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Distributed medium access control with
conditionally altruistic users
Panayotis Antoniadis1*, Serge Fdida2, Christopher Griffin3, Youngmi Jin4 and George Kesidis3

Abstract

In this paper, we consider medium access control of local area networks (LANs) under limited-information conditions
as befits a distributed system. Rather than assuming ‘by rule’ conformance to a protocol designed to regulate
packet-flow rates (e.g., CSMA windowing), we begin with a non-cooperative game framework and build a dynamic,
conditional, altruism term into the net utility. The effects of altruism are analyzed at Nash equilibrium for the carrier
sense multiple access (CSMA)-like random-access framework in the quasi-stationary (fictitious play) regime. We
consider either power or throughput-based costs of networking, and the cases of identical or heterogeneous
(independent) players. Unlike related work in this area, our objective is not to optimize the performance of the system
but to formulate a realistic economic model capturing altruistic motivations. This model can then form the basis for
higher-level incentive schemes that will encourage altruistic, instead of selfish, behavior. In a numerical study we
consider the cases of identical or diverse players and show interesting relationships between the main parameters of
our model and comparisons with other alternatives discussed in the literature.

Keywords: Medium access control; Resource allocation; Altruism; Game theory

1 Introduction
Flow and congestion control are fundamental network-
ing problems due to the distributed, information-limited
nature of the decision-making process in many popu-
lar access technologies. Various distributed mechanisms
have been implemented to cooperatively desynchro-
nize demand, e.g., Transmission Control Protocol (TCP),
ALOHA, and carrier sense multiple access (CSMA). Typ-
ically, when congestion is detected, all end-devices are
expected to slow down their transmission rates and then
slowly increase again hoping to find a fair and efficient
equilibrium.
If some usersa employ alternative implementations of

the prescribed ‘by rule’ protocols, e.g., ones that slow
down less than they should or even increase their trans-
mission rate in the presence of congestion, the result
could be an unfair allocation or even congestion collapse
(see e.g., [1,2]). The experience with TCP (e.g., [3]) has
shown that developers do create versions of the proto-
col that depart from the standard cooperative (by rule)
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congestion-avoidance algorithm, like Turbo TCP. Out-
side of a tactical context, non-cooperative tactics at the
medium access control (MAC) level have not been as
widespread, perhaps due to the increased difficulty of
modifying lower-level networking drivers by users or third
parties, but such modifications are possible. As more net-
work users behave selfishly and thereby more significantly
reduce the performance of the rest, the other players
are increasingly incentivized to adopt selfish strategies
themselves, potentially leading to deadlock.
To address this threat, there is a steadily growing liter-

ature that analyzes the equilibria of different distributed
network resource allocation games [1,4-13]. Such models
provide useful insights on the expected equilibria when
users do have the option to choose alternative imple-
mentations of the MAC protocol and constitute a frame-
work for devising and analyzing incentive mechanisms
to encourage the behavior that would lead to the most
desirable equilibria. For example, in a Markovian setting
without fictitious play,b Ma et al. [13] introduce a coop-
eration parameter (a probability to stop transmitting) and
then follows a detection and punishment methodology
regarding selfish behavior.

© 2013 Antoniadis et al.; licensee Springer. This is an Open Access article distributed under the terms of the Creative Commons
Attribution License (http://creativecommons.org/licenses/by/2.0), which permits unrestricted use, distribution, and reproduction
in any medium, provided the original work is properly cited.
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In addition, even when users do follow the prescribed
protocol, game theoretical models could be used as ana-
lytical frameworks that enable more informed choices in
the implementation of the corresponding flow and con-
gestion control protocols (e.g., by associating a utility
function to end-devices, which can then be the basis
of actions by rationally selfish players). To this end,
for a random-access local area network (LAN), several
authors have recently considered the problem of dis-
tributed optimization of a global objective (total through-
put, social welfare) subject to a fairness constraint. For
example, in [12], a utility function design problem is
studied considering estimation errors of the network
state.
Our work falls into the former category of game-

theoretic models but is different than the typical approach
in addressing potentially selfish behavior at the MAC
layer. Our objective is to formulate a more realistic utility
model that captures altruistic motivations. As discussed
in the next section, research in the field of experimen-
tal economics has demonstrated that such motivations do
play an important role in a wide variety of public goods
and common-pool games. Our analysis could then form
the basis for advanced incentive schemes, which, instead
of attempting to punish selfish behavior, would aim to
encourage altruistic behavior under certain conditions.
For example, a possible realistic outcome could be the
design of a high-level user interface which will allow users
to set the urgency of their communication and which
encourages users to assign lower priority to their traffic
when there is evidence that other users generally are doing
the same, cf. Section 7. If successful, such a mechanism
will not only improve performance at any given moment
but it will also allow certain users to increase their own
throughput only when they really need it, improving this
way also the efficiency of the system over time without
the need for complex and unattractive pricing schemes
(e.g., [4]).
In the long term we have to deal with an ‘evolutionary’

game, as defined in [14], that could pass from different
states, as in [15]: In one state, all participants follow a
basically cooperative strategy (cooperative by rule proto-
col), though the context here is an information-limited
distributed system. From this cooperative state, suppose
that some players defect from the cooperative protocol
and thereby (perhaps ‘greedily’) achieve better perfor-
mance for themselves at the expense of all other players. A
sufficient number of defectors (i.e., sufficiently poor per-
formance for non-defectors) will incentivize all remaining
players to defect, thus possibly leading to a ‘fully non-
cooperative’ state. In the fully non-cooperative state, an
information-limited game may be prone to non-Pareto
(even deadlocked) equilibria. One approach to this prob-
lem is to employ mechanisms to overcome ‘loss aversion’

[16] and thereby explore play actions that may yield sub-
optimal net utilities in the short term (i.e., moves that
appear locally irrational) but avoid getting trapped in
non-Pareto equilibria in the longer term. Alternatively
again from the fully non-cooperative state, the possibil-
ity for users to lower the priority of their transmission
based on information about the behavior of others can
result in a conditionally cooperative state that could help
escape from the deadlock and possibly lead back to the
fully cooperative one. Notwithstanding such measures,
the non-cooperative state may not reach the social wel-
fare achieved in the original cooperative state, cf. the
numerical results in Section 5.4.
As our main contribution here, we focus on the condi-

tionally cooperative state of the system and formulate and
analyze a novel CSMA control game with conditionally
altruistic players. We model this situation by altering the
net utilities of the players with a term which we identify
with altruism. Altruistic tactics in evolutionary/mean-
field games have long been considered; see [17] as a recent
reference. In networking, altruism has been modeled as
a user’s statically personalized weight on the utility of
others in games of network formation [18], packet for-
warding in delay tolerant networks [19], routing [20,21],
and medium access control by us in [22].
However, we argue in detail in the next section that such

static altruistic models, although theoretically interesting,
fail to capture important realistic attributes of altruistic
behavior studied in the behavioral and experimental eco-
nomics literature. In this paper, we formulate a fictitious
playmodel where altruism by one user is based on the per-
ceived mean modulated throughput of the other playersc
(i.e., made ‘dynamic’) by factoring the estimated mean
total channel idle time. Unlike Heusse et al. [23], who
propose a window-update algorithm that tries to directly
minimize the average idle time of the channel, in our
model users will use less than their ‘fair’ share when they
do not really need it, but under the constraint that others
do the same. For example, large idle time may be a sig-
nal that competing devices are also behaving in a socially
sensitive manner, expressing a cooperative ‘social norm.’
In this case, excessive altruism may result in an under-
used channel. We should stress that our objective is not to
optimize the overall throughput of the system but to study
the stable equilibria that such altruistic devices could
reach. Finally, we do not assume that the users share infor-
mation and act in a coordinated fashion, i.e., so as to form
a player coalition.
This paper is outlined as follows. In Section 2, we give

a brief background on altruistic behavior. A fictitious play
model with dynamic altruism for a slotted ALOHALAN is
given in Section 3. In Section 4, some closely related varia-
tions of the LANmodel are considered. Numerical studies
are given in Sections 5 and 6, including for the case of
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player diversity. Finally, in Section 7, we conclude with a
summary and discussion of future work.

2 Background on altruistic behavior
Economists are often criticized for the common assump-
tion that humans are rational (i.e., purely self-interested),
which leads to a pessimistic view of the outcome of
various formulated game-theoretic models. In reality,
many people act ‘altruistically,’ defined as an ‘unselfish
concern for or devotion to the welfare of others.’d
In fact, despite this selfishness stereotype, certain

branches of economics, such as behavioral and experi-
mental economics, do incorporate social, cognitive, and
psychological factors in their models of human behavior
(see [16] for a historical overview), in a way not typically
captured in cooperative game-theoretic frameworks.
Two common scenarios in which altruistic behav-

ior consistently appears in experiments with real users
include the public-goods provision and common-pool
resource sharing games. For example, in the traditional
public-good provision game, where players determine
their individual contribution toward the construction
of a pure public good, experiments have challenged
the assumption that free riding is always the domi-
nant strategy (e.g., [24]). Similarly altruistic behaviors
have been observed in a very simple resource-sharing
game, called ultimatum, where one player decides
how to share a fixed amount of money with another
player who can decide whether to accept or reject
sharing: here rejection leaves both with zero profit.
Experiments show that people altruistically sacrifice
their own profit to punish unfair decisions by others;
see [25] for an overview of experiments with differ-
ent variations of this game and interesting regularities
observed.
An important lesson of experimental economics is that

altruism does not seem to be a static and hardwired char-
acteristic of humans but depends on many aspects of the
environment. In other words, the level of altruism of an
individual is dynamic and could change over time depend-
ing on the context and the behavior of the group [25,26].
Indeed, the cooperation rate in many experiments has
been proven to be much higher if subjects know that
there is a possibility of meeting the same partners again in
future periods [27], when their perception on the overall
level of altruism in their group is high [28], or even just by
a positive framing of the experiment [29].
From these and many other contextual factors that can

affect the cooperation levels in a group, social norms are
perhaps the most influential (see [30,31]) but complex
to incorporate in a simple economic model. To this end,
Fehr and Schmidt [32] have proposed a utility function
to model the altruistic behavior of people in ultimatum
experiments, which incorporates a measure of fairness

(or ‘inequity aversion’) in a static way, i.e., its main param-
eters are indifferent to the dynamics of the system. As a
more realistic but less tractable alternative, H. Margolis
argues in favor of a more dynamic and complex model,
called ‘neither selfish nor exploited’ [33], which proposes
a dual utility model which takes into account the history
of one’s actions, the current overall behavior, the effect of
altruistic action, and the developed norms in a society.

3 Slotted ALOHA random-access LANwith
dynamic altruism

3.1 Altruistic framework with power-based cost and
concave utility of throughput

In our scenario, the high complexity of human nature and
the surrounding social environment plays a less important
role since the cooperation game that we study is limited
in time, the identity of the players are hidden, the stakes
are relatively low, and the decisions of users are mediated
through a programmed device.
So we propose to incorporate in a simple utility func-

tion the effect of the external manifestation of altruistic
behavior that is a statistical norm as termed in [33] or sim-
ply ‘what others do’ [28]. To perceive this, the availability
of reliable information about the group’s statistical behav-
ior is critical. Our use of the mean idle time per active
player to determine the level of altruism in the system is
realistic in terms of information availability since it can be
easily measured by the different users; though, again, low
demand could be mistakenly taken for altruistic behav-
ior and congestion due to a high number of competing
users could be mistaken as individually selfish behavior
(see discussion on the results shown in Table 1).
Consider a slotted ALOHA random access LAN

wherein the N ≥ 2 participating nodes control their
access probability parameter, q. A basic assumption is
that nodes’ control actions are based on observations in
steady state, i.e., ‘fictitious play’ [34], resulting in a quasi-
stationary dynamical system [4,6,35] based on the mean
throughputs, i.e., for player i:

γi(q) = qi
∏
j �=i

(1 − qj).

Another basic assumption in the following is that the
source of a successful transmission is evident to all other
participating nodes. We further assume that the degree of

Table 1 Chicken game

P2

P1 Tx No Tx

Tx (−ξ ,−ξ) (0, 1 − ξ)

no Tx (1 − ξ , 0) (0, 0)

The net payoffs for collective action (transmit (Tx) or not) by the players (P1,P2)
in the chicken game.
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altruism αi of each node i depends on the activity of the
other users as

αi(q−i) =
∏
j �=i

(1 − qj) = γi(q)
qi

= γi(q) +
∏
j

(1 − qj),

where the second term is just the mean idle time of the
channel; thus, every node can easily estimate its (dynamic)
altruism. By using its control action (strategy), qi, each i
seeks to maximize its net utility:

Vi(q) = Ci log(γi(q)) + Aiαi(q−i)γ −i(q) − Miqi (1)

where the dynamic altruism factor α modulates the con-
tribution of the mean service of all other players to the net
utility of player i,

γ −i(q) = 1
N − 1

∑
j �=i

γj(q); (2)

the utility derived by one’s own throughput is modulated
by a concave function [4,7,35] as modeled here in the
form of a logarithm (for tractability); and we have assumed
a power-based coste Mq. Note that because we assume
that the source of each successfully transmitted packet
is evident to all nodes, each node i can easily estimate
γ −i. Again, though each player i optimizes Vi in a non-
cooperative fashion, the game is called altruistic to reflect
the second term in (1). In summary, in our model of an
altruistic player i, benefit (utility) is derived from the suc-
cess of others (γ −i) and channel idleness (αi), the latter
indicating altruism on the part of othersf.
Note that in classical ALOHA, choosing very high

(re)transmission parameter q results in wasted slots due to
interference and wasted transmission power, and choos-
ing very low q results in underused (empty) slots. Also
note that a single-play slotted ALOHA game between two
identical players is similar to the game chicken. If ξ < 1
is the cost of transmission and the (normalized) payoff
of successful transmission is 1, then the Table 1 gives net
payoffs for collective action (transmit (Tx) or not) by the
players (P1,P2).
The single-play game has three Nash equilibria: two

‘pure’ strategies, (Tx, no-Tx) and (no-Tx, Tx), and one
mixed strategy: Tx with probability q∗ (and no Tx with
probability 1 − q∗), where q∗ = 1 − ξ jointly minimizes
the expected net gains, (1 − ξ)qk(1 − q3−k) − ξqkq3−k , of
players k ∈ {1, 2}.
In the following, we consider an iterated version of this

game where players pursue mixed strategies based on
observations of throughput γi observed in steady state.
Note that if we further assume that nodes are aware of

the C,M parameters of other nodes, then we can replace

γ with the net utility of the other players as in [22]
(particularly for throughput-based costsMγ ).

Proposition 3.1. If the game is synchronous play and all
users i have the same (normalized) parameters

c := Ci/Mi < 1 and a := Ai/Mi,

then there is a symmetric Nash equilibrium q∗ = q∗1,
where 0 < q∗ < 1 is a solution to

f (q) := aq2(1 − q)2N−3 + q − c = 0. (3)

Proof. When qi = q for all i, the first-order necessary
conditions of a symmetric Nash equilibrium,

0 = ∂Vi
∂qi

(q1) = − M
q
f (q),

i.e., equivalent to (3). Note that f (0) = −c < 0 and f (1) =
1− c > 0, the latter by hypothesis. So, by the continuity of
f and the intermediate value theorem, a root of f exists in
(0, 1).
All such solutions q∗1 correspond to Nash equilibria

because ∂2Vi(q)/∂q2i = −Ci/q2i < 0 for all i, q.

The following corollary is immediate.

Corollary 3.1. There is a unique symmetric Nash equi-
librium point (NEP) ifminq∈(0,1) f ′(q) > 0 (i.e., f is strictly
increasing), a condition on parameters N and a.

Note that there may be non-symmetric Nash equilibria
in these games, even for the case of homogeneous users,
e.g., [36]. Also, it is well known that Nash equilibria of
iterative games are not necessarily asymptotically stable,
e.g., [37-39]. In [4,35] for a slotted ALOHA game with
throughput-based costs Mγ , using a Lyapunov function
for arbitrary N ≥ 2 players, a non-cooperative two-player
ALOHA was shown to have two different interiorg Nash
equilibria, only one of which was locally asymptotically
stable (see also [40]).
For stability analysis of our altruistic game, consider

the discrete-time (n), synchronous-play gradient-ascent
dynamics,

qi(n) = argmax
qi

Vi(qi; q−i(n − 1)) ∀i. (4)

In a distributed system,h the corresponding continuous-
time Jacobi iteration approximation is

q̇i(t) = ∂Vi
∂qi

(q(t)) ∀i (5)

and is motivated when players take small steps toward
their currently optimal response, i.e., better-response
dynamics [41]. That is to say, for positive step-size,
ε � 1 (5) approximates the discrete-time better-response
dynamics,
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qi(n) = qi(n − 1) + ε
∂Vi
∂qi

(q(n)) ∀i, (6)

which is a kind of distributed gradient ascent. The Jacobi
iteration is also motivated by the desire to take small
steps to avoid regions of attraction of undesirable bound-
ary NEPs, particularly those corresponding to the capture
strategy (qi = 1 for some i). Note that when more than
one player selects this strategy, the result is a bad out-
come for the game chicken or a deadlocked ‘tragedy of
the commons.’ Additionally, the players avoid the opt-out
strategy (qi = 0 for some i). In summary, (6) represents a
repeated game in which players adjust their transmission
parameters qi to (locally) maximize their net utility Vi.
To find conditions on the parameters of net utilities

(1) for local stability of the equilibria, we can apply the
Hartman-Grobman theorem [42] to (5), i.e., to check that
the Jacobian is negative definite. The following proposi-
tion uses the conditions of [43] for stability (and unique-
ness) for a special case.

Proposition 3.2. In the case where players have the
same parameters C and A, the symmetric NEP q∗1 is
locally asymptotically stable under the dynamics in (5)
when the normalized parameters satisfy

C > 2(N − 1)A. (7)

Proof. By [43], the result follows if the symmetricN ×N
matrix H(q) is negative definite, where

Hij = ∂2Vi
∂qi∂qj

+ ∂2Vj

∂qj∂qi
.

First note that for all i,

Hii(q) = − C
q2i

< − C.

For l �= i,

∂2Vi
∂qi∂ql

= ∂

∂ql

⎛
⎝C
qi

− Aα(q−i)
1

N−1

∑
j �=i

qj
∏
k �=i,j

(1 − qk)

⎞
⎠

= A
∏
j �=i,l

(1 − qj) 1
N−1

∑
j �=i

qj
∏
k �=i,j

(1 − qk)

+ Aα(q−i)
1

N−1

⎛
⎝∑

j �=i,l
qj

∏
k �=i,j,l

(1 − qk)

−
∏
k �=i,l

(1 − qk)

⎞
⎠ .

Now because 0 < qi < 1 for all i and the triangle
inequality,

|Hij(q)| ≤ 2A ∀j �= i.

So, by the Gershgorin circle (disc) theorem (see p. 344
of [44]), all of H(q)’s eigenvalues are less than −C + (N −
1)2A. So, if (7) holds, then all the eigenvalues of H(q) are
negative, and so H(q) is negative definite.

3.2 The marginal effect of altruism
In this section, we will write q∗ (of the symmetric NEP q∗1
in symmetric users case) as a function of the normalized
altruism parameter a := A/M, q∗(a). Note that q∗(0) =
c := C/M.
Recall that the total throughput for slotted ALOHA,

Nc(1 − c)N−1, is maximal when c = 1/N . The maxi-
mum total throughput is (1− 1/N)N−1 ≈ e−1 for large N,
i.e., the maximum throughput per player is 1/(Ne) in this
cooperative setting without networking costs.
So, if c > 1/N , i.e., total throughput is less than e−1

because of excessive demand (overloaded system), then
a marginal increase in altruism from 0 (0 < a � 1)
will cause a marginal decrease in q∗ ↓ 1/N , resulting in
an increase in throughput per user γ ↑ 1/(Ne). Also, if
c < 1/N , i.e., total throughput is less than e−1 because
of a lack of demand (an underloaded system), then a
marginal increase in altruism from 0 will again cause a
marginal decrease in q∗, but here resulting in a decrease in
throughput γ (further away from the optimum e−1). See
Section 5.4.

4 Closely relatedmodel variations
4.1 Alternative altruism terms
Obviously, different variations of our altruism parame-
ter are possible, e.g., instead of the product of channel
idleness and the mean throughput of other players, we
could have considered the sum. We will herein consider
the dynamic product form described above and its static
version with no idleness term.

4.2 Throughput-based costs
In [22] we considered throughput-based costs with a
static altruism parameter and with utility proportional
to throughput. Instead of (1), for throughput-based costs
with dynamic altruism and utility being a concave (log)
function of throughput, we can model the net utility as

Ṽi(q) = Ci log(γi(q)) + Aiαi(q−i)γ −i(q) − Miγi(q). (8)

Proposition 3.1 can easily be adapted for power-based
costs. Instead of (3), the first-order necessary condition
for a symmetric Nash equilibrium q1 under throughput-
based cost is

f̃ (q) := aq2(1 − q)2N−3 + q(1 − q)N−1 − c = 0. (9)

All solutions q for (9) correspond to NEPs q1 because
∂2Ṽi(q)/∂q2i = −Ci/q2i < 0 for all i, q (as for power-based
cost). Note that f̃ (0) = f̃ (1) = −c < 0, so we cannot
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simply use the intermediate value theorem as we did for
Proposition 3.1 to establish existence of a symmetric Nash
equilibrium when c < 1. Here, existence requires

max
0<q<1

f̃ (q) ≥ 0, (10)

a condition on N , c, a.
Note that if the inequality in (10) strictly holds, then

there will be an even number of symmetric NEPs, again by
the intermediate value theorem. If the maximum equals 0,
then there may be a unique symmetric NEP.

4.3 Proportional throughput utility
Suppose that utility is simply proportional to throughput
and cost is power based, i.e., the net utility is

V̂i(q) = Ciγi(q) + Aiαi(q−i)γ −i(q) − Miqi. (11)

Note that the net utility V̂i is linear in qi (this would also
be the case if throughput-based costs were involved). This
normally leads to candidate ‘bang-bang’ Nash equilibrium
play actions, qi ∈ {0, 1} for all players i; i.e., the players
are either out of the game (qi = 0 if ∂V̂i/∂qi < 0) or are
all in (qi = 1 if ∂V̂i/∂qi > 0). Note that the latter play
action, potentially leading to the deadlock of tragedy of
the commons, is not an equilibrium here because if qj = 1
then ∂V̂i/∂qi = −M < 0 for all i �= j.
It turns out that for this case, there is a symmetric inte-

rior equilibrium q1 for the identical players case with 0 <

q < 1, i.e., where

f̂ (q) := ∂V̂i
∂qi (q1)

= c(1 − q)N−1 − aq(1 − q)2N−3 − 1 = 0. (12)

If c > 1, f̂ (0) = c − 1 > 0 and f̂ (1) = −1 < 0 and so
there is a solution to f̂ (q) = 0 for 0 < q < 1 by the inter-
mediate value theorem. It should be noted, however, that
such an interior Nash equilibrium q1 is not stable, i.e., it is
a saddle point in the domain [ 0, 1]N .

4.4 Heterogeneous players
Asynchronous players were considered previously in [7]
using the ideas from [45,46]. A very similar approach
can be used to extend the results herein to account for
the effects of asynchronous play. Numerical results for
cases of heterogeneous players, including the special case
of players with different play rates that are otherwise
identical, are given in Section 6.

5 Numerical studies for identical players at Nash
equilibrium

5.1 Power-based costs
For normalized utility parameter c = 0.5 and normalized
altruism parameter a = 1, Figure 1 is a plot of f in (3); i.e.,
for power-based costs and for N = 2, 3, 5, 10 players. The
root at q = 0.4 corresponds to N = 2 (i.e., corresponding
to NEP q1) and, as the first term of f becomes negligible,
the root at ≈ 0.5 corresponds to the N > 2 cases. For c =
0.5 andN = 5, Figure 2 is a plot of f for a = 0.1, 1, 10, 100.
Note that a = 100 corresponds to the larger curve which
has a smaller root q, i.e., under ‘excessive’ altruism theNEP
q → 0.

Figure 1 Equilibrium condition for the model with power-based costs, rangingN . A plot of f (q) in (3), i.e., for power-based costs, for c = 0.5,
a = 1, and N = 2, 3, 5, 10 players, depicting the NEPs achieved for the selected set of parameters using lines in color black, red, blue, and green,
respectively.



Antoniadis et al. EURASIP Journal onWireless Communications and Networking 2013, 2013:202 Page 7 of 12
http://jwcn.eurasipjournals.com/content/2013/1/202

Figure 2 Equilibrium condition for themodel with power-based costs, ranging a. A plot of f (q) in (3) for c = 0.5, N = 5, and a = 0.1, 1, 10, 100,
depicting the NEPs achieved for the selected set of parameters using lines in color black, red, blue, and green, respectively.

5.2 Throughput-based costs
Using the same parameter cases as those for power-based
costs, Figure 3 is a plot of f̃ in (9) for c = 0.5, a = 1,
and N = 2, 3, 5, 10. Figure 4 is a plot of f̃ in (9) again
for c = 0.5, N = 5, and a = 0.1, 1, 10, 100. The larger
curve, corresponding to a = 100, has two zero-crossings
q at approximately 0.1 and 0.4, i.e., has two different
symmetric NEPs q1. The other parameter sets do not
possess an interior NEP, a situation which will be

remedied if we reduce the utility c from 0.5 to 0, that is,
increasing f̃ .

5.3 Throughput proportional utilities and costs
Figure 5 is a plot of f̂ in (12) for c = 2, a = 1, and
N = 2, 3, 5, 10. Figure 6 is a plot of f̂ for c = 2, N = 5,
and a = 0.1, 1, 10, 100. Following intuition, the lower
curves (and lower roots, NEPs) correspond to the largerN
(larger congestion leading to lower throughput) or larger

Figure 3 Equilibrium condition for the model with throughput-based costs, rangingN . A plot of f̃ (q) in (9) for c = 0.5, a = 1, and
N = 2, 3, 5, 10, depicting the NEPs achieved for the selected set of parameters using lines in color black, red, blue, and green, respectively.
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Figure 4 Equilibrium condition for the model with throughput-based costs, ranging a. A plot of f̃ (q) in (9) for c = 0.5, N = 5, and
a = 0.1, 1, 10, 100, depicting the NEPs achieved for the selected set of parameters using lines in color black, red, blue, and green, respectively.

a (greater altruism again leading to lower throughput), in
a monotonic fashion when all other parameters are fixed.

5.4 An example comparing altruism and non-cooperation
In this section, we compare the Nash equilibria under
altruistic player action with equilibria in purely non coop-
erative scenarios. For all scenarios, we considered the
case of power-based costs, log-utility of throughput, nor-
malized utility parameter c = 0.5, and identical users. For

the purely non-cooperative scenario, i.e., a = 0, the sym-
metric Nash equilibrium q = c = 0.5 is simply obtained
by solving (3). For the scenarios with altruism, the nor-
malized altruism parameter was taken to be a = 20.
Recall that for static altruism, α ≡ 1. At Nash equilibrium
q∗ = q∗1, the throughput (γ ∗ = q∗(1 − q∗)N−1) and
utility (1) performance per user are given in the follow-
ing table, in decreasing order of throughput. For a third
scenario, assume that the players cooperated by rule to

Figure 5 Equilibrium condition for the model with throughput proportional utility and power-based cost, rangingN . A plot of f̂ (q) in (12)
for c = 2, a = 1, and N = 2, 3, 5, 10, depicting the NEPs achieved for the selected set of parameters using lines in color black, red, blue, and green,
respectively.
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Figure 6 Equilibrium condition for the model with throughput proportional utility and power-based cost, ranging a. A plot of f̂ (q) for
c = 2, N = 5, and a = 0.1, 1, 10, 100, depicting the NEPs achieved for the selected set of parameters using lines in color black, red, blue, and green,
respectively.

maximize social welfarei W = ∑
i
Vi, where Vi given by

(3) with a = 0; the first-order condition for the symmetric
Nash equilibrium q1, ∂W/∂qi = 0, is equivalent to

q2 − (Nc + 1)q + c = 0.

As depicted in Table 2, our dynamic altruism model does
not perform well (in terms of mean throughput per user
at Nash equilibrium) when contention is high, as it is the
case for N = 8, under the assumed parameters.
If there is little demand, the idle time will be high and

the throughput low, so the altruism term may or may not
be high. If there is congestion, the idle time will be low and

Table 2 Numerical comparison

Scenario q∗ γ ∗ V∗/M

N = 4

Dynamic altruism 0.22 0.1044 -0.36

Cooperative 0.18 0.0972 -1.34

Static altruism 0.16 0.0935 0.53

Non-cooperative 0.50 0.0625 -1.89

N = 8

Cooperative 0.10 0.0478 -1.62

Static altruism 0.28 0.0277 -1.52

Dynamic altruism 0.50 0.0039 -3.27

Non-cooperative 0.50 0.0039 -3.27

The results of a numerical example comparing altruism and non-cooperation
(see section 5.4).

the throughput will also be low (the latter due to interfer-
ence), so the altruism term will be low. Then the players
tend to be non-cooperative in the congested state (whenN
is high). Considering the static altruism model, for which
channel idle time is not a factor, one expects that the play-
ers tend to be non-cooperative in the congested state too
(throughput is low due to interference), but the altruism
term will be higher since the alpha (idle time) term is not
involved, so the tendency to be non-cooperative will be for
a higher N under static altruism than under our dynamic
altruism - as is the case for N = 8.
For N = 4, dynamic altruism does better owing to

both higher channel idle time and higher total throughput.
In this low-contention case, the dynamic altruism term
is smaller than in the static case (owing to the idle-time
component α) so users will value their own through-
put utility more (and they can achieve more throughput
owing to less contention), which is collectively re-enforced
by the throughput component of the dynamic altru-
ism term. Furthermore, for this low-contention case, the
cooperative strategy has simply ‘met its demands’ (maxi-
mized utility minus cost), and under power-based costs,
increasing transmission probability has a great reduction
on cost components of the net utility terms and again
boosts the altruism components of the utility of other
players.

6 Numerical studies with player diversity
6.1 Players with different altruism parameters
Consider the game with power-based costs. In this
section, we consider players with different normalized
altruism parameters a for N = 3, which are otherwise
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Table 3 The role of a
a1 q∗

1 , q
∗
2 = q∗

3 γ ∗
1 , γ

∗
2 = γ ∗

3 i V∗
1 , V

∗
2 = V∗

3

30 0.15,0.10 0.13,0.074 0.754,2.37

40 0.12,0.10 0.10,0.080 1.40,2.24

50 0.10,0.10 0.083,0.083 2.10,2.10

60 0.091,0.11 0.073,0.087 2.79,1.83

70 0.079,0.11 0.063,0.090 3.56,1.82

The role of a in the NEP q∗ and corresponding throughputs γ ∗ and utilities V∗
per user.

identical players with normalized parameter c = 0.5 asso-
ciated with power-based cost. Specifically, the first player
has a1 ranging from 30 to 70, while the other two players
both have a = 50. Note that changing a in this manner
will result in changes in the NEP q∗ and corresponding
throughputs γ ∗ (and utilities V ∗ per user, as shown in
Table 3).
Following intuition, increased altruism (a1 > 50) by

player 1 resulted in lower throughput for him and higher
throughput for the other two players. Similarly, decreased
altruism by player 1 (a1 < 50) resulted in higher through-
put for him and lower throughput for the other players.

6.2 Sizes of regions of attractions under different play
rates

In this section, we study how the volume of the regions
of attractions of different equilibria is sensitive to players
adopting different play rates, while retaining our assump-
tion of fictitious/quasi-stationary play. Consider the case
of N = 3 players two of whom have the same play rate
while the other adopts a play rate that is a multiple, r, of

the other two. We consider the case of throughput-based
costs as in Figure 4. That is to say,

q̇i(t) = ri
∂Ṽi
∂qi

(q(t)) ∀i, (13)

where ri = r for player i = 1; otherwise, ri = 1 and Ṽ is
given in Section 4.2. Numerically simulating (13) from dif-
ferent initial points chosen from a grid in the hypercube
[ 0, 1]3, we counted the number of initial points converg-
ing to a given NEP so as to estimate the volume of its
region of attraction. Note that the introduction of such
play-rate parameters ri does not change the position of the
NEPs. Using normalized parameters a = 50 and c = 0.5,
the function f̃ whose roots are the NEPs is depicted in
Figure 7. As the results presented in Table 4 demonstrate,
the region of attraction is very sensitive to r in the range
0.1 to 10.
Again following intuition, a lower r effectively corre-

sponds to a reluctance to be altruistic and thereby results
in a smaller domain of attraction for the more altruistic
Pareto (higher Ṽ ) equilibrium (0.1)1.

