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Asymptotic modeling of thermal binary monatomic gas flows in plane
microchannels—Comparison with DSMC simulations
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F-75005 Paris, France

(Received 5 December 2016; accepted 17 March 2017; published online 10 April 2017)

Asymptotic models are constructed to investigate the basic physical phenomena of thermal flows
of a mixture of two monatomic gases inside a two-dimensional microchannel. The steady flows
are described by the Navier-Stokes-Fourier balance equations, with additional coupling terms in
momentum and energy equations, and with first-order slip boundary conditions for the velocities
and jump boundary conditions for the temperatures on the two walls. The small parameter equal
to the ratio of the two longitudinal and transverse lengths is introduced, and then an asymptotic
model is proposed. It corresponds to small Mach numbers and small or moderate Knudsen numbers.
Attention is paid to the first-order asymptotic solutions. Results are given and discussed for different
cases: the mass flow rates, the molecular weights of the gases, and the temperature gradients along
the walls. Comparisons between the first-order asymptotic solutions and Direct Simulation Monte
Carlo (DSMC) simulations corresponding to the same physical data show rather good agreement. It
should be noted that obtaining an asymptotic solution is very fast compared to obtaining a DSMC
result. Published by AIP Publishing. [http://dx.doi.org/10.1063/1.4979683]

I. INTRODUCTION

Microdevices, whose characteristic dimensions are typi-
cally of the order of one micron, are commonly found in mod-
ern industry. Examples include micro-mixers, micro-turbines,
micro-cooling systems, micro-heat-exchangers, etc. If we con-
sider air flowing in a microtube with a diameter of one micron,
at standard pressure and temperature, the mean free path is
of the order of 0.1 µm.1 In this case, the Knudsen number
Kn, equal to the ratio of the mean free path to the diameter
of the microtube, is 0.1. Therefore, the gas is in a rarefied
regime. Depending on the Knudsen number, the rarefied flow
is said to be in the continuous regime if 0 < Kn < 0.01, the
slipping regime if 0.01 < Kn < 0.1, the transition regime if
0.1 < Kn < 10, or the free molecular regime if Kn > 10.2,3

Of course, the boundary values of Kn which are given to dis-
tinguish the different regimes are clearly asymptotic. As an
example, in the papers,4–6 the separation value between the
continuum regime and the slipping regime is Kn approximately
equal to 0.001.

There have been numerous works published on the sub-
ject of gaseous flows in microchannels or microtubes. The
first papers on such flows were published in the field of
the Boltzmann equation.1 More recently, these flows have
been extensively studied over the course of the past twenty
years, as they are found in Micro-Electro-Mechanical Sys-
tems (MEMS). For a simple isothermal or thermal gas, many
theoretical results can be obtained by using the Boltzmann
equation1 or kinetic equation models, such as the Bhatnagar,
Gross and Krook model (BGK model)7 or the S model.8 Using

a)Electronic mail: renee.gatignol@upmc.fr.
b)Electronic mail: cedric.croizet@upmc.fr

the linearized Boltzmann equation, numerical simulations of
plane thermal Couette flows have been performed by Ohwada
et al.9 Sharipov10,11 focuses on flows driven by small pressure
or temperature gradients, through a straight microchannel with
a rectangular cross section. Mass flow is analytically calculated
using the BGK equation for isothermal flows10 and using the
S model11 for thermal flows. Using the S model kinetic equa-
tion, Titarev12 constructs an implicit method for calculating
rarefied gas flows in a plane microchannel.

Statistical methods such as the Direct Simulation Monte
Carlo (DSMC) are useful to study the transition regimes of
rarefied gas flows. As is well known in the DSMC methods,
the microscopic physics of collisions between molecules and
between molecules and walls is statistically described. In the
wake of earliest works by Bird,13 many papers have been pub-
lished, with improvements and generalizations of the method,
and with many applications, particularly to flows in microchan-
nels and microtubes.2,3,14 The lattice Boltzmann methods are
also very useful in simulating such flows, especially in the
slipping and transition regimes, although as yet, there are few
applications to real-world physical problems.15–20

DSMC simulations are relevant for describing realistic
gas flows in micro-systems,2,3 but they are costly in terms of
computation time. Hence, for a simple isothermal gas flow in
a microchannel or microtube, many authors attempted to jus-
tify a continuous approach with balance Navier-Stokes equa-
tions and slip boundary conditions on the walls. The goal is
to justify the slipping flow regime for the greatest possible
Knudsen numbers.2,21 In the simplest macroscopic modeling,
the flow with slip conditions on the walls is steady, isother-
mal, and one-dimensional, with the velocity parallel to the
longitudinal axis.4,22 A few analytical results are obtained
for the flow through any microchannel, regardless of it cross
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section, rectangular, or trapezoidal.23–25 Still, in terms of a
flow in microchannels, there are models deduced from the
Navier-Stokes equations where the two velocity components,
longitudinal and transversal, are both taken into account,26 or
where the three velocity components are studied.27

It is clear that experimental studies of gas flows in
microchannels or microtubes, although difficult, are absolutely
necessary to validate the results derived from asymptotic or
numerical models. The experimental results are mainly related
to the pressure distribution along the microchannel28 and the
mass flow rate through the channel.4,21,29 Note also that the
friction factor relating the friction effects to the Reynolds
number in microchannels and microtubes was experimentally
investigated.30,31

There are fewer papers on the asymptotic modeling of
thermal gas flows in two-dimensional microchannels com-
pared to isothermal flows. Temperature and heat-transfer prob-
lems are considered by Kuddusi and Çetegen25 who use the
Navier-Stokes-Fourier equations, by Weng and Chen32 who
consider a vertical flow described by the usual Boussinesq
approximation, and by Lockerby and Reeve5 and Xue et al.33

who use the Burnett system. However, in these papers, the
flow is assumed to be one-dimensional. In the work of Cai
et al.,34 the gas flow is two-dimensional, and the thermal prob-
lem is studied; therefore, the authors assume that the problem is
quasi-isothermal so that the temperature is constant as an initial
approximation. Using the regularized 13-moment equations,
Taheri et al.35 proposed an analytical solution for thermal flow
in a microchannel.

Now, let us look at flows of a thermal mixture of two
gases in the absence of chemical reactions and in the context
of rarefied gas dynamics. One possible model of the two-gas
mixture corresponds to a single gas characterized by average
quantities such as the average density and the average veloc-
ity and the boundary conditions on the walls defined for that
homogeneous medium.36,37 However, we can also consider the
mixture as the sum of its two components. Thus, it is described
by two coupled non-linear Boltzmann equations.1,38 However,
it is a very complex task to study them. Therefore, model
equations have been put forward in the literature. By perform-
ing the linearization of the non-linear Boltzmann equations of
the two gases, McCormack39 constructed linear kinetic mod-
els for the binary gas mixture. This model has been used to
theoretically analyze the flows of gas mixture in a microchan-
nel or a microtube in several papers.40–42 The flows due to
low pressure and concentration gradients, for a binary mixture
through long microchannels with trapezoidal and rectangular
cross section, are studied in the Szalmas paper.40 With the
helium-argon mixture, and for pressure-driven flows through
long microchannel with rectangular cross section, a compar-
ative study between theoretical and experimental results was
carried out.43 The authors obtained very good consensus on a
large range of Knudsen numbers in the transition regime. This
bibliography includes numerical works by Takata et al.44 on
the two linearized Boltzmann equations, simulations on com-
plex geometries with the conventional DSMC method,2 and
those performed with modified DSMC method.41 We add the
simulations obtained with the DS2V code45 for flows of a two
gas mixture in a microchannel.46

From a theoretical point of view, the regularized 17-
moment equations modeling the binary mixtures of monatomic
inert ideal gases in the recent paper of Gupta et al.47 should
also give interesting results for a flow in a microchannel. In the
paper of Rahimi and Struchtrup,48 a set of regularized partial
differential equations is obtained for a binary rarefied poly-
atomic gas mixture, where two different relaxation times are
introduced to take into account the translational and internal
energy exchanges. Associated boundary conditions on a wall
are proposed. In the particular case of a mixture at rest, the
steady heat conduction normal to two parallel plates is studied.

Following the well-known BGK equation for simple gas,7

Sirovich49 put forward two generalized BGK equations for the
binary mixture of monatomic gases. Both BGK equations are
coupled and they possess the main properties of the complete
Boltzmann equations regarding the hydrodynamic properties
of the medium. Following on from Sirovich’s paper, Morse
gave precise expressions for eight parameters (six pseudo-
velocity components and two pseudo-temperatures) included
in the model, and he wrote the BGK equations for a binary
mixture in a form that is relatively easy to use.50 These model
equations have been used to study the shock tube problem for
argon-neon mixture.51 They have also been the basis of quasi-
gasdynamic macroscopic (QGDM) equations for a gas mixture
used in the study of a shock wave structure in a helium-xenon
mixture.52 They are also the basis of the work presented in this
paper.

It seems that the flow of a binary gas mixture inside
a microchannel has not been studied with these generalized
BGK equations. Note also that the heat transfer between the
mixture and the microchannel walls must not be neglected in
many problems, such as diesel engines and heat exchangers.
In this paper, the steady flow of a thermal binary gas mix-
ture in a two-dimensional microchannel is considered. The
two walls are at rest and have the same temperature depend-
ing only on the longitudinal space variable. The flow of each
gas species is described by the usual Navier-Stokes-Fourier
balance equations, for mass, momentum, and energy, with
additional coupling terms in momentum and energy equations
deduced from kinetic BGK models. On the walls, the first-
order slip conditions for the velocities and the jump conditions
for the temperatures are written.

In Section II, for each gas, the Navier-Stokes-Fourier bal-
ance equations are deduced from the kinetic BGK models for
the mixture. In Section III, with the transverse and longitu-
dinal characteristic length scales of the microchannel, a small
parameter ε is introduced. Using the assumptions that, for each
gas, the Mach number and the Knudsen number are small or
of order unity, we construct an asymptotic model with the
Mach numbers of order O(ε) and the Knudsen numbers of
order O(ε0). This is due to the principle of least degeneracy.53

The asymptotic approximation at order zero in ε is presented
in Section IV. Then, in Section V, the numerical results at
order zero in ε are given and discussed, in light of different
parameters: the two mass flow rates, the molecular weights
of the gases, and the temperature gradient along the walls.
Additionally, in Section VI, we compare the first approxima-
tion solutions with DSMC simulations. We verify that there
is rather good agreement between the asymptotic and DSMC
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results for the studied cases where the average Knudsen num-
ber is between 0.16 and 0.19, and the average Mach number
is of order of 0.016.

II. PROBLEM EQUATIONS

Consider a plane microchannel having the length L and
the width h. An orthonormal frame (O; x∗, y∗) is introduced
with the point O at the center of the inlet section (x∗ = 0)
of the microchannel and the x∗-axis parallel to the two walls.
A mixture of two gas species denoted by a and b, without
chemical reactions, is contained inside the channel. Without
volumetric force and heat source, the gases flow due to the
influence of pressure and concentration gradients and temper-
ature gradients along the walls. As a consequence of the small
dimensions of the microchannel, the two gas flows are rarefied.
Our purpose is to introduce models to describe the flows of
these two gases. Throughout this paper, the asterisk exponent
is placed on all dimension quantities (see short nomenclature),
except for quantities which are constant, such as the molec-
ular weights ma and mb of the two species. First, we assume
that the two species are described by two kinetic BGK-type
equations50–52

∂f ∗a
∂t∗

+ ξ∗ ·
∂f ∗a
∂x∗
= ν∗a

(
F∗a − f ∗a

)
+ ν∗ab

(
F
∗

a − f ∗a
)

, (1)

∂f ∗b
∂t∗

+ ξ∗ ·
∂f ∗b
∂x∗
= ν∗b

(
F∗b − f ∗b

)
+ ν∗ba

(
F
∗

b − f ∗b
)

, (2)

where f ∗a (t∗, x∗, ξ∗) and f ∗b (t∗, x∗, ξ∗) are the velocity distribu-
tion functions for species a and b, at time t∗ and point x∗ and
where the molecule velocity is denoted by ξ∗. In Eqs. (1) and
(2), ν∗a and ν∗b are the frequencies of self-collisions between
the molecules a and the molecules b, ν∗ab the frequency of
cross-collisions of the molecules b with a molecule a, and ν∗ba
the frequency of cross-collisions of the molecules a with a
molecule b. The total number of collisions between the two
species should be balanced, so we have n∗aν

∗
ab = n∗bν

∗
ba, where

n∗a and n∗b are the number densities of the species a and b.
To simplify the presentation and in the absence of any

ambiguity, we introduce the notation θ to designate one or
the other of the two gases: θ = a or b. In Eqs. (1) and (2),
F∗θ is the Maxwellian distribution function defined with the
number density n∗θ , the mean velocity u∗θ , and the temperature

T ∗θ of the species θ, and F
∗

θ is the Maxwellian distribution
function defined with n∗θ and with the pseudo-velocity u∗θ
and the pseudo-temperature T

∗

θ of the species θ defined as
follows:50–52

F∗θ =
n∗θ(

2πrθT ∗θ
)3/2

exp
*..
,

−
(
ξ∗ − u∗θ

)2

2rθT ∗θ

+//
-

,

F
∗

θ =
n∗θ(

2πrθT
∗

θ

)3/2
exp

*..
,

−
(
ξ∗ − u∗θ

)2

2rθT
∗

θ

+//
-

, (3)

u∗a = u∗b =
mau∗a + mbu∗b

ma + mb
, (4)

T
∗

a = T ∗a +
2mamb

(ma + mb)2

(
T ∗b − T ∗a +

mb

6k

(
u∗b − u∗a

)2
)

, (5)

T
∗

b = T ∗b +
2mamb

(ma + mb)2

(
T ∗a − T ∗b +

ma

6k

(
u∗a − u∗b

)2
)

, (6)

where k is the Boltzmann constant and rθ = k/mθ . Note that
u∗a and u∗b are the barycentric velocity of the mixture.50,52

Additionally, each gas species is an ideal gas with constant
massic heat capacities cpθ and c3θ ; then p∗θ = rθ ρ∗θT ∗θ , c3θ
= rθ/(γθ − 1), cpθ = γθrθ/(γθ − 1), where γθ = cpθ/c3θ . In
this paper, only cases where the gases a and b are monatomic
are considered. That is to say γθ = 5/3, c3θ = (3/2)rθ , and
cpθ = (5/2)rθ . This assumption is taken into account in expres-
sions (5) and (6) for T

∗

a and T
∗

b. Expressions (5) and (6) are
equal to the expressions given by Morse50 and by Elizarova
et al.52

The definitions of the macroscopic quantities of the gas
species θ according to the distribution function f ∗θ are well
known.1,38 To clarify the notations, let us recap a number of
formulae

mθ

∫
f ∗θ dξ∗ = mθn∗θ = ρ

∗
θ , mθ

∫
ξ∗f ∗θ dξ∗ = ρ∗θu∗θ ,

mθ

∫
c∗θc∗θ f ∗θ dξ∗ = −τ∗θ + p∗θ Iid , (7)

1
2

mθ

∫
c∗θ

(
c∗θ

)2
f ∗θ dξ∗ = q∗θ ,

1
2

mθ

∫ (
c∗θ

)2
f ∗θ dξ∗ =

3
2

rθ ρ
∗
θT ∗θ =

3
2

p∗θ

(8)

with c∗θ = ξ −u∗θ and where ρ∗θ is the mass of the unit volume,
p∗θ the pressure, τ∗θ the viscous stress tensor, I id the tensor unity,
and q∗θ the heat flux vector. To obtain the macroscopic balance
equations for mass, momentum, and total energy, each of Equa-
tion (1) or (2) is multiplied by mθ , mθ ξ

∗, and 1/2 mθ ξ
∗2. After

integration over the space of molecular velocities, the set of
balance equations for steady flows is52

∂

∂x∗
·
(
ρ∗θu∗θ

)
= 0,

∂

∂x∗
·
(
ρ∗θu∗θu∗θ

)
+
∂p∗θ
∂x∗
−

∂

∂x∗
· τ∗θ = Su∗

θ ,
(9)

∂

∂x∗
·

(
ρ∗θ

(
e∗θ +

1
2

(u∗θ )2
)

u∗θ

)
+

∂

∂x∗
·
(
p∗θu∗θ − τ

∗
θ · u

∗
θ + q∗θ

)
= SE∗

θ . (10)

In Eq. (10), the internal energy per unit mass, e∗θ , is intro-
duced: e∗θ = c3θT ∗θ = (3/2)rθT ∗θ for monatomic gases, and
e∗θ = rθT ∗θ/(γθ − 1) in the general case of polyatomic gases.
The coupling terms in the balance laws for momentum and
energy, Su∗

θ and SE∗
θ are easy to explicitly compute

Su∗
a = ν

∗
abρ
∗
a

(
u∗a − u∗a

)
,

SE∗
a = ν

∗
abρ
∗
a

[
3
2

ra

(
T
∗

a − T ∗a
)

+
1
2

(
u∗a

2
− u∗a

2
)]

.
(11)
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Analogous expressions for Su∗
b and SE∗

b are obtained by

exchanging the two species a and b. Of course: Su∗
a + Su∗

b = 0
and SE∗

a + SE∗
b = 0. It should be noted that these relations are

consequences of the definitions (4)–(6). In the case of a mix-
ture of non-monatomic gases, the definitions (5) and (6) need
to be modified (see Appendix A).

Equations (9) and (10) are now written in a simpler form.
The temperature T ∗θ (see Eq. (8)) and the constitutive laws are
introduced

∂

∂x∗
·
(
ρ∗θu∗θ

)
= 0, ρ∗θu∗θ ·

∂u∗θ
∂x∗

+
∂p∗θ
∂x∗
−

∂

∂x∗
· τ∗θ = Su∗

θ ,

(12)

ρ∗θ
1

γθ − 1
rθu∗θ ·

∂T ∗θ
∂x∗

+ p∗θ
∂

∂x∗
· u∗θ − τ

∗
θ :

∂u∗θ
∂x∗

+
∂q∗θ
∂x∗
= SE∗

θ − Su∗
θ · u

∗
θ , (13)

τ∗θij = µ
∗
θ
*
,

∂u∗θi

∂x∗j
+
∂u∗θj

∂x∗i
+
-

+ λ∗θ
∂u∗θ`
∂x∗

`

δij, q∗θj = −κ
∗
θ

∂T ∗θ
∂x∗j

.

(14)

In Eq. (14), the Einstein convention is used with i, j, ` equal
to 1, 2 or 3. The transport coefficients µ∗θ (shear viscosity),
λ∗θ (expansion viscosity), and κ∗θ (thermal conductivity) are
positive and are assumed to depend solely on the temper-
ature T ∗θ . Additionally, the two coefficients µ∗θ and κ∗θ are
such that the Prandtl number Prθ = cpθ µ

∗
θ/κ

∗
θ of the species

θ is constant. From kinetic theory for monatomic gases, we
know that Prθ is equal to 2/3.1,54 The right member of Eq.
(13) for the gas species a is given in Eq. (15). A similar
relation can be written for component b by exchanging a
and b

SE∗
a − Su∗

a · u
∗
a = ν

∗
abn∗a

2mamb

(ma + mb)2

(
3k
2

(
T ∗b − T ∗a

)
+

mb

2

(
u∗b − u∗a

)2
)

. (15)

Let us consider the two gases flowing in the microchannel. In
the frame (O, x∗, y∗), the two components of the velocity u∗θ
are denoted by u∗θ and 3∗θ . The walls located at y∗ = ±h/2 are at
rest and have the same temperature T ∗4(x∗). The first-order slip
boundary conditions for the velocities and the jump conditions
for the temperatures at y∗ = ±h/2 are given as follows:37

u∗θ = ∓σθP

√
2rθT ∗θ

µ∗θ
p∗θ

∂u∗θ
∂y∗

+ σθT rθ
µ∗θ
p∗θ

∂T ∗θ
∂x∗

, 3
∗
θ = 0,

T ∗θ = T ∗4 ∓ ζθT

√
2rθT ∗θ

µ∗θ
p∗θ

∂T ∗θ
∂y∗

. (16)

The coefficients σθP and σθT characterize the viscous and
thermal slip of the species θ on the walls, and ζθT the jump
temperature of the species θ on the walls.37 In the present paper,
these three coefficients are constant. The upstream and down-
stream boundary conditions for the pressure will be specified
later on. Finally, we give explicit expressions for the collision
frequencies. Following Bird,54 we set

3
∗
θ =

p∗θ
µ∗θ
Ω (ωθ , αθ ) , µ∗θ = µ

ref
θ
*
,

T ∗θ

T ref
θ

+
-

ωθ

,

Ωθ ≡ Ω (ωθ , αθ ) =
5 (αθ + 1) (αθ + 2)

αθ (7 − 2ωθ ) (5 − 2ωθ )
, (17)

whereωθ is the viscosity index and αθ the variable soft sphere
(VSS) parameter.46,54,55 For the cross frequencies ν∗ab and ν∗ba
between the molecules a and b, we write expressions similar
to those of Wu and Lee51 and Reyhanian55

ν∗ab = ν
∗
a

n∗b
n∗a

(
da + db

2da

)2 (ma + mb

2mb

)1/2

ψ∗ab,

ν∗ba = ν
∗
b

n∗a
n∗b

(
da + db

2db

)2 (ma + mb

2ma

)1/2

ψ∗ba, (18)

where ψ∗ab and ψ∗ba must be modeled. As previously stated, the
collision frequency between the molecules a and b is equal to
the collision frequency between the molecules b and a, i.e.,
ν∗abn∗a = ν∗ban∗b. Consequently, the following relation must be
verified:

ΩaT ∗a
µ∗a

m1/2
a

d2
a
ψ∗ab =

ΩbT ∗b
µ∗b

m1/2
b

d2
b

ψ∗ba. (19)

In her thesis,55 Reyhanian introduced the following model for
ν∗ab and ν∗ba with ψ∗ab = 1 and ψ∗ba given by relation (19).
The two species do not appear symmetrically (the expres-
sion of ν∗ba cannot be deduced from that of ν∗ab by exchang-
ing a and b). Another possible option would be to set ψ∗ab
= ψ∗ba = 1, but then relation (19) is not satisfied. Here, we set

β∗θ =
(
m1/2
θ ΩθT ∗θ

)
/
(
d2
θ µ
∗
θ

)
, and we propose (this choice will

be discussed in Section V A)

ψ∗ab =

(
β∗b
β∗a

)1/2

, ψ∗ba =

(
β∗a
β∗b

)1/2

. (20)

III. ASYMPTOTIC MODEL EQUATIONS

From now on, the steady flows of both gases inside the
plane microchannel are considered. All the unknown func-
tions u∗θ , 3∗θ , ρ∗θ , p∗θ , and T ∗θ are assumed to be dependent
only on the spatial variables x∗ and y∗. The goal is to discuss
the order of magnitude of the different terms present in the
equations. First, Eqs. (12) and (13) are written in dimension-
less form, and to do so, characteristic values are introduced.
The chosen characteristic scales for the longitudinal and trans-
verse lengths, the longitudinal and transverse velocities, the
pressures, the temperatures, the volumetric masses, the shear
viscosities, the expansion viscosities, and the thermal con-
ductivities are, respectively, L, h, Uc, V c, Pc, and T c (for
the two species and the walls), ρθc (with the ideal gas law
Pc = rθ ρθcTc), µθc, λθc, and κθc (with the Prandtl number
Prθ equal to (cpθ µθc)/κθc). The dimensionless quantities are
x = x∗/L, y = y∗/h, uθ = u∗θ/Uc, 3θ = 3∗θ/Vc, pθ = pθ∗/Pc,
Tθ = T ∗θ/Tc, ρθ = ρθ

∗/ρθc, µθ = µ∗θ/µθc, λθ = λ∗θ/λθc,
and κθ = κ∗θ/κθc. Here, we list all dimensionless numbers that
will appear in the dimensionless balance equations,namely, the
small parameter ε, the heat capacity ratio γθ , the Mach num-
ber Mθ , the Knudsen number Knθ , and the Reynolds number
Reθ ,
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ε =
h
L

, γθ =
cpθ

c3θ
=

5
3

, Mθ =
Uc

√
γθrθTc

,

Knθ =
1
h
µθc

ρθc

√
π

2rθTc
=

1
h
µθc

Pc

√
πrθTc

2
,

Reθ =
ρθcUch
µθc

=
Mθ

Knθ

√
π γθ

2
.

(21)

Due to the geometry of the microchannel, we assume ε � 1.
As a result of the principle of least degeneracy,53 we must keep
the two terms in balance equations for mass. So Vc = εUc.
Now, the dimensionless equations deduced from Eqs. (12) and
(13) are written as follows:

∂ρθuθ
∂x

+
∂ρθvθ
∂y

= 0, (22)

γθM2
θ ρθ

(
uθ
∂uθ
∂x

+ 3θ
∂uθ
∂y

)
+
∂pθ
∂x
−

√
2γθ
π

MθKnθε(
∂

∂x

((
λθc

µθc
λθ + 2µθ

)
∂uθ
∂x

+
λθc

µθc
λθ
∂3θ
∂y

)
+

1

ε2

∂

∂y

(
µθ

(
∂uθ
∂y

+ ε2 ∂3θ
∂x

)))
= S̃u

θ , (23)

γθM2
θ ρθ

(
uθ
∂vθ
∂x

+ 3θ
∂vθ
∂y

)
+

1

ε2

∂pθ
∂y
−

√
2γθ
π

MθKnθ
ε(

∂

∂y

((
λθc

µθc
λθ + 2µθ

)
∂3θ
∂y

+
λθc

µθc
λθ
∂uθ
∂x

)
+
∂

∂x

(
µθ

(
∂uθ
∂y

+ ε2 ∂3θ
∂x

)))
= S̃3θ , (24)

ρθ

(
uθ
∂Tθ
∂x

+ 3θ
∂Tθ
∂y

)
− ε

√
2γθ
π

Knθ
Mθ

1
Prθ

(
∂

∂x

(
κθ
∂Tθ
∂x

)
+

1

ε2

∂

∂y

(
κθ
∂Tθ
∂y

))
+ (γθ − 1)pθ

(
∂uθ
∂x

+
∂3θ
∂y

)
− ε(γθ − 1)

√
2γθ
π

MθKnθ



(
λθc

µθc
λθ + 2µθ

)
*
,

(
∂uθ
∂x

)2

+

(
∂3θ
∂y

)2
+
-

+ 2
λθc

µθc
λθ
∂uθ
∂x

∂3θ
∂y

+ µθ

(
1
ε

∂uθ
∂y

+ ε
∂3θ
∂x

)2
= S̃E

θ . (25)

Hereafter, the right-hand sides of the two Equations (23) and
(24) are given in the case of the species a (for the species b,
the two indices a and b are exchanged)

S̃u
a =

1
ε

Fab
Ma

Kna
Ωaψab

paρb

µa
(ub − ua) ,

S̃3a =
1
ε

Fab
Ma

Kna
Ωaψab

paρb

µa
(3b − 3a)

(26)

with

Fab =

√
πγa

2
ρbc

ρac

(
da + db

2da

)2 ma
√

2mb(ma + mb)
(ψab)c, (27)

where ψ∗ab = (ψab)cψab and (ψab)c being constant scale that
will be specified later, at the end of this section. Remember
that expression (15) is correct only for monatomic gases with
γa = γb = 5/3. The right-hand side S̃E

a of Eq. (25) is given
below

S̃E
a =

2
3ε

Fab
Ma

Kna

mb

ma + mb
Ωaψab

paρb

µa

× *
,

9

5M2
b

(Tb − Ta) + (ub − ua)2 + ε2(3b − 3a)2+
-

. (28)

In order to find asymptotic systems, we assume that Mθ and
Knθ are small or of order unity. More precisely, we assume
Mθ = O(εα) and Knθ = O(εβ) with α ≥ 0 and β ≥ 0. Of
course, Reθ = O(εα−β); we assume α − β ≥ 0 corresponding

to low or moderate Reynolds numbers which is a reasonable
assumption in microsystem flows. From the principle of least
degeneracy53 and taking into account the physics of the prob-
lem, we set α = 1 and β = 0 (Appendix B). This case is
interesting from the point of view of the physics of the prob-
lem. Indeed, in Eq. (23), the term associated with the pressure
gradient is kept, as is the coupling term on the right. The pres-
sure gradient corresponds to a driving force for the flow in the
microchannel. Note that the terms present in the energy equa-
tion are those of order ε−2. Accordingly, the coupling term is
retained. This solution is underlined in the Refs. 55–57 for an
isothermal binary gas mixture. It is also introduced in the case
of an isothermal single gas in Ref. 26, and in Cai et al.,34 where
it is denoted by case 2A. In the last paper, it is assumed that
the inlet pressure is greater than the outlet pressure in order to
drive the flow and that the flow temperature experiences small
variations. Here, these assumptions are not used: the order of
magnitude for the inlet and outlet pressures is Pc and for the
temperature it is T c. In our problem, Pc and T c are chosen
so that the dimensionless quantities pθ and Tθ are of order
unity.

This case, α = 1 and β = 0, corresponds to small Mach
number and Knudsen number of order unity. We set Mθ =

ε
√
π/(2γθ )Mθc and Knθ = Knθc with the both numbers Mθc

and Knθc of order unity. As an initial approximation, we
have the following dimensionless equations for the mass, the



042001-6 R. Gatignol and C. Croizet Phys. Fluids 29, 042001 (2017)

longitudinal and transversal momentum, and the energy:

∂ (ρθuθ )
∂x

+
∂ (ρθ3θ )
∂y

= 0, (29)

∂pθ
∂x
−MθcKnθc

∂

∂y

(
µθ
∂uθ
∂y

)
= Ŝu

θ ,
∂pθ
∂y
= 0, (30)

−
2γθ
π

Knθc

Mθc

1
Prθ

∂

∂y

(
κθ
∂Tθ
∂y

)
= ŜE

θ , (31)

Ŝu
a = Fab

√
π

2γa

Mac

Knac
Ωaψab

paρb

µa
(ub − ua) , (32)

ŜE
a = 2Fab

√
2
πγa

Mac

M2
bcKnac

mb

ma + mb
Ωaψab

paρb

µa
(Tb − Ta)

(33)

with γθ = 5/3 and with the ideal gas law pθ = ρθTθ . We have
similar expressions for Ŝu

b and ŜE
b by exchanging the two

species a and b.
These partial differential equations must be supple-

mented by boundary conditions. From Eq. (16), with T ∗4(x∗)
= TcT4(x), and the numbers Mθc and Knθc just defined, the
dimensionless boundary conditions, in y = ±1/2, are

uθ = ∓σθP
2Knθc
√
π

√
Tθ
µθ
pθ

∂uθ
∂y

+ σθT
2
π

Knθc

Mθc

µθ
pθ

∂Tθ
∂x

,

3θ = 0, Tθ = T4 ∓ ζθT
2Knθc
√
π

√
Tθ
µθ
pθ

∂Tθ
∂y

.
(34)

Note that Knθc
√

Tθ µθ/pθ corresponds to the local Knudsen
number of the gas θ.

Now, we need to give analytical expressions for the two
quantities ψab and ψba. The modeling (20) is introduced. With
the previous dimensionless variables, we have

ψ∗ab =

(
β∗b
β∗a

)1/2

= *
,

√
mb

ma

d2
a

d2
b

µac

µbc

+
-

1/2 (
Ωb

Ωa

Tb

Ta

µa

µb

)1/2

= (ψab)cψab, (35)

where (ψab)c and ψab are, respectively, the first and second
factor in Eq. (35). Of course, we can write similar expressions
for (ψba)c and ψba by exchanging the indices a and b. Finally,
it is easy to insert this expression for (ψab)c in the definition
(27) of Fab and ψab in the coupling terms ŜE

a and Ŝu
a (see (32)

and (33)).

IV. FIRST-ORDER SOLUTION

From Eq. (30), the pressures pa and pb depend on x only.
First, we are looking for the temperatures Tθ (x, y) (θ = a or
b) of the two gases. As a consequence of Eq. (17) and of
the assumption of a constant Prandtl number of the species
θ, µθ and κθ depend on Tθ only and are both proportional to
Tωθ

θ . Consequently, from (35), ψab depends on the two tem-

peratures Ta and Tb only. Now, from (33), we see that ŜE
a

is the product of a constant (not depending on x and y) by
ψab(Tb − Ta)(paρb)/µa = (Tb − Ta)(ψabpapb)/(µarbTb). Of

course, a similar expression is obtained for ŜE
b by exchanging

a and b.
As a result, the two equations (31) for θ = a and b are

two second-order ordinary differential equations for the two
temperatures Ta and Tb, with respect to the variable y and
x being a variable parameter. In conclusion, the coefficients
present in these differential equations depend only on constants
of the problem, the parameter x, and the two temperatures Ta

and Tb. These equations and the temperature jump boundary
conditions (34) on the walls y = ±1/2 are given below in (36)
and (37), in which Da, Db, Ea, and Eb are positive quantities
and do not depend on y

∂

∂y

(
Tωa

a
∂Ta

∂y

)
= Da

1

T (ωa+1)/2
a T (ωb+1)/2

b

(Ta − Tb) ,

∂

∂y

(
Tωb

b

∂Tb

∂y

)
= Db

1

T (ωa+1)/2
a T (ωb+1)/2

b

(Tb − Ta) , (36)

Ta = T4 ∓ EaTωa+1/2
a

∂Ta

∂y
, Tb = T4 ∓ EbTωb+1/2

b

∂Tb

∂y
,

in y = ±1/2.
(37)

Finding analytical solutions is not obvious. Fortunately, there
is an evident solution: Ta(x, y) = Tb(x, y) = T4(x). If Ta and
Tb take values close to T4(x), the linearized system obtained
from Equations (36) and (37) admits only the solution Ta(x,
y) = Tb(x, y) = T4(x) (see Appendix C).

Due to the ideal gas laws, pθ = ρθTθ , the volumetric
masses ρθ depend on x only. Consequently, the stress viscosity
µθ depends on Tθ only, and therefore, µθ is a known function
of x.

Using the ideal gas law and the expression of ψab as given
in Eq. (35), the coupling term Ŝu

a (32) appears as the prod-

uct of three factors: a positive constant Fab

√
π

2γa

Mac
Knac

√
ΩaΩb,

a known positive function depending on the variable x
which is (µaµb)−1/2(TaTb)−1/2, and a third unknown factor
pa(x)pb(x)(ub(x, y) � ua(x, y)).

The dimensionless balance equations for mass (29) and
longitudinal momentum (30), and the dimensionless longitu-
dinal slip boundary condition (34) can now be written. For
species a, we have

∂

∂x

(
pa

T4
ua

)
+
∂

∂y

(
pa

T4
3a

)
= 0,

∂2ua

∂y2
= Ba (ua − ub) + Aa

dpa

dx
,

(38)

ua = ∓Ka
∂ua

∂y
+ Ha

dT4
dx

in y = ±1/2 (39)

with

Ba = Fab

√
π

2γa

(
1

Knac

)2

Ωaψab
papb

µ2
aTb

, Aa =
1

MacKnacµa
,

Ka = σaP
2
√
π

Knac

√
Ta
µa

pa
, Ha = σaT

2
π

Knac

Mac

µa

pa
. (40)

For species b, the equations are obtained by exchanging a and
b. The two ordinary differential equations for ua and ub are
solved as follows:
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ua = Υ
y2

2
−

Aa

ψ2

dpa

dx
+ C1 + C2y

+ Ba
[
C3cosh(ψy) + C4sinh(ψy)

]
,

ub = Υ
y2

2 −
Ab

ψ2

dpb

dx
+ C1 + C2y

−Bb
[
C3cosh(ψy) + C4sinh(ψy)

]
,

(41)

where

ψ =
√

Ba + Bb, Υ =
BbAa

ψ2

dpa

dx
+

BaAb

ψ2

dpb

dx
, (42)

where C1, C2, C3, and C4 are four integration constants. The
physical problem is symmetrical with respect to the x-axis.
Consequently, C2 = C4 = 0. The two last constants, C1 and
C3, are calculated from the boundary conditions (39) writ-
ten for the species a and b. After calculus, we obtain explicit
expressions for C1 and C3 (see Appendix D).

In order to obtain the pressure of each gas, the local bal-
ance mass Equation (38) for the two species are integrated
from y = �1/2 to y = +1/2, with the wall boundary condition
for the transversal velocities 3a = 3b = 0 at y = ±1/2. Then∫ +1/2

−1/2

pa

T4
uady = Qa,

∫ +1/2

−1/2

pb

T4
ubdy = Qb, (43)

where Qa and Qb are constants and correspond to the dimen-
sionless mass flow rates of the two species a and b. We sub-
stitute the expressions (41) for ua and ub into Eq. (43), and we
perform the integration with respect to variable y,

1
24
Υ + 2BaC3

sinh(ψ/2)
ψ

+ C1 −
Aa

ψ2

dpa

dx
=

T4
pa

Qa,

1
24
Υ − 2BbC3

sinh(ψ/2)
ψ

+ C1 −
Ab

ψ2

dpb

dx
=

T4
pb

Qb.
(44)

The quantities Υ, C1, and C3 are affine expressions in dpa/dx
and dpb/dx (see Eq. (46) and Appendix D). After calculus, we
have

Aaa
dpa

dx
+ Aab

dpb

dx
= Q̂a, Bba

dpa

dx
+ Bbb

dpb

dx
= Q̂b. (45)

The explicit values ofAaa,Aab,Bba,Bbb, Q̂a, and Q̂b are given
in Appendix D. These six quantities depend on the constant
parameters which characterize the two gases, on the tempera-
ture T4(x) of the walls and on the two pressures pa(x) and pb(x).
Additionally, the quantity Q̂a (or Q̂b) is an affine function of the
dimensionless flow rate Qa (or Qb), with coefficients depend-
ing on the two pressures pa and pb and on known functions of x.

We note that the two differential equations (45) are linear
with respect to the derivatives dpa(x)/dx and dpb(x)/dx, but

they are strongly non-linear with respect to the functions pa(x)
and pb(x). Indeed, in Aaa, Aab, Bba, and Bbb, there are the
functions ψ, cosh(ψ/2), and sinh(ψ/2) which are non-linear.
For example, from Eqs. (40) and (42), we note that ψ is equal
to the product of

√
papb by a known function depending on x

only.
In order to solve Equation (45) for x ∈ [0, 1], we need

four conditions pa(0), pb(0), (dpa/dx) (0), and (dpb/dx) (0), for
example, or, equivalently, pa(0), pb(0), and the dimensionless
flow rates Qa and Qb. Indeed from these four last values, the
quantities Q̂a and Q̂b are known (see Appendix D) and, con-
sequently, the derivatives dpa/dx(0) and dpb/dx(0) are known
by Eq. (45). Due to the physics of the problem, pa(0), pb(0),
Qa, and Qb are four positive quantities. From the theory of
ordinary differential equations, there exists a single solution
each for pa(x) and pb(x) for positive x and close to x = 0. For
our physical problem, this solution should be such that pa(x)
and pb(x) are positive on the entire interval [0, 1]. As a result,
the function ψ should be always defined and have a positive
real value. A theoretical study of system (45) has not yet been
carried out. Finally, we note that the solutions of Equation (45)
are very sensitive to the initial values pa(0) and pb(0) and to
the mass flow rates Qa and Qb. Depending on the values of
these quantities, the pressures pa(x) and pb(x) may have very
different behaviors. Note also that, with a bad choice for these
quantities, there are no real solutions to Equation (45) in the
entire range 0 ≤ x ≤ 1.

V. NUMERICAL SOLUTION

In order to make appropriate physical choices for the four
quantities pa(0), pb(0), Qa, and Qb, a DSMC simulation has
been performed. In a two-dimensional microchannel of length
L = 20 µm and height h = 1 µm, we consider the steady flow
of two monatomic gases, argon and neon, denoted by a and
b, respectively. Additionally, the problem is assumed to be
isothermal with T ∗ = 300 K, and the interactions between the
molecules are described using the variable soft sphere (VSS)
model.54 The physical characteristics mθ , dθ ,ωθ , αθ , and µref

θ

associated with T ref
θ = 273 K are given in Bird’s book.54 They

are recalled in Table I.
The DSMC simulation results will be given in Section

VI. Here, only the orders of magnitude of some quantities
are given. For the gas pressures at the microchannel inlet,
we take p∗a in = 35 000 Pa and p∗b in = 15 000 Pa, and at the
microchannel outlet, we take p∗a out = 28 000 Pa and p∗b out
= 12 000 Pa. For the mixture mean speed and for the gas mass

TABLE I. Characteristic values of monatomic gases from Bird’s book.54

Molecular mass Viscosity at 273 K Viscosity VSS parameter Molecule diameter
Gas Symbol × 10�27 (kg) × 10�5 (N s m�2) index ω α × 10�10 (m)

Helium He 6.65 1.865 0.66 1.26 2.30
Neon Ne 33.5 2.975 0.66 1.31 2.72
Argon Ar 66.3 2.117 0.81 1.40 4.11
Krypton Kr 139.1 2.328 0.80 1.32 4.70
Xenon Xe 218 2.107 0.85 1.44 5.65
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flow rates, DSMC simulation yields the following approxi-
mate values: U∗ = 5 m s−1, Q∗a = 2.25 × 10−6 kg m−1 s−1, and
Q∗b = 0.49×10−6 kg m−1 s−1. Now, we introduce the following
characteristic values: Tc = 300 K, Pc = 104 Pa, Uc = 10 m s−1,
ρac =maPc/(kTc)= 0.16 kg m−3, ρbc =mbPc/(kTc)= 0.081
kg m−3, Qac = ρacUch= 1.60 × 10−6 kg m−1 s−1, and Qbc

= ρbcUch= 0.81 × 10−6 kg m−1 s−1. Consequently, we have
the following dimensionless quantities: pDSMC

a (0)= 3.5,
pDSMC

b (0)= 1.5, QDSMC
a =Q∗a/Qac = 1.41, and QDSMC

b =Q∗b/
Qbc = 0.60.

In order to solve Eq. (45), we take four values for pa(0),
pb(0), Qa, and Qb around the orders of magnitude of the above
values. In all the calculations presented here, the characteristic
scales for the temperatures, pressures, and velocities are Tc

= 300 K, Pc = 104 Pa, and Uc = 10 m s−1, respectively. The
characteristic values for the two gases in the mixture are
given in Table I. The microchannel’s geometry is L = 20 µm,
h = 1 µm, and ε = 0.05. The characteristic stress viscosity val-
ues are the viscosities µ∗θ (300 K) calculated with formula (17).
Additionally, we set σθP = 1 and σθT = 1.1.37 Calculations
with MATLAB using a variable step Runge-Kutta method of
fourth order are performed to determine the pressures pθ (x).
Then the velocities uθ (x, y) are calculated. The concentration
cθ of the species θ defined as cθ = n∗θ/(n

∗
a + n∗b) = pθ/(pa + pb)

depends on x only and is also calculated.
Three sets of results are shown: (1) the isothermal

flow of a mixture of two gases—argon and neon; (2) the
isothermal flow of different binary gas mixtures; (3) the
non-isothermal flow of a mixture of two gases—argon and
neon.

A. Isothermal flow of a mixture of two gases—Argon
and neon

The two simulated gases are argon (Ar, gas a) and neon
(Ne, gas b); the flow is isothermal, with T ∗θ = Tc = 300 K.

The initial values for the dimensionless pressures are pa(0)
= 3.5 and pb(0) = 1.5. These values correspond to concentra-
tions ca(0) = 0.7 and cb(0) = 0.3. The value of the dimensionless

mass flow rate Qa = 1.60 is given, and the dimensionless mass
flow rate Qb takes different values: 0.40, 0.50, 0.60, 0.70, and
0.80. For these selected values, the profiles for the two pres-
sures are monotonically increasing or decreasing along the x
axis (Fig. 1(a)).

For a fixed value of x, when Qb increases from 0.40 to 0.80,
the pressure pa(x) increases and the pressure pb(x) decreases
(Fig. 1(a)). For the sake of brevity, the results for the concen-
tration are not presented here, but they are similar to those for
pressures: when x increases, the concentration ca(x) increases
and the concentration cb(x) decreases. Of course, ca(x) + cb(x)
= 1.

In Fig. 1(b), the longitudinal velocities along the x-axis,
ua(x, 0) and ub(x, 0), are shown. For a fixed value of x, when Qb

increases from 0.40 to 0.70, the velocity ua(x, 0) decreases and
the velocity ub(x, 0) increases. These results are in agreement
with those obtained for the pressures. The velocities obtained
with Qb = 0.80 are not shown, in the interest of readability of
the figure (with Qb = 0.80, the value ub(1, 0) = 2.73 is high,
compared to the other four cases). For Qb equal to 0.40 to
0.70, when x increases ua(x, 0) increases. The velocity ub(x,
0) decreases when Qb is equal to 0.40, 0.50, and 0.60 and
increases when Qb is equal to 0.70.

Of course, when the mass flow rate Qb increases, the total
mass flow rate Qa + Qb increases. For a fixed value of x, we
can show that the increase of Qa + Qb leads to the decrease of
the total pressure p(x) = pa(x) + pb(x). Additionally, when x
increases from 0 to 1, the total pressure decreases and the mix-
ture velocity u(x) = (maua(x) + mbub(x))/(ma + mb) increases.
This last result seems to be physically reasonable.

Now, the initial values of pressures are unchanged and
the flow rates are set as Qa = 1.60 and Qb = 0.60. For dif-
ferent values of x (x = 0, 0.25, 0.50, 0.75, 1), the profiles of
the longitudinal velocities ua(x, y) and ub(x, y) are given in
Figs. 2(a) and 2(b). They have an almost parabolic shape (see
Eq. (41)). Indeed, for example, for x = 0.5, the numerical val-
ues of BaC3cosh(ψy) and −BbC3cosh(ψy) are, respectively,
between �0.104 and �0.079 and �0.075 and �0.057 when
y is between 0 and 0.5. These values are small compared to

FIG. 1. Pressures pa(x) and pb(x) (a) and velocities ua(x, 0) and ub(x, 0) (b) along the x-axis for pa(0) = 3.5, pb(0) = 1.5, Qa = 1.60, and different values for Qb.
Results for the gas a are represented by solid lines, and those of gas b by the dashed lines.
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FIG. 2. Velocity profiles for ua(x, y) (a) and ub(x, y) (b), for pa(0) = 3.5, pb(0) = 1.5, Qa = 1.60, Qb = 0.60, and for different values of x.

C1 = 0.393. So the terms BaC3cosh(ψy) and −BbC3cosh(ψy)
are small with respect to C1 and have little influence on the
parabolic shape of the profiles.

When x increases, the magnitude of the velocity ua(x,
y) increases (Fig. 2(a)). The maximum magnitude in y = 0
rises from 0.54 to 0.96. Note also that the slipping velocity
ua(x,±0.5) on the walls increases with x from 0.35 to 0.73.
The velocity profiles of the gas with the lowest concentration
are close to each other (Fig. 2(b)). It is worthy to note that the
maximum magnitude of ub(x, 0) is between 0.43 and 0.45, and
the slipping velocity ub(x,±0.5) is between 0.25 and 0.29. The
slipping velocity of neon is less than that of argon.

Calculations performed with the same values pa(0) = 3.5,
Pb(0) = 1.5, and Qa = 1.60 and different values for Qb lead
to some interesting results in the middle section of the chan-
nel (x = 0.5). When Qb increases from 0.40 to 0.80, the
slipping velocity for argon ua(0.5,±0.5) and also the maxi-
mum velocity ua(0.5, 0) obtained on the axis of the channel
decrease. For gas b (neon), when Qb increases, the slipping
velocity ub(0.5,±0.5) and the maximum velocity ub(0.5, 0)
increase. Therefore, increasing Qb decreases the velocity of

gas a and increases that of gas b. These results are physically
reasonable.

Now, let us comment the values of ψ∗ab and ψ∗ba given in
Eq. (20). Calculations performed with Qa = 1.60, Qb = 0.60,
pa(0) = 3.5, and pb(0) = 1.5 give the following results: pa(1)
= 1.8802 and pb(1) = 1.5288. With ψ∗ab = 1 and ψ∗ba = β∗a/β

∗
b,

which are the values considered in her thesis by Reyhanian,55

the relation (19) is satisfied, but these two terms have no sym-
metrical expressions with respect to the two gases. In that case,
the results are pa(1) = 1.8893 and pb(1) = 1.5202. Additional
tests were made with ψ∗ab = ψ∗ba = 1 and with ψ∗ba = 1 and
ψ∗ab = β∗b/β

∗
a. Comparing the final three results with the one

corresponding to former choice (20), the relative errors on
pa(1) and pb(1) are not more than 0.5% and 0.6%, respectively.
We can consider that these relative errors are small.

B. Isothermal flow of different binary gas mixtures

In Figs. 3 and 4, different pairs of monatomic gases are
considered: gas a is argon (Ar) and gas b is helium (He), neon
(Ne), argon (Ar), krypton (Kr), or xenon (Xe).

FIG. 3. Pressures (a) and concentrations (b) along the x-axis for pa(0) = pb(0) = 2.5 and Qa = Qb = 0.80 and for different pairs of gases.
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FIG. 4. Velocity ua (a) and velocity ub (b) along the x-axis for pa(0) = pb(0) = 2.5 and Qa = Qb = 0.80 and for different pairs of gases.

The initial values for the pressures are taken to be equal
to pa(0) = pb(0) = 2.5 and the mass flow rates equal to Qa

= Qb = 0.80. It should be noted that the molecular mass
increases from helium gas to xenon gas (Table I). For a fixed
value of x, when the molecular mass increases from He to
Xe, the pressure pa increases and the pressure pb decreases
(Fig. 3(a)). For all pairs, the pressure pb(x) decreases along
the x-axis when the variable x increases. Except for the pairs
(Ar–Xe) and (Ar–Kr), the pressure pa(x) also decreases with
the variable x (Fig. 3(a)). Of course, for Ar–Ar mixture, we
have pa(x) = pb(x); this common value decreases with the
x-coordinate.

The physical characteristics of the gases are different and
lead to different behaviors. For a given binary gas and for a
fixed value of x, we note that the pressure of the gas with
the higher molecular mass is smaller than that of the gas
with the smaller molecular mass (Fig. 3(a)): pAr(x) < pHe(x),
pAr(x) < pNe(x), pAr(x) > pKr(x), and pAr(x) > pXe(x). In
a collision between two molecules with different molecular
masses, the lighter molecule has a larger change in its speed
than the heavier molecule; this increases its momentum and,
therefore, the pressure.

Now, let us look at the results for the concentrations ca(x)
and cb(x) (Fig. 3(b)). For a fixed value of x, when the molec-
ular mass increases from He to Xe, the concentration ca(x)
increases and the concentration cb(x) decreases. Of course,
for the mixture Ar–Ar, ca(x) = cb(x) = 0.5. Along the x-
axis, when the variable x is increasing, the concentration ca(x)
(respectively, cb(x)) is monotonically increasing (respectively
decreasing) for the mixtures Ar–Xe and Ar–Kr and is mono-
tonically decreasing (respectively increasing) for the mixtures
Ar–Ne and Ar–He. The concentration of the gas with the larger
molecular mass is decreasing whereas that of the gas with the
lower molecular mass is increasing. This property holds for
all binary mixtures of two gases taken among the five selected
monoatomic gases.

For the velocities ua(x, 0) and ub(x, 0), the analysis of the
results is a little more complicated (Figs. 4(a) and 4(b)). Near
the microchannel exit, when the molecular mass of species b
increases (from He to Xe), ua(1, 0) is decreasing (Fig. 4(a)) and

ub(1, 0) is increasing (Fig. 4(b)). However near the microchan-
nel entrance, the velocity ua(0, 0) has no uniform behavior
(Fig. 4(a)). For a given binary mixture and for a fixed value of
y, we can verify that, in the middle section of the channel, the
velocity of the gas with the higher molecular mass is higher
than that of the gas with the smaller molecular mass. That is,
uAr > uHe, uAr > uNe, uAr < uKr , and uAr < uXe at the point
(x = 0.5, y), i.e., in the entire interval −0.5 ≤ y ≤ 0.5. Of
course, the same inequalities are taking place for the velocity
maxima ua(0.5, 0) and ub(0.5, 0) and also for the slip velocities
on the walls ua(0.5,±0.5) and ub(0.5,±0.5). This is physically
reasonable.

C. Non-isothermal flow of a mixture of two
gases—Argon and neon

Let us consider the previous geometry for the microchan-
nel and the two gases, argon (a) and neon (b). Here, we impose
the same temperature T ∗4(x∗) = TcT4(x) along the two channel
walls. Solving Equation (45) is performed by a linear variation
of T4(x): T4(x)= 1 + (dT/dx)x with dT /dx constant. Hereafter,
the selected values for dT /dx are �0.4, �0.2, 0.0, 0.2, and
0.4. A first set (case I) of results is shown with the flow rates
such as Qa = Qb = 0.80 and the initial pressures such as pa(0)
= pb(0) = 2.5. A second set (case II) of results is shown with
the flow rates such as Qa = 1.60, Qb = 0.60, pa(0) = 3.5, and
pb(0) = 1.5. In both cases, for the flows of the two gases a and
b, there is competition between the effects due to the pressure
gradients and those due to the temperature gradients.

In case I, the pressure evolution along the x-axis is shown
(Fig. 5(a)). For the values of dT /dx between �0.2 and 0.2, the
two pressures pa(x) and pb(x) are monotonically decreasing
with x. One can also observe that, with dT /dx = 0.4, the pressure
pb(x) has a non-monotonic behavior, and with dT /dx = �0.4, it
is the pressure pa(x) which has a non-monotonic behavior. For
a fixed value of x, when dT /dx increases, we observe that the
pressure pa(x) decreases and the pressure pb(x) increases. An
increase of temperature on the walls decreases the pressure
pa(x) of argon, which has the highest molecular mass, and
increases the pressure pb(x) of neon, which has the smallest
molecular mass. In other words, due to the boundary conditions



042001-11 R. Gatignol and C. Croizet Phys. Fluids 29, 042001 (2017)

FIG. 5. Pressures for different values of dT /dx along the x-axis, for pa(0) = pb(0) = 2.5 and Qa = Qb = 0.80 (a) and for pa(0) = 3.5, pb(0) = 1.5, Qa = 1.60, and
Qb = 0.60 (b).

on the walls, the pressure of lighter species increases while that
of heavier species decreases.

The velocities ua(x, y) and ub(x, y) were also calculated.
Among the obtained results, we give some remarks on the
longitudinal velocity profiles ua(0.5, y) and ub(0.5, y) in the
middle section of the channel (x = 0.5). These profiles are
almost parabolic (Eq. (41)). For a fixed value of y, when the
temperature gradient increases, the value of ua(0.5, y) increases
and the value of ub(0.5, y) decreases. With the five selected
values of dT /dx, the maximum velocity magnitude of ua(0.5,
0) increases from 0.16 to 0.21 and that of ub(0.5, 0) decreases
from 0.20 to 0.12. Additionally, when the temperature gradient
increases, the slipping velocity on the walls ua(0.5,±0.5) of
gas a increases from 0.09 to 0.16, and the slipping velocity
ub(0.5,±0.5) of gas b decreases from 0.13 to 0.08.

In case II, similar results are obtained with the same tem-
perature gradients along the walls (Fig. 5(b)). The pressure in
gas a, which has the greater initial pressure, is monotonically
decreasing, except when dT /dx = �0.4, while the pressure in
gas b is monotonically decreasing if dT /dx = �0.4 or �0.2 and

is monotonically increasing for the two values dT /dx = 0.4 or
0.2 and is a non-monotonic function for dT /dx = 0 (Fig. 5(b)).
As previously described, when dT /dx increases, for a fixed
value of x, the pressure pa(x) decreases and the pressure pb(x)
increases. As in case I, the two velocities ua(x, y) and ub(x, y)
were calculated. As previously described, in the cross section
in the middle of the channel, when the temperature gradient
increases, on the one hand, the velocity maximum ua(0.5, 0)
and the slip velocity ua(0.5,±0.5) of gas a increase, while on
the other hand, the velocity maximum ub(0.5, 0) and the slip
velocity ub(0.5,±0.5) of gas b decrease.

One last comment concerns the total pressure p(x)
= pa(x) + pb(x) and the mixture velocity u(x) = (maua(x)
+ mbub(x))/(ma + mb). In Fig. 6, they are shown in the case
I. For a fixed value of x, the increase of the gas temperature
leads to the increase of the pressure p(x) (Fig. 6(a)). The two
functions p1(x) and p2(x) associated with (dT/dx)1 < (dT/dx)2
are such that p1(x)< p2(x). This result seems to be physi-
cally correct. Whatever be the value of dT /dx greater than
�0.4 (dT/dx > −0.4), the velocity u(x) increases along the

FIG. 6. Total pressure p(x) (a) and average velocity of the mixture u(x, 0) (b) along the x-axis for pa(0) = pb(0) = 2.5 and Qa = Qb = 0.80 and for different values
of dT /dx.
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x-axis (Fig. 6(b)). Finally, it should be noted that u(0, 0)
decreases with dT /dx, while u(1, 0) increases. The velocity
profiles u(x) along the x-axis intersect (Fig. 6(b)). In the second
study (case II), the results are very similar.

As a remark, let us assume that the flows in the microchan-
nel are such that dpa(x)/dx = dpb(x)/dx = 0. From (41), and the
expressions of the constants C1 and C3 given in Appendix D,
we have

ua(x,±0.5) =
1
D

{
Haψ

2cosh(ψ/2)

+ (BbKbHa + BaKaHb)ψsinh(ψ/2)
} dT4

dx
,

ub(x,±0.5) =
1
D

{
Hbψ

2cosh(ψ/2)

+ (BaKaHb + BbKbHa)ψsinh(ψ/2)
} dT4

dx
.

(46)

It is easy to calculate these velocities with the data of the
two cases I and II; the results are, respectively, ua(x,±0.5)
= 0.23 dT4/dx, ub(x,±0.5) = 0.32 dT4/dx, u(x,±0.5) = 0.26
dT4/dx, and ua(x,±0.5) = 0.22 dT4/dx, ub(x,±0.5) = 0.38
dT4/dx, and u(x,±0.5) = 0.28 dT4/dx. When dT4/dx is neg-
ative, zero, or positive, the slipping velocities of the two gases
a and b and of the mixture is negative, zero, or positive. Also,
the three velocities ua(x, y), ub(x, y), and u(x, y) are negative,
zero, or positive at any point (x, y) of the channel. A temper-
ature gradient, negative, zero, or positive, gives velocities ua,
ub, and u, negative, zero or positive, respectively. The thermal
creep phenomenon, which is well-known in the case of a single
rarefied gas,58,59 is clear.

VI. COMPARISON BETWEEN ASYMPTOTIC MODEL
SOLUTION AND DSMC SIMULATION

In this section, the aim is to compare, for a flow in a
microchannel, the results given by the DSMC simulation and
by the asymptotic model. Argon (gas a) and neon (gas b) are
considered. Of course, the physical characteristics of the two
gases are given in Table I and are used both in DSMC simu-
lations and in asymptotic models. The DS2V code of Bird45

is used in its two dimensional steady version. The microchan-
nel has length L = 20 µm and width h = 1 µm and is located
between an inlet chamber and an outlet chamber, as in the
Ref. 14. The axes (O, x∗, y∗) are specified at the beginning of
Section II. The walls are at rest and they have the same tem-
perature: T ∗4(x∗). Additionally, diffuse boundary conditions are

assumed with full accommodation to the wall temperature. At
the simulation beginning, the gas mixture is at rest and is sep-
arated in two parts in the two areas x∗ < L/2 and x∗ > L/2. In
the both areas, the mixture proportion is 70% argon and 30%
neon. In the first area, the total pressure is p∗in = 5×104 Pa and
the mixture temperature is T ∗in = 300 K; in the second area,
the total pressure is p∗out = 4 × 104 Pa and the mixture tem-
perature is T ∗out = 300 K, 305 K, 310 K, 320 K, or 400 K. Due
to the pressure and temperature gradients, the two gases flow
through the microchannel. We have five simulations which are,
respectively, denoted by Expt. 1, Expt. 2, Expt. 3, Expt. 4, and
Expt. 5 (Tables II and III).

In order to compare these DSMC simulation results
with the asymptotic results, dimensionless variables are intro-
duced with the characteristic quantities previously defined
(x = (x∗/L, y = y∗/h, pa = p∗a/P = p∗a/104, etc.). As pre-
viously described (Section V), the characteristic values for
the mass flow rates are Qac = 1.60 × 10−6 kg m−1 s−1 and Qbc

= 0.81×10−6 kg m−1 s−1. The DSMC simulations give the val-
ues of the physical quantities in each Monte Carlo sampling
cell. Note that there are about 5100 cells inside the microchan-
nel (0 < x∗< L), about 245 cells along the longitudinal axis,
and 20 cells along a transverse direction. Consequently, the
dimensionless pressures pDSMC

a (x, y) and pDSMC
b (x, y), and

the dimensionless velocities uDSMC
a (x, y) and uDSMC

b (x, y), are
known in each cell. Now, we have to calculate the pressures
pModel
θ (x) (θ = a, b), given by the solutions of the equation

set (45). To do this, we have to introduce initial values for
the two pressures and values for the two flow rates QModel

a
and QModel

b . In order to make the most meaningful comparison
possible, we take the pModel

θ (0) and QModel
θ values in agree-

ment with the DSMC simulation values. More precisely, we
consider the results of DSMC simulations. The average values
of p∗a(x∗, y∗) and p∗b(x∗, y∗) for y∗ = 0 and for x∗ between 0 µm
and 0.1 µm are calculated and are denoted by P × pDSMC

a (0)
and P × pDSMC

b (0). These average values are computed using
about 30 cells. Similarly, average values P × pDSMC

a (1) and
P×pDSMC

b (1) at the channel exit are calculated by taking aver-
age values of p∗a(x∗, y∗) and p∗b(x∗, y∗) from about 20 cells with
y∗ = 0 and x∗ between 19.9 µm and 20 µm. It remains to deter-
mine the mass flow rates of the two gas components through
the channel. The code DS2V used in our simulations gives the
number of molecules N∗ crossing the line x∗ = 10 µm per sec-
ond. The average concentration of each mixture component
θ near the channel section x∗ = 10 µm is obtained by taking

TABLE II. DSMC simulations are initialized with T∗in = 300 K, p∗a in = 35 000 Pa, p∗b in = 15 000 Pa, p∗a out
= 28 000 Pa, p∗b in = 12 000 Pa, and with different T∗out values. DSMC results are given for average Mach number
Ma, average Knudsen number Kn, the number of molecules N∗ crossing the line x∗ = 10 µm, and for the dimension
and dimensionless mass flow rates.

DSMC T∗out Average Average N∗ Q∗a × 10+6 Q∗b × 10+6

simulation (K) Ma Kn × 10�19 (kg m�1 s�1) (kg m�1 s�1) QDSMC
a QDSMC

b

Expt. 1 300 0.015 0.162 2.42 2.248 0.485 1.405 0.600
Expt. 2 305 0.016 0.163 2.50 2.322 0.502 1.451 0.620
Expt. 3 310 0.017 0.165 2.62 2.440 0.523 1.525 0.646
Expt. 4 320 0.018 0.165 2.79 2.590 0.561 1.618 0.693
Expt. 5 400 0.026 0.190 4.14 3.875 0.816 2.421 1.008
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TABLE III. Dimensionless pressures of the gases at the microchannel exit (x = 1) given by the DSMC simulations
and the asymptotic results calculated with QModel

θ = QDSMC
θ and pModel

θ (0) = pDSMC
θ (0) (θ = a and b). In the last

two columns, relative errors on the pressures pa(1) and pb(1) are given.

DSMC (T∗in − T∗out) pDSMC
a pDSMC

b pDSMC
a pDSMC

b pModel
a pModel

b Error Error
simulation /T c (0) (0) (1) (1) (1) (1) on pa(1) (%) on pb(1) (%)

Expt. 1 0 3.5331 1.5142 2.7613 1.1773 2.5239 1.1074 8.6 5.9
Expt. 2 0.016 67 3.5625 1.5220 2.7521 1.1832 2.5046 1.1229 9.0 5.1
Expt. 3 0.033 33 3.5869 1.5358 2.7482 1.1788 2.4067 1.1903 12.4 1.0
Expt. 4 0.066 67 3.6491 1.5563 2.7420 1.1781 2.3965 1.1955 12.6 1.5
Expt. 5 0.333 33 4.0797 1.7152 2.6563 1.1424 1.3769 1.9810 48.2 73.4

the average value of c∗θ (x∗, y∗) from about 50 cells centred
on x∗-axis and located in the interval [9.9 µm, 1.1 µm]. From
this average concentration number, the molecular mass of
the molecule θ, and the number N? defined previously, it is
easy to calculate the dimension mass flow rate Q∗θ = Qθc

× QDSMC
θ .
Quantities QDSMC

θ , pDSMC
θ (0), and pDSMC

θ (1) are calculated
for the five DSMC simulations; they are given in Tables II and
III.

There is a large amount of statistical noise in DSMC calcu-
lations;54,55 therefore, these values are somewhat approximate.
More specifically, relative errors in the initial values of the
pressures are about 0.1.60 Errors on the mass flow rates are
much higher. This is due to the fact that the Mach number,
on order of 10�2, is small in the five simulations (Table II).
According to the paper of Hadjiconstantinou,60 the error on
the velocities is inversely proportional to the Mach number. As
a result, the velocity error is approximately 100 times larger
than the pressure error. From this remark, we can assume that
the error of the mass flow rate is about 10%.

Associated with each simulation, Expt. 1 to Expt. 5,
the mass flow rates QModel

a = QDSMC
a and QModel

b = QDSMC
b

and the initial values of pressures pModel
a (0) = pDSMC

a (0) and
pModel

b (0) = pDSMC
b (0) are introduced. Then, with these four

quantities, by using MATLAB, the ordinary differential equa-
tions (45) are solved. Additionally, the viscous and thermal
slip coefficients are those of full accommodation with the walls
(σθP = σθT = 1). The solutions pmodel

a (x) and pmodel
b (x) of (45)

are calculated, and the obtained values pModel
a (1) and pModel

b (1)
are set in Table III. In the two last rows of this table, the rel-
ative errors on the pressures at the channel exit defined by
|(pDSMC

θ (1) − pModel
θ (1))/pDSMC

θ (1)| are given.
For the four experiments, Expt. 1 to Expt. 4, the relative

difference is, at most, 13% for argon and 6% for neon. These
errors have the same order of magnitude as the errors on the
values pDSMC

θ (0) and QDSMC
θ which are used to solve the equa-

tion set (45). The relative error of the pressure of argon is much
greater than that of the pressure of neon. Is it a result of the
argon concentration being greater than that of neon or that the
molecular mass of argon is greater than that of neon? These
questions are not fully understood and answered. Moreover,
the sum of both relative errors of the two pressures is always
around 14%. For Expt. 5, the results at exit of the microchan-
nel are very disappointing. The relative errors on the pressures
are 48% with argon and 73% for neon. In that case, it should
be noted that the ratio (T ∗out −T ∗in)/Tc = 100/300 = 0.33 is

relatively large. This can be a cause of non-agreement between
the DSMC simulation and asymptotic solution.

Other simulations were performed and have led to similar
results. For example, let us consider five new DSMC simula-
tions for the binary mixture of argon and neon, in the previous
microchannel. As previously described, in the inlet chamber,
we have p∗in = 50 000 Pa and T ∗in = 300 K, and in the outlet
chamber, p∗out = 40 000 Pa and T ∗out = 300, 305, 310, 320,
or 400 K. Additionally, we have the same linear temperature
profiles on both walls and equal percentages for argon and
neon at the beginning of each simulation. The relative errors
|(pDSMC

θ (1) − pModel
θ (1))/pDSMC

θ (1) | with θ = a and b have
respective values 6%, 20%, 21%, 26%, 69% and 13%, 2%,
1%, 4%, 36% when the temperature of the mixture in the out-
let chamber increases from 300 K to 400 K. It is noted that
the previous remarks on the relative errors for experiments
Expt. 1 to Expt. 5 can be repeated here.

Now, we compare the pressure profiles along the
microchannel’s x-axis given by the DSMC simulation and the
asymptotic model. Two sets of results are shown: first, with
the wall temperature equal to a constant (Expt. 1) and sec-
ond with the wall temperature increasing from 300 K to 320 K
(Expt. 4). The profiles pModel

θ (x) (θ = a, b) correspond to the
solutions of Equation (45). For the DSMC results, we are inter-
ested in the values of the pressures on the x-axis, pDSMC

θ (x, 0)
(θ = a, b), denoted simply by pDSMC

θ (x). In other words, we
take the pressure values in DSMC cells centered at y = 0. The
dimensionless pressure profiles are presented as solid lines in
the case of asymptotic solutions and with markers in the case of
DSMC results (Figs. 7(a) and 7(b)). For both experiments, the
pressure profiles for neon are very close, in contrast to those
for argon. The relative errors fluctuate and coarsely increase
with the longitudinal abscisse, the error being much higher for
argon compared with that for neon. Of course, near the channel
outlet (x = 1), they agree to the values given in Table III. We
note also the quasi-linear evolution of the pressures along the
x-axis.

Finally, we give the velocity profiles along the chan-
nel axis, uModel

θ (x, 0) and uDSMC
θ (x, 0), for both experiments:

Expt. 1 and Expt. 4. For the asymptotic model, uModel
θ (x, 0) is

calculated from Eq. (41) and the values of the two pressures
pModel

a (x) and pModel
b (x). From the DSMC simulation results,

uDSMC
θ (x, 0) is built by using the same method as that used to

build pDSMC
θ (x). The profiles are shown in Figs. 8(a) and 8(b).

We must note that the DSMC solutions are very noisy, with
large fluctuations, for argon and for neon.
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FIG. 7. Dimensionless pressure profiles along the x-axis given by the DSMC simulations and by the asymptotic model, in the cases of Expt. 1 (a) and
Expt. 4 (b).

FIG. 8. Dimensionless velocities along the x-axis given by the DSMC simulation and by the asymptotic model, in the cases of Expt. 1 (a) and Expt. 4 (b).

In the case of Expt. 1, fluctuations defined | (uDSMC
θ (x, 0)

− uModel
θ (x, 0))/uDSMC

θ (x, 0) | have the maximum values 13%
for gas a and 36% for gas b, and they have average values 5%
for gas a and 18% for gas b. In the case of Expt. 4, the maximum
values are 75% for gas a and 60% for gas b, and the average
values are 67% for gas a and 44% for gas b. For Expt. 1, it can
be concluded that the agreement is roughly correct; however
for Expt. 4, the agreement is bad. Due to these fluctuations, the
agreement between the two profiles, asymptotic and DSMC,
is not very good. Only roughly increasing character of the
DSMC profiles is consistent with the asymptotic models. In
both experiments Expt. 1 and Expt. 4, the Mach numbers are
weak being around 2 × 10−2. Other comparisons are planned
to be performed with higher Mach numbers on the order of
ε = 0.05, with the hope of seeing smaller velocity fluctuations.

VII. CONCLUSION

An asymptotic model has been presented for the flow of a
thermal binary gas mixture in a microchannel. It is constructed
from the Navier-Stokes-Fourier balance equations with
first-order boundary conditions for the velocities and tem-
peratures. The pressures and longitudinal velocities along the

symmetry axis of the micro-channel are studied. The results
are related to the influence of the mass flow rates, to the com-
parison between different species pairs, and to the influence of
a temperature gradient along the microchannel walls.

Many results were obtained over a given range of data. For
instance, for the isothermal Ar–Ne mixture in the proportions
70% and 30%, respectively, the mass flow rate of argon being
fixed, it was shown that, for a fixed transverse section of the
microchannel, when the mass flow rate of neon increases, the
pressure of argon increases and the pressure of neon decreases.
It was also shown that the slipping velocity on the walls of neon
is less than that of argon.

In the case of isothermal flows of two monatomic gas
mixtures, with the same flow rates and the same concentra-
tions, it is shown that the pressure in the gas with the largest
molecular mass is smaller than that with the smallest molec-
ular mass. This could be explained by the remark that in a
collision between two molecules, the lightest molecule has a
larger change in its speed than the heaviest molecule. For slip-
ping velocities on the walls, it is also shown that the velocity
for the lightest gas is smaller than that for the heaviest gas.

In the case of non-isothermal flow mixtures of argon and
neon, with the same flow rates and the same concentrations,
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the results were as follows: for a fixed transverse section of the
microchannel, the pressure in the gas with the heaviest molec-
ular mass decreases as the temperature gradient increases. On
the contrary, the pressure in the lightest gas increases. These
results are due to the boundary conditions on the walls. Same
remarks can be made in the second study with the Ar–Ne
mixture in the proportion 70% argon and 30% neon, and the
nondimensionless flow rates equal to 1.60 and 0.60, respec-
tively. On both walls that have a non-uniform temperature, the
boundary conditions contribute to flow velocities proportional
to the temperature gradient in addition to the slip velocities
due to viscosity. This is the thermal creep well known in the
case of a single rarefied gas. In the present paper, the slipping
velocities of the two gases are due to the pressure gradients
and the temperature gradient. Both effects are mixed. To study
the thermal creep only, an asymptotic model without pressure
gradients is planned.

Several comparisons between DSMC simulations and
corresponding asymptotic solutions for Ar–Ne mixture were
made. First, we were interested in pressure profiles along the
x-axis. For concentrations of 70% argon and 30% neon, and
a low temperature gradient along the walls, the two solutions
are in fairly good agreement. With equal concentrations for
both gases, the results are similar. It was noted that the agree-
ment between the two solutions is better with the lightest gas.
It was also noted that the results are disappointing with a large
temperature gradient. Second, we were interested in velocity
profiles. In the isothermal case, the agreement for the velocities
of the two gases given by the DSMC simulation and asymp-
totic model is not too bad; we have not the same conclusion in
the non-isothermal case with a temperature gradient of 20/300.
Further studies are to be conducted.

Finally, it is important to note that obtaining an asymptotic
solution is very fast (less than 1 s) compared to obtaining a
DSMC result (several hours on a PC). In the future, we need to
complete this study by comparing more flows based on DSMC
simulations with the corresponding asymptotic solutions. The
goal is to better understand the disagreements and to specify
the domain of validity of the asymptotic model. In the case
of polyatomic molecules, the asymptotic model presented in
Refs. 55–57 will eventually be improved and then tested on
various mixtures.

