
Bottom-Up Technologies for Reuse: Automated
Extractive Adoption of Software Product Lines

Jabier Martinez, Tewfik Ziadi
LIP6, Sorbonne Universités, UPMC Univ Paris 06, CNRS

Paris, France
(jabier.martinez tewfik.ziadi)@lip6.fr

Tegawendé F. Bissyandé, Jacques Klein, Yves Le Traon
SnT, University of Luxembourg

Luxembourg
(tegawende.bissyande jacques.klein yves.leatraon)@uni.lu

Abstract—Adopting Software Product Line (SPL) engineering

principles demands a high up-front investment. Bottom-Up Tech-

nologies for Reuse (BUT4Reuse) is a generic and extensible tool

aimed to leverage existing similar software products in order to

help in extractive SPL adoption. The envisioned users are 1) SPL

adopters and 2) Integrators of techniques and algorithms to

provide automation in SPL adoption activities. We present the

methodology it implies for both types of users and we present the

validation studies that were already conducted. BUT4Reuse tool

and source code are publicly available under the EPL license.

Website: http://but4reuse.github.io

Video: https://www.youtube.com/watch?v=pa62Yc9LWyk

Index Terms—Software product line engineering; Extractive

software product line adoption; Variability management; Reverse

engineering

I. INTRODUCTION

Software Product Line (SPL) has matured in recent years
and is now a popular paradigm for variability management in
software engineering. Thanks to SPL Engineering (SPLE), a
company can create a family of related product configurations
for a given domain and later automatically generate the asso-
ciate product variants based on reusable assets. Among other
benefits, SPLE helps to achieve large scale productivity gains,
address time to market requirements and improve product
quality [1].

It has been reported that more than 50% of industrial
practitioners formally implement an SPL only after the instan-
tiation of several similar product variants using ad-hoc reuse
techniques [2] such as copy-paste-modify. These extractive
processes are referred to as bottom-up or extractive approaches
to implement systematic software reuse. In an extractive SPL
adoption, an organization capitalizes on existing custom soft-
ware systems by extracting the common and varying source
code into a single SPL [3].

Although some tools aim to enhance clone-and-own reuse
practices [4], complete SPL adoption remains challenging
because of the lack of comprehensive and usable tools. We
present BUT4Reuse, a tool-supported framework mainly ded-
icated to automate relevant tasks for extractive SPL adoption.

BUT4Reuse is a tool to be used by companies with
existing similar software products that aim to get the
benefits claimed by SPL Engineering. We will refer to
this first type of users as SPL adopters.

BUT4Reuse is designed to be generic and extensible [5].
Generic by enabling its use in different scenarios with product
variants of different software artefact types (e.g., source code
in Java, C, models, requirements or plugin-based architec-
tures), and extensible by allowing to add different concrete
techniques or algorithms for the relevant activities of extractive
SPL adoption (i.e., feature identification, feature location, min-
ing feature constraints, extraction of reusable assets, feature
model synthesis and visualisations). Several validation studies
using BUT4Reuse for different software artefact types or with
different extensions have already been published [5]–[11].

BUT4Reuse is a tool to be used by Integrators to test
concrete techniques for the different steps of extrac-
tive SPL adoption. The software engineering research
community can integrate innovative techniques for
comparison and benchmarking.

This paper is structured as follows: Section II describes
the methodology it implies for SPL adopters and Section III
describes technical aspects for integrators. Section IV presents
validation studies and Section V concludes this paper.

II. BUT4REUSE FOR SPL ADOPTERS

Figure 1 illustrates the methodology for SPL adopters. We
present details of the numbered steps in the Figure.

