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Abstract—The paper presents a new multiscale modeling
dedicated to magnetic shape memory alloys. It involves four scales
from the domain scale to the macroscale. The model is presented
and simulation results are compared to experiments carried out
on a NiMnGa single crystal.

Index Terms—Multiscale Modeling, Magnetic Shape Mem-
ory Alloys (MSMA), Chemo-mechanical Coupling, Magneto-
mechanical Coupling.

I. INTRODUCTION

Magnetic shape memory alloys (MSMAs) are among the

most promising alloys for designing miniature sensors or actu-

ators [1] especially because they are home to a strong thermo-

magneto-mechanical coupling involving a phase change and/or

variant selection. Besides stress and temperature dependence,

a macroscopic deformation can be achieved by applying a

magnetic field. The magnetization process is the result of

three competing mechanisms [2]: the motion of 180◦ magnetic

domain walls, the local rotation of magnetization vectors and

magnetic field induced variants’ reorientation. This point is

illustrated in figure 1 in the case of a cubic austenite and

three possible tetragonal martensite variants [3]. The two first

mechanisms exist in common ferromagnetic materials. The

first mechanism do not lead to any deformation, the second

do not lead to large deformation since only the spin-orbit

coupling is involved leading to the so-called magnetostriction.

Only the last one that mingles with a 90◦ magnetic domain

walls motion (existing in common ferromagnetic material

and leading to magnetostriction) leads to large deformation

that may reach up to 12% in single crystals [4], and by

consequence to a strong magnetoelastic coupling. The main

interest of this mechanism is that it corresponds to a second

order thermodynamic transformation that do not involves heat

exchange. This is the reason why MSMAs may be used at

higher frequencies than common shape memory alloys (up

to 1kHz) [2]. The piezomagnetic effect in these materials can

also be very high allowing the conception of energy harvesting

systems [5]. Since these behaviors are strongly associated to

transformations at the single crystal scale, development of

micro-macro approaches is relevant for their modeling. In

this paper, we give first the principles of a unified multiscale

modeling of these materials using a homogenization method

and a stochastic approach as a basis of the constitutive law

[6] [7]. The model is based on the comparison of the free

energy of each domain at the variant scale and each variant at

the single crystal scale, and the calculation of their associated

volume fractions. Averaging operations allow the calculation

of the macroscopic quantities at the polycrystalline scale.

The modeling is applied to the prevision of NiMnGa single

crystal MSMA behavior. Numerical results are compared to

experimental results illustrating the wide variety of phenomena

associated with magneto-mechanical and chemo-mechanical

couplings.

Cubic austenite

Martensite

variant 1 (V1)

Martensite

variant 2 (V2)

Martensite

variant 3 (V3)

Hx>0

Hx=0

Hx>>0

Hx>>>0

Magnetic

domain

wall motion

Magnetization

rotation

Martensite

reorientation

V1+V2

Fig. 1. (a) Cubic austenite (cell parameter a0) and the 3 tetragonal martensite
variants (cell parameters c and a) (b) Magnetization process of (V1+V2) single
crystal [3].

II. MULTISCALE MODELING

The proposed multiscale model is relevant for multiaxial

stress, thermal and magnetic fields loadings in a pseudo-

reversible framework (heat exchange can be considered for

instance). It derives from the previous works of Daniel and

Maynadier [6], [7]. The first scale involved for which mag-

netic, mechanical and thermal quantities can be considered

homogeneous is the domain scale inside the variant; just

above, the variant scale (including austenite phase) is the scale

where mechanical and thermal quantities can be considered

homogeneous. The third scale is the grain scale considered as

an assembly of variants. The last scale is the polycrystalline

scale considered as an assembly of grains and usually denoting

the representative volume element (RVE).



A. Variants free energy

In the following, φ denotes a variant, meaning a martensite

variant or the austenite phase; φα denotes a domain family

α inside the variant φ (e.g. variants and domains illustrated

in figure 1). According to the chemo-magneto-mechanical

coupling and neglecting the boundary effects, the free energy

of a domain family is given by (1). WT
φα indicates the chemical

energy (2), considered to exhibit a linear dependance with

temperature. W σ
φα indicates the elastic energy (3). Wmag

φα

indicates the magnetic energy (4).

Wφα =WT
φα +W σ

φα +Wmag
φα (1)

WT
φα = hφ − Tφαsφ (2)

W σ
φα =

1

2
σφα : C−1

φ : σφα (3)

Wmag
φα =WH

φα +WK
φα (4)

hφ and sφ are the volumetric enthalpy and entropy (J.m−3):

they do not differ from one domain to another or from a

martensite variant to another but differ from martensite to

austenite. Tφα is the local temperature (K). σφα and Cφ are the

local stress and the stiffness tensor. Cφ does not differ from

one domain to another but strictly differs from one variant

to another (due to change of crystal orientation) and from

martensite to austenite.

The magnetic energy Wmag
φα (4) is a combination of the

magnetostatic Zeeman energy (WH
φα) and magneto crystalline

anisotropy energy (WK
φα). Exchange energy is not considered

because of the uniformity of magnetization over a domain

(domain wall contribution is neglected). Zeeman (magneto-

static) energy is directly associated to local magnetic field
~Hφα (5) (with µ0 the vacuum permeability). This energy

tends to align the magnetization at the domain scale ( ~Mφα)

with the applied magnetic field. Magneto crystalline anisotropy

energy (WK
φα ) tends to align magnetization along the crystal

easy axes. The easy axes of magnetization are associated to

the crystal symmetry. Equation (6) gives WK
φα for a cubic

symmetry (corresponding to austenite in the present case) and

equation (7) gives WK
φα for a uniaxial symmetry of axis ~eu

(corresponding to martensite in the present case).

WH
φα = −µ0

~Hφα . ~Mφα (5)

WK
φα = K1(γ

2
1γ

2
2 + γ22γ

2
3 + γ23γ

2
1) +K2(γ

2
1γ

2
2γ

2
3) (6)

WK
φα = K0(1− γ2u) (7)

K0, K1 and K2 are the magneto-crystalline anisotropy con-

stants. γi are the direction cosines of the local magnetization so

that ~Mφα =Msφ.γi~ei. The saturation magnetizationMsφ does

not differ from one domain to another or from a martensite

variant to another but differ from martensite to austenite.

B. Constitutive law

The internal variables of the problem are the volume fraction

of domain families fφα and the orientation of the magneti-

zation inside each domain family (two spherical angles per

domain family: θφα and ψφα). The total number of internal

variables strongly depends on the number of variants (n) and

number of domains inside each variant (m). Following [6],

we use a probabilistic Boltzmann function to calculate the

volume fraction and implement an energy minimization for the

determination of magnetization direction. The volume fraction

fφα is given by (8) where As is an adjusting parameter.

fφα =
exp(−AsWφα)∑n

φ=1

∑m
α=1

exp(−AsWφα)
(8)

This general formulation does not allow to make the difference

between a domain wall motion inside a variant or a phase, and

a domain wall motion associated to a variant reorientation.

Indeed, interfacial energies are strongly different [2]. We have

to separate the phenomena dominant at the variant scale from

the phenomena dominant at the domain scale. The new volume

fraction fφα given by (9) is using two different parameters A
and B driving the two different interfacial effects (indeed A
and B parameters introduce the inertial effects ignored by the

modeling [6]).

fφα =

∑m
α=1

exp(−AWφα)∑n
φ=1

∑m
α=1

exp(−AWφα)
.

exp(−BWφα)∑m
α=1

exp(−BWφα)
(9)

It can be noticed that for A = B, equation (8) is recovered.

Moreover the volume fraction of a variant φ is simply given

by:

fφ =

m∑

α=1

fφα =

∑m
α=1

exp(−AWφα)∑n
φ=1

∑m
α=1

exp(−AWφα)
(10)

Equation (9) is complemented by the minimization opera-

tion reported in equation (11):

{θφα , ψφα} = min(Wφα) (11)

C. Scale transition rules

Macroscopic loading are temperature T , stress σ and mag-

netic field ~H . The macroscopic responses we want to calculate

are the transformation deformation ε
tr and the magnetization

~M . Some localization rules are required to write the loadings

at the appropriate scale and homogenization rules to make the

averaging operations.

Temperature is taken uniform over the domain, variant, grain

and RVE (Tφα = Tφ = Tg = T ). This hypothesis can apply

even if heat exchanges are considered because MSMAs are

metallic materials exhibiting high thermal conductivity and

that RVE size is considered as a volume smaller than 1mm3.

Determination of the stress at the domain scale requires a

localization process thanks to Hill’s formulation. The domain

is considered as an inclusion inside the grain defining the

equivalent medium. The total deformation at the domain

scale εφα is given by (12) as a sum of elastic ε
e
φα , phase



transformation ε
t
φα and magnetostriction ε

µ
φα deformations.

The latter is very small with respect to transformation strain

and is thus neglected for martensite variants. It is taken in

account for austenite phase whose transformation strain is null.

εφα = ε
e
φα + ε

t
φα + ε

µ
φα (12)

We define the total transformation deformation at the do-

main scale by: εtrφα = ε
t
φα+ε

µ
φα . It is defined at the grain scale

by ε
tr
g =

∑n
φ=1

∑m
α=1

fφαε
tr
φα (experimental data required to

calculate these tensors can easily be found in literature). An

homogeneous deformation hypothesis is employed [6] giving

the local stress (13), that strongly simplifies the elastic energy

expression [7].

σφα = σg + Cφ : (εtrg − ε
tr
φα) (13)

σg is the stress at the single crystal scale. It is defined as

function of macroscopic stress σ, macroscopic transformation

deformation ε
tr, stress concentration tensor B and accommo-

dation stiffness tensor Cacc (see [6] for detailed expressions)

following:

σg = B : σ + Cacc : (ε
tr − ε

tr
g ) (14)

The strong fluctuations of variant and domain volume frac-

tion inside a grain do not allow us to define some admissible

localization rules for the magnetic field. It is consequently

considered uniform over the grain: ~Hφα = ~Hφ = ~Hg.

Following [6], a grain can be considered as a sphere inside

the RVE. The magnetic field at the single crystal scale ~Hg

can consequently be deduced from the macroscopic magnetic

field, the magnetization at the grain scale ~Mg (that verifies:
~Mg =

∑n
φ=1

∑m
α=1

fφα
~Mφα , the macroscopic magnetization

and the secant macroscopic susceptibility χm (with χm =
‖ ~M‖/‖ ~H‖):

~Hg = ~H +
1

3 + 2χm

( ~M − ~Mg) (15)

It must be noticed that localization rules (14) and (15)

suppose a clear scale separation between grain and RVE sizes

(see [6] for more details concerning that point). Averaging

operations consist in the calculation of the transformation

strain and magnetization at the grain scale (already given

above), and the transformation strain and magnetization at

the RVE scale. The latter are given in (16) and (17) with

N denoting the number of grains. The RVE is practically an

orientation data file representative of the material that may be

obtained thanks to electron backscattered diffraction (EBSD).

ε
tr =< t

B : εtrg >=
1

N

∑

N

t
B : εtrg (16)

~M =< ~Mg >=
1

N

∑

N

~Mg (17)

The multiscale model is a self-consistent modeling. It has been

implemented in MATLAB. The time calculation of one loading

point for a RVE of about 100 grains is less than 1 minute using

a personal computer.

III. EXPERIMENTS

Experiments have been carried out using a

Ni49.7%Mn29.5%Ga20.8% Heusler single crystal (percentages

are given in at%). Information about thermal transitions

and associated enthalpies have been obtained thanks to

a Differential Scanning Calorimetry (DSC) analysis. This

measurement shows that the material is fully martensitic

at room temperature. Moreover the hysteresis associated to

the phase transition (Taust→mart=45◦C and Tmart→aust=54.9◦C)

and the Curie temperature (≈ 103◦C) appears clearly. The

DSC measurement allows to identify the enthalpies and

entropies of austenite and martensite phases (using the

temperature transitions and enthalpy variation ∆H estimated

at 34.4×106J.m−3). Values are consistent with those reported

in [8] for 5M martensite. The martensite structure appears to

be tetragonal according to XRD and EBSD measurements.

The single crystal is on the other hand made of a single

variant (2 magnetic domains) whose short axis ~c is aligned

with the specimen longitudinal axis ~x (i.e. variant V1 in

figure 1a).

Magnetization tests have been carried out using a cubic

specimen (2 × 2 × 2 mm3). They have been made at room

temperature using a Vibrating Sample Magnetization (VSM).

Fig 2a shows the initial magnetization curve obtained along the

easy axis. This curve is quite different from those seen in the

literature [9] for 5M martensite. Indeed EBSD measurements

showed that the cube exhibits a low percentage of the two

other variants (V2 and V3), whose appearance may be due

to the cutting process. After reinitialization (heat treatment

and magnetic saturation along ~x axis), a second set of mea-

surements has been carried out. They are reported in figure

2b. The material exhibits now two hard axis of magnetization

(along the long axis of the tetragonal cell - directions ~y and

~z - only ~y measurement is reported) and one clear easy axis

of magnetization (along the short axis of the tetragonal cell

- direction ~x). 180◦ domain wall motion is dominant for

magnetization along ~x direction; martensite reorientation con-

comitant to magnetization rotation occurs for magnetization

along ~y direction. These new results are in accordance with

literature. magnetic measurement carried at room temperature

and at 70◦C allowed on the other hand to identify the magnetic

saturation of martensite (MM
s = 5.5× 105 A/m) and austenite

(MA
s = 4.0× 105 A/m).

IV. MODELING

The modeling concerns the NiMnGa single crystal. The

RVE scale is consequently the same than the single crystal

scale. The multiscale modeling presented above requires many

parameters: most of these parameters are physical parameters

that can be found in literature or identified using the few

experimental results we reported. Table I gathers the param-

eters used. The only adjusting parameters are A and B. A
has been identified using the DSC measurement (adjustment

of peak size and shape): figure 3 shows a zoom of the DSC

experimental curve (heating) compared to the modeling, given

by equation (18) derived from heat equation in adiabatic
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Fig. 2. Magnetization curves obtained by VSM: (a) initial easy axis ~x
measurement: multivariants single crystal; (b) easy axis ~x and hard axis ~y
measurement after reinitialization of the material: single variant single crystal.

condition (with: Q the heat flow; dfM the martensite fraction

increment, obtained from the multiscale modeling, associated

to the temperature increment dT ; Ṫ the temperature rate and

V the volume of material used during DSC experiments).

Q = −
dfM
dT

Ṫ∆H V (18)

B parameter is identified using a single magnetization curve

(B is proportional to the initial susceptibility [6]). Another

important point is the choice of a configuration stress (as

introduced in [10]), leading to a first set of selected variant.

Indeed, without configuration (residual stress), the variants

are equiprobable in contradiction with experiments. Figure

4a shows the modeling of magnetization curves obtained at

room temperature. A compression stress of σ=-3MPa along

~x axis allows a strong selection of variant V1: magnetization

curves along ~x and ~y are in good agreement with experiments

(figure 2a). A compression stress of -1MPa along ~x leads to a

lower selection (V2 and V3 are still present). The simulation

corresponds now to the initial experimental magnetization

curve along ~x (figure 2a). The associated deformation curves

are plotted in figure 4b. They are in accordance with results

from literature [9].

Param. Aust. Mart.

Lat. param. (nm) - XRD a0=0.582 a=0.594,c=0.554

Ms (×10
5A/m) - VSM 4 5.5

Ki (kJ.m−3) (K1=0.3, K2=0) [11] K0=170 [12]

hφ (×10
6J.m−3) - DSC -110 -144.4

sφ (kJ.m−3) - DSC 328 200

Stiffness (C11 ,C12,C44) (GPa) (144,132,104) [11]

(A,B) (×10
−4m3/J) (0.3,1.5)

TABLE I
PARAMETERS OF THE MULTISCALE MODEL

V. CONCLUSION

A multiscale modeling of MSMA has been proposed. It is a

fully thermo-magneto-mechanical coupled model that allows

to simulate the (pseudo) reversible behavior of various MSMA

single- or poly- crystals (phase constitution, mechanical and
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Fig. 4. Modeling results: magnetization curves with magnetic field applied
along ~x and ~y axis: effect of configuration stress: -3MPa and -1MPa.

magnetic behaviors) under various loading conditions (includ-

ing multiaxial stress). Extension to irreversible phenomena and

quantitative validations through deformation measurements

under magnetic field and biaxial stress are planned. They will

be complemented by in situ X-Ray measurements.
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