NOMENCLATURE

Exposant ∗ = Dimension quantities
Indice c = Characteristic quantities
Indices a, b, θ = Gas species
ν∗θ = Self-collision frequency
ν∗ab, ν∗ba = Cross-collision frequency between

molecules a and b
Su∗
θ , SE∗

θ = Coupling terms in momentum and
energy balance equations

Su
θ , S3θ , SE

θ = Coupling terms in dimensionless
momentum and energy equations

αθ = Variable soft sphere (VSS) parame-
ter

ωθ = Viscosity index
ψ∗ab, (ψab)c, ψab, Fab = Quantities present in the coupling

terms
β∗ab, β∗ba = Quantities present in ψ∗ab and ψ∗ba
σθP, σθT , ζθT = Viscous slip, thermal slip, jump

temperature coefficients on the
walls

APPENDIX A: BGK-TYPE EQUATIONS FOR BINARY
MIXTURE OF POLYATOMIC GASES

Most real gases, under standard temperature conditions,
satisfy with a very good approximation, the model of perfect
gas with constant specific heats. The energy of such a gas is
the sum of the energies of each molecule. The energy of a
molecule is the sum of the translational kinetic energy of the
molecule and different internal energy (see Landau and Lif-
chitz, Chap. 461 and Rahimi and Struchtrup48). We introduce
the temperature T of the gas defined from the translational
energy.

Let us consider a polyatomic gas in thermal equilibrium,
under standard conditions of temperature and pressure. The
energy of a molecule is the sum of the translational and rota-
tional energies, the other degrees of freedom are frozen. In
relation to the equipartition principle of energy, it is estab-
lished that c3 = `kit/2 and cp = (` + 2)kit/2, where ` = 6 for a
nonlinear molecule and ` = 5 for a linear molecule.61 Hence,
γ = cp/cv = (` + 2)/`.

The two kinetic equations (1) and (2) are assumed valid.
In order to have the energy conservation for the mixture,
the Morse formulas (5) and (6) for the temperatures must
be modified. We propose the following expressions for the
pseudo-temperatures T

∗

a and T
∗

b:

T
∗

a = T ∗a + 3(γa − 1)
mamb

(ma+mb)2

(
T ∗b −T ∗a +

mb

6k

(
u∗b − u∗a

)2
)

,

(A1)

T
∗

b = T ∗b + 3(γb − 1)
mamb

(ma + mb)2

(
T ∗a − T ∗b +

ma

6k

(
u∗a − u∗b

)2
)

.

(A2)

For monatomic gases, these new expressions are identical to
those given in Eqs. (5) and (6). In the balance energy equation
(10), only the expression of the coupling term needs to be
changed. For the two gases a and b, they are

SE∗
a = ν

∗
abρ
∗
a

[
ra

γa − 1

(
T
∗

a − T ∗a
)

+
1
2

(
u∗a

2
− u∗a

2
)]

, (A3)

SE∗
b = ν

∗
baρ
∗
b

[
rb

γb − 1

(
T
∗

b − T ∗b
)

+
1
2

(
u∗b

2
− u∗b

2
)]

. (A4)

It is easy to see that the coupling terms SE∗
a and SE∗

b have a zero
sum for all gases.

APPENDIX B: PRINCIPLE OF LEAST DEGENERACY
APPLIED TO EQS. (23)–(25)

We assume Mθ =O(εα) and Knθ =O(εβ) with α
≥ β ≥ 0. It is easy to give, a priori, the different orders
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of magnitude of the terms that are present in Eqs. (23)–(25).
They are, respectively, ε2α, ε0, εα+β+1, εα+β−1, and, εα−β−1,
the last magnitude order corresponding to the right mem-
ber of Eq. (23); ε2α, ε−2, εα+β−1, εα+β+1, and, εα−β−1, where
the latter term corresponds to the right-hand side of
Eq. (24); ε0, εβ−α+1, εβ−α−1, εα+β+1, εα+β−1, εα+β+3, and,
ε−α−β−1, εα−β−1, εα−β+1, where the last three orders of mag-
nitude correspond to the right-hand side of Eq. (25). Analysis
of the magnitudes of the terms listed above shows that only
the following orders of magnitude are, respectively, retained:
ε2α, ε0, εα+β−1, and εα−β−1 in Eq. (23); ε−2 in Eq. (24);
εβ−α−1, εα+β−1, and ε−α−β−1, εα−β−1 in Eq. (25).

Due to the principle of least degeneracy,53 we must keep
the greatest possible number of terms in Eqs. (23) and (25).
Retaining four terms in Eq. (23) is not possible. It is easy to
see that there are four possibilities to select three terms in Eq.
(23). They are α = 0 and β = −1; α = −1 and β = 0; α = 0
and β = +1; α = 1 and β = 0. The first two options are not
possible. The third possibility is to be rejected as Eqs. (23) and
(25) are reduced to only coupling terms. The fourth possibility
is feasible with α = 1 and β = 0.

APPENDIX C: A REMARK ON THE TEMPERATURES
T a(x, y) AND T b(x, y)

In the first-order solution (Section IV), the two tempera-
tures Ta(x, y) and Tb(x, y) are solutions of the two differential
equations (36) and satisfy the boundary conditions (37).

We recall that the quantities Da, Db, Ea, and Eb are pos-
itive quantities and do not depend on y. Now, we assume
that Tθ (x, y) takes values close to T4(x). This means Tθ (x, y)
= T4(x) (1 + tθ (x, y)) with tθ (x, y) very small compared to 1
(tθ (x, y) � 1). Let us introduce tθ (x, y) in Eqs. (36) and (37).
After linearization, we get:

∂2ta(x, y)

∂y2
= ea(x) (ta − tb) ,

∂2tb(x, y)

∂y2
= eb(x) (tb − ta) ,

(C1)

ta(x, y) = −εϕa(x)
∂ta
∂y

, tb(x, y) = −εϕb(x)
∂tb
∂y

,

in y = ε1/2
(C2)

with ε = ±1. In Eqs. (C1) and (C2), the quantities ea(x), eb(x),
ϕa(x), and ϕa(x) are known positive functions depending only
on the variable x. The solutions of the second order ordinary
differential equations (C1) follow

tθ=
ηeθ

ea + eb

(
Kcosh(

√
ea + eby) + Hsinh(

√
ea + eby)

)
+ Ly + M

(C3)

with η = +1 for the species a, and η = −1 for the species b,
where K, H, L, and M are four integration constants, which are
determined from the boundary conditions (C2),

ηeθ
ea + eb

(
Kcosh(

√
ea + eb/2) + εHsinh(

√
ea + eb/2)

)
+ εL/2 + M,

= −εϕθ

[
ηeθ

√
ea + eb

(
εKsinh(

√
ea + eb/2) + Hcosh(

√
ea + eb/2)

)
+ L

]
. (C4)

The relation (C4) yields four different equations correspond-
ing to the parameters (θ, η, ε) equal to (a, +1, +1), (a, +1,�1),
(b,�1, +1), and (b,�1,�1). We deduce two homogeneous lin-
ear systems of equations, of the one part for K and M, and on the
other part for L and H, whose determinant is different of zero.

Accordingly, K = M = 0 and L = K = 0. In conclusion, Eqs. (C1)
and (C2) have the following solutions: ta(x, y) = tb(x, y) = 0.
This corresponds to Ta(x, y)=Tb(x, y)=T4(x). In other words,
if the values of Ta(x, y) and Tb(x, y) are assumed close to T4(x),
the only possible solutions are Ta(x, y)=Tb(x, y)=T4(x).

APPENDIX D: EXPRESSIONS OF C1, C3, Aaa, Aab, Bba, Bbb, Q̂a AND Q̂b

First, the expression of Fab deduced from Eqs. (27) and (35) is written as follows:

Fab =

√
πγa

2
(da + db)2

4dadb

ρbc

ρac

(
µac

µbc

)1/2 (mb

ma

)1/4 ( m2
a

2mb(ma + mb)

)1/2

,

and the expression of Ba deduced from Eqs. (40) and (35) is also written as follows:

Ba = Fab

√
π

2γa

(
1

Knac

)1/2 (
ΩaΩbµa

TaTbµb

)1/2

papb.

The expressions of Aa, Ka, and Ha are given in Eqs. (40). Here, they are recalled

Aa =
1

MacKnacµa
, Ka = σaP

2
√
π

Knac

√
Ta
µa

pa
, Ha = σaT

2
π

Knac

Mac

µa

pa
.
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Of course, expressions of Fba, Bb, Ab, Kb, and Hb are obtained from those of Fab, Ba, Aa, Ka, and Ha by exchanging the species
a and b.

Second, as in Eq. (42), we set

ψ =
√

Ba + Bb, Υ =
BbAa

ψ2

dpa

dx
+

BaAb

ψ2

dpb

dx
,

and then, we introduce

D = ψ2cosh(ψ/2) + (BaKa + BbKb)ψsinh(ψ/2).

We have

C3 =
1
D

{
1

ψ2

(
Aa

dpa

dx
− Ab

dpb

dx

)
−

1
2
Υ (Ka − Kb) + (Ha − Hb)

dT4
dx

}
,

C1 = −
Υ

8
+

1
D

{
Υ

2

[
(2 − BbKa − BaKb) cosh(ψ/2) − KaKbψ

3sinh(ψ/2)
]

+

(
BbKbAa

dpa

dx
+ BaKaAb

dpb

dx

)
sinh(ψ/2)

ψ
+ (BbHa + BaHb)

dT4
dx

cosh(ψ/2)

+ (BbHaKb + BaHbKa)
dT4
dx

ψsinh(ψ/2)

}
,

Aaa =
Aa

ψ2D

{
−Bb

D
12

+ 2Ba
sinh(ψ/2)

ψ
+ BaBb (Kb − Ka)

sinh(ψ/2)
ψ

− Bacosh(ψ/2) − BaKaψsinh(ψ/2) + BbKbψsinh(ψ/2)

−
1
2

Bb (BbKa + BaKb) cosh(ψ/2) −
1
2

BbKaKbψ
3sinh(ψ/2)

}
,

Aab =
BaAb

ψ2D

{
−

D
12

+ cosh(ψ/2) − 2
sinh(ψ/2)

ψ
+ Ba (Kb − Ka)

sinh(ψ/2)
ψ

+ Kaψsinh(ψ/2) −
1
2

(BbKa + BaKb) cosh(ψ/2) −
1
2

KaKbψ
3sinh(ψ/2)

}
,

Q̂a =
T4

paQaD
−

dT4
dx

{
2Ba (Ha − Hb)

sinh(ψ/2)
ψ

+ (BbHa + BaHb) cosh(ψ/2)

}
+

{
dT4
dx

(BaKaHb + BbKbHa)ψsinh(ψ/2)

}
.

The expressions of Bbb, Bba, and Q̂b are, respectively, obtained from those of Aaa, Aab, and Q̂a by exchanging the species a
and b.
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