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Bio-imaging, by enabling the visualization of biomolecules of interest, has proved to be highly informative in the study of biological processes. Although fluorescence microscopy is probably one of the most used techniques, alternative methods of imaging, providing complementary information, are emerging. In this context, metal complexes represent valuable platforms for multimodal imaging, since they may combine interesting spectroscopic features and biologically relevant functionalization on a single molecular core. In particular, d 6 low-spin rhenium tri-carbonyl complexes display unique luminescence and vibrational properties, and can be readily functionalized. Here we review their applications and potential as probes or drugs relying on their photophysical properties, before focusing on their use as multimodal probes for the labelling and imaging of peptides and proