6123(06)61027-3

M. C. Shearer, The astrocyte/meningeal cell interface is a barrier to neurite outgrowth which can be overcome by manipulation of inhibitory molecules or axonal signalling pathways, Molecular and Cellular Neuroscience, vol.24, issue.4, pp.913-925, 2003.
DOI : 10.1016/j.mcn.2003.09.004

X. Tang, J. E. Davies, and S. J. Davies, Changes in distribution, cell associations, and protein expression levels of NG2, neurocan, phosphacan, brevican, versican V2, and tenascin-C during acute to chronic maturation of spinal cord scar tissue, Journal of Neuroscience Research, vol.17, issue.3, pp.427-444, 2003.
DOI : 10.1002/jnr.10523

L. L. Jones, D. Sajed, and M. H. Tuszynski, Axonal regeneration through regions of chondroitin sulfate proteoglycan deposition after spinal cord injury: a balance of permissiveness and inhibition, J Neurosci, vol.23, pp.9276-9288, 2003.

D. M. Mctigue, R. Tripathi, and P. Wei, NG2 Colocalizes With Axons and Is Expressed by a Mixed Cell Population in Spinal Cord Lesions, Journal of Neuropathology and Experimental Neurology, vol.65, issue.4, pp.406-420, 2006.
DOI : 10.1097/01.jnen.0000218447.32320.52

J. M. Mangin and V. Gallo, The Curious Case of NG2 Cells: Transient Trend or Game Changer?, ASN Neuro, vol.135, issue.1, p.52, 2011.
DOI : 10.1038/nn1854

N. Y. Harel and S. M. Strittmatter, Can regenerating axons recapitulate developmental guidance during recovery from spinal cord injury?, Nature Reviews Neuroscience, vol.10, issue.8, pp.603-616, 2006.
DOI : 10.1038/nrn1957

URL : http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2288666

S. David and A. Kroner, Repertoire of microglial and macrophage responses after spinal cord injury, Nature Reviews Neuroscience, vol.109, issue.7, pp.388-399, 2011.
DOI : 10.1038/nrn3053

R. Shechter and M. Schwartz, Harnessing monocyte-derived macrophages to control central nervous system pathologies: no longer ???if??? but ???how???, The Journal of Pathology, vol.100, issue.Suppl 1, pp.332-346, 2013.
DOI : 10.1002/path.4106

T. Shin, M. Ahn, C. Moon, S. Kim, and K. B. Sim, Alternatively Activated Macrophages in Spinal Cord Injury and Remission: Another Mechanism for Repair?, Molecular Neurobiology, vol.265, issue.1???2, pp.1011-1019, 2013.
DOI : 10.1007/s12035-013-8398-6

J. C. Gensel and B. Zhang, Macrophage activation and its role in repair and pathology after spinal cord injury, Brain Research, vol.1619, pp.1-11, 2015.
DOI : 10.1016/j.brainres.2014.12.045

URL : http://doi.org/10.1016/j.brainres.2014.12.045

P. J. Wermuth and S. A. Jimenez, The significance of macrophage polarization subtypes for animal models of tissue fibrosis and human fibrotic diseases, Clinical and Translational Medicine, vol.110, issue.Suppl1, 2015.
DOI : 10.1186/s40169-015-0047-4

M. T. Fitch, C. Doller, C. K. Combs, G. E. Landreth, and J. Silver, Cellular and molecular mechanisms of glial scarring and progressive cavitation: in vivo and in vitro analysis of inflammation-induced secondary injury after CNS trauma, J Neurosci, vol.19, pp.8182-8198, 1999.

K. P. Horn, S. A. Busch, A. L. Hawthorne, N. Van-rooijen, and J. Silver, Another Barrier to Regeneration in the CNS: Activated Macrophages Induce Extensive Retraction of Dystrophic Axons through Direct Physical Interactions, Journal of Neuroscience, vol.28, issue.38, pp.9330-9341, 2008.
DOI : 10.1523/JNEUROSCI.2488-08.2008

D. M. Mosser and J. P. Edwards, Exploring the full spectrum of macrophage activation, Nature Reviews Immunology, vol.117, issue.12, pp.958-969, 2008.
DOI : 10.1038/nri2448

J. M. Daley, S. K. Brancato, A. A. Thomay, J. S. Reichner, and J. Albina, The phenotype of murine wound macrophages, Journal of Leukocyte Biology, vol.87, issue.1, pp.59-67, 2010.
DOI : 10.1189/jlb.0409236

D. P. Vasconcelos, Macrophage polarization following chitosan implantation, Biomaterials, vol.34, issue.38, pp.9952-9959, 2013.
DOI : 10.1016/j.biomaterials.2013.09.012