1. Preparation: The use of BUT4Reuse assumes the exis-
tence of product variants (e.g., legacy artefacts created through
ad-hoc reuse). SPL adopters collect the artefact variants and
list them in a BUT4Reuse artefact model. This can be achieved
by simply drag and drop the variants as shown in Figure 2.
After this, SPL adopters, verify that BUT4Reuse supports the
artefact types that they are targeting. In practice, that means
that an adapter is available for this artefact type. 15 different
adapters are currently supported [12] covering a wide range of
artefact types. Considering that we selected a set of vending
machine variants for analysis [7], Figure 3 shows that support
for EMF models is provided [8] and this adapter is pre-
selected among the available adapters. At this point, the SPL
adopters can use the techniques, algorithms and visualisations
selected by default, or they can change or configure them in
the BUT4Reuse preferences.

2. Feature identification and location: In SPLE, a feature
is defined as a prominent or distinctive characteristic, quality
or user-visible aspect of a software system or systems [13].



Given the complexity of products, BUT4Reuse does not as-
sume a complete upfront knowledge of the existing features
throughout the artefact variants. Several domains of expertise
are often required to build a product and different stakeholders
are responsible for different functionalities. In this context,
domain knowledge about the features of legacy variants can
be scattered across the organization. If this is the case, Feature
identification should be performed.

In feature identification SPL adopters aims to have an ex-
plicit list of the features within the scope of their input variants.
This requires to analyse the automatically identified imple-
mentation blocks, manipulate them and give them a feature
name. Figure 4 shows an example of identified implementation
blocks and their distribution in a set of variants [7]. In Fig-
ure 5 we show support for feature naming using information
retrieval techniques [6]. We can also visualise the elements of a
set of variants and their distribution among the implementation
blocks [8] as shown in Figure 6. On the contrary, if the features

Start

End

Select Artefact 
variants

Artefact 
model

Artefact types 
are supported?

Yes

Contact 
Integrators

Adapter
No

Complete 
knowledge of 

features?

Feature 
Identification

No

Create Feature List

Yes

Feature 
List

Feature 
Constraints

Feature 
Model

Reusable 
assets

Reusable 
assets

Reusable 
assets

Feature Location
Feature 

Traceability

Feature Constraints 
Discovery

Reusable Assets 
Construction

Feature Model 
Synthesis

1

2

3

4

Fig. 1: Methodology for SPL adopters. Integrators can extend
BUT4Reuse at the points with black background.

are known in advance, and their presence (and absence) in the
artefact variants is known, Feature location can be performed
directly after creating a Feature list. This Feature list model
is an exhaustive list of the features with the references to the
variants that have/implement each feature.

Fig. 2: Drag and drop artefact variants for their analysis.

Fig. 3: Adapters selection for an artefact model.

Fig. 4: Bars and stripes to visualise how a set of features are
identified and located in a set of vending machines [7].



Fig. 5: Word clouds show relevant names for each implemen-
tation block during feature identification [6].

Block 0 -BankCore
Block 1 -CurrencyConverter
Block 2 -WithdrawWithLimit
Block 3 -Consortium
Block 4 -WithdrawWithoutLimit

Fig. 6: Graph visualisation of all the elements of the Bank sys-
tems case study, their dependencies (clockwise-based directed
graph) and their relation to the identified blocks [8].

3. Feature model creation: Constraints between features
(e.g., one feature requires another feature, or one feature
excludes another feature) are important domain knowledge that
will guarantee the correctness of the product configurations in
the SPL. The variants used in the extractive SPL process have
correct feature configurations but, apart from these configu-
rations, the derivation of new feature combinations will be
desired. Because of this, feature constraints discovery (also
known as mining feature constraints) is an important step.
Normally this is performed after feature location because
the implementation of the feature can provide evidence of
structural dependencies between the features. However, other
approaches could make use directly of the feature list, without
the feature location, trying to infer constraints by for example
mining rules from the feature configurations of the existing
artefacts. Once the constraints discovery process is finished,
the feature model synthesis process creates a structured feature
model taking into account the constraints information and,
optionally, other available information from the domain.

4. Reusable assets extraction: Once feature location was
performed, the traceability between the features and their
implementation has been calculated. At this point, the reusable

Fig. 7: Graph visualisation of the discovered constraints in the
Bank systems case study [8].

assets construction aims to extract the implementation of each
feature and prepare it to be used by an SPL compositional
or annotative approach. The feature model and the reusable
assets will make it possible to have an initial operative SPL.

III. BUT4REUSE FOR INTEGRATORS

BUT4Reuse is built on Eclipse following its plugin-based
architecture. In the current open sourced version, it consists
of 47 plugins apart from the plugins dedicated to testing.
Integrators can extend BUT4Reuse by providing adapters
and implementing techniques for extractive SPL adoption
activities. In Figure 1, we noted with black background the
main interesting extensible parts for Integrators. In practice,
BUT4Reuse follows the extension points mechanism provided
by plugin development in Eclipse. For each extension point,
integrators only need to declare the extension and to imple-
ment a predefined interface provided by BUT4Reuse.

The Adapters and the Elements are the interfaces that are at
the core of the BUT4Reuse framework. In fact, the principles
of BUT4Reuse are 1) A software artefact can be decomposed
into distinct Elements. 2) Given a pair of Elements in a
specific artefact type, a similarity metric can be computed for
comparison purposes. 3) Given a set of Elements recovered
from existing artefacts, a new artefact, or at least a part of it
(which would be a reusable asset), can be constructed [5].

Based on our reported experiences [5], the design of an
Adapter uses to take more time than its actual implementation.
For the design, integrators need to define the elements that
compose the artefacts, their granularity, their dependencies
with other elements and how to calculate their similarity. Fig-
ure 8 illustrates some examples of adaptation and construction
but complete details are available [5], [12].

IV. VALIDATION STUDIES

This section presents works using BUT4Reuse. In particular
we focus on adapter, visualisation and benchmark studies.

Adapter studies. Source code: We reproduced several case
studies of feature identification [5] presented in previous works
dealing with variants of source code in Java and C [14]. We
used an extended version of the Java BUT4Reuse adapter to
analyze several families of Android apps. The analysis served
to identify app variants belonging to feature-oriented Android
app generators, and to discuss about cases of device-driven
and content-driven variability [11].

Models: We used BUT4Reuse for the identification of
variability and commonality in model variants, as well as the
extraction of a CVL-compliant Model-based Software Product
Line (MSPL) from the features identified on these variants [8].



Fig. 8: Artefact types examples and Elements representation
creation through the adapters [5].

The models adapter is suitable to any MOF-based model. We
evaluated with large case studies to show how our feature
identification with structural constraints discovery and the
SPL adoption process are implemented to make the approach
valid (i.e., the extracted software product line can be used
to regenerate all variants considered) and sound (i.e., derived
variants which did not exist are at least structurally valid).

Plugin-based architectures: We considered the SPL adop-
tion of Eclipse variants which are plugin-based architectures
targeting different development scenarios [5]. We discussed the
learning curve and the lessons learnt from a group of master
students in the design and implementation of the Eclipse
adapter. Then, we used the adapter for analyzing the variants
of an Eclipse release to discuss the results of the different
phases of extractive SPL adoption in this case study.

Visualisation studies. Bars and stripes: We showed how
bars and stripes can be used as visualisation paradigm for
the identification of commonality and variability as it was
already have been shown appropriate for clone detection [7].
We showed an example of this visualisation in Figure 4.

WordClouds: Word cloud visualisations can provide insights
of the emerging vocabulary and variability from a set of
variants. We designed VariClouds for helping domain experts
in feature identification and naming [6]. We evaluated our
approach by assessing its added-value to several previous
works in the literature where no tool support was provided to
domain experts to characterise features from software blocks.
In these case studies we dealt with different artefact types
to show its soundness and genericness. Figure 5 showed an
example of this visualisation.

Feature Relations Graphs (FRoGs): FRoGs is an interactive
visualisation paradigm to help domain experts and stakehold-
ers to manage the challenges in maintaining the constraints
among features [9]. The objective is to obtain a better un-
derstanding of feature constraints and potentially refine the
existing feature model by uncovering and formalizing missing
constraints (i.e., feature constraints discovery).

Graphs and Pruned Concept Hierarchy: Graphs are avail-
able, for example to show the relation of the elements of each
variant, their assignation to blocks or the constraints between
the blocks [8]. Figure 6 and 7 showed two graph examples.
A special case of graphs is the Pruned concept hierarchy, also
known as AOC-poset, also used in variants analysis.

Benchmark. Realistic, non-trivial, comparable, and repro-
ducible settings are needed to compare techniques for extrac-
tive SPL adoption. In order to support research on feature
location, the Eclipse Feature Location Benchmark (EFLBench)
[10] was implemented and integrated in BUT4Reuse. The
benchmark is based on the Eclipse releases and we provided
example results of four different feature location approaches.

V. CONCLUSION

Extractive SPL adoption is a challenging task for SPL
adopters. In addition, the research community on this field
needs a common framework to test and compare their works
on the different steps of the process. BUT4Reuse is a generic
and extensible open source framework that aims to face these
challenges and that already has a set of validation studies.

ACKNOWLEDGMENT

This work has been partially supported by the European
project ITEA 3 15010 REVaMP2.

REFERENCES

[1] L. M. Northrop, P. C. Clements et al., “A Frame-
work for Software Product Line Practice, Version 5.0,”
www.sei.cmu.edu/productlines/framework.html, 2009.

[2] T. Berger, R. Rublack, D. Nair, J. M. Atlee, M. Becker, K. Czarnecki,
and A. Wasowski, “A survey of variability modeling in industrial
practice,” in VaMoS, 2013.

[3] C. W. Krueger, “Easing the transition to software mass customization,”
in PFE, 2001.

[4] S. Fischer, L. Linsbauer, R. E. Lopez-Herrejon, and A. Egyed, “The
ECCO tool: Extraction and composition for clone-and-own,” in ICSE,
Volume 2, 2015.

[5] J. Martinez, T. Ziadi, T. F. Bissyandé, J. Klein, and Y. L. Traon,
“Bottom-up adoption of software product lines: a generic and extensible
approach,” in SPLC, 2015.

[6] ——, “Name Suggestions during Feature Identification: The VariClouds
Approach,” in SPLC, 2016.

[7] J. Martinez, T. Ziadi, J. Klein, and Y. L. Traon, “Identifying and
visualising commonality and variability in model variants,” in ECMFA,
2014.

[8] J. Martinez, T. Ziadi, T. F. Bissyandé, J. Klein, and Y. L. Traon,
“Automating the extraction of model-based software product lines from
model variants (T),” in ASE, 2015.

[9] J. Martinez, T. Ziadi, R. Mazo, T. F. Bissyandé, J. Klein, and Y. L.
Traon, “Feature relations graphs: A visualisation paradigm for feature
constraints in software product lines,” in VISSOFT, 2014.

[10] J. Martinez, T. Ziadi, M. Papadakis, T. F. Bissyandé, J. Klein, and Y. L.
Traon, “Feature location benchmark for software families using eclipse
community releases,” in ICSR, 2016.

[11] L. Li, J. Martinez, T. Ziadi, T. F. Bissyandé, J. Klein, and Y. L.
Traon, “Mining Families of Android Applications for Extractive SPL
Adoption,” in SPLC, 2016.

[12] J. Martinez, “Mining software artefact variants for product line migration
and analysis,” Ph.D. dissertation, University of Luxembourg, 10 2016.

[13] K. C. Kang, S. G. Cohen, J. A. Hess, W. E. Novak, and A. S. Peterson,
“Feature-oriented domain analysis (foda) feasibility study,” Carnegie-
Mellon University Soft. Eng. Institute, Tech. Rep., 1990.

[14] T. Ziadi, C. Henard, M. Papadakis, M. Ziane, and Y. L. Traon, “Towards
a language-independent approach for reverse-engineering of software
product lines,” in SAC, 2014.