6.3 Players with different transmission priorities
Now consider the case where the factors Ci in (1) are dif-
ferent. Equivalently, assume the factors ri affect only the
throughput utility rather than the whole net utility as they
do in (13). Taking the cases of such factors as in the pre-
vious Subsection 6.2 again leads to intuitively consistent
results as above: users with higher priority will achieve
more throughput at Nash equilibrium.

Figure 7 Equilibrium condition of the model with power-based costs forN = 3. A plot of the function f̃ (q) whose roots are the NEPs, using
normalized parameters a = 50 and c = 0.5.
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Table 4 The role of r
Volume NEP = (0.1) 1 NEP = (0.75)1

r = 0.1 0.502 0.498

r = 0.25 0.507 0.493

r = 1 0.556 0.444

r = 4 0.839 0.161

r = 10 0.841 0.159

γ : 0.081 0.047

Ṽ : 1.94 -1.43

The role of r in the NEP q∗ .

7 Conclusions
In this paper, we extended a non-cooperative game frame-
work for information-limitedMAC of a LAN by adding an
altruism term that depended on both the mean through-
put of the other players and the mean channel idle time.
The cases of heterogeneous or homogeneous users, and
of power or throughput-based costs, were considered
for a quasi-stationary model of the game. A numerical
study compares the per-user throughput under dynamic
and static altruism with that of purely non-cooperative
dynamics, and demonstrates the advantage of altruism
under moderate levels of congestion (number of players)
in the homogeneous player setting and for a heteroge-
neous user scenario. Our numerical studies produced
intuitive results which means that our model is self-
consistent and could form the basis for more sophisticated
extensions. However, our dynamic altruism term is sen-
sitive to the use of the mean idle time as a measure of
the current level of altruism in the system, which could
lead to wrong interpretations in certain scenarios (e.g.,
when demand is low or when congestion is due to a
high number of users in the channel). In more advanced
versions of our model, we will include the number of
competing users, N, in the term expressing the current
level of altruism in the system in order to avoid such
misinterpretations.
In the future, we will also consider a mixed scenario of

of three types of players:

• Those that follow an original protocol that enacts
distributed/information-limited cooperation (by rule)
for flow and congestion control

• Altruistic but pragmatic (second defectors) who will
defect to avoid starvation, and

• Selfish (first defectors), who will cooperate only to
avoid starvation.

Note that both types of defectors can engage in an evo-
lutionary cyclej of tactical transitions as they assess the
social communication norms in the LAN among users
who are active presently and in the recent past, classifying

the active users into the above three categories in partic-
ular. One can ask what distributed congestion and flow
control protocol can best deal with defectors of both
typesk? Given that players will be intermittently active or
may be active with communication of differing degrees
of priority, can an altruistic framework (possibly with an
evolutionary ‘wrapper’) be designed to effectively conduct
priority scheduling in this LAN context? A challenge
here is dealing with the greedy user who declares all of
their communication as high priority. Again, our ultimate
aim is to achieve fair and efficient throughputs for by
rule cooperators and altruistic defectors alike, while not
starving-out/shunning the deemed selfish defectors.

Endnotes
a In this paper, we use the terms user, player,

participant and node interchangeably.
b I.e., without steady-state estimates of certain

quantities.
c Such estimates are feasible in our application context

of a CSMA local area (broadcast) network with a
relatively small population of active participants, but is
not possible for many other networking contexts, e.g., the
example of TCP congestion control mentioned above. So,
it would be difficult to obtain estimates of ‘social norms’
to form the basis of ‘rational’ altruism for TCP.

d See http://dictionary.reference.com/browse/altruism
e Power-based costs are borne whether or not the

transmission is successful.
f Obviously, we could have combined αi and γ −i in

different ways, instead of a product form, to form an
altruism modifier for the net utility of player i, cf. the next
section for other model variations.

g I.e., not including the stable boundary deadlock
equilibrium at q = 1.

h cf. Section 4.4 for a discussion of asynchronous play.
i This is similar to the classical slotted ALOHA

example where all (identical) players choose a common
q = 1/N to maximize total (and individual)
throughputs(without considering costs).

j Possibly at a slow time scale of human response.
k At a (faster) time scale of machine response.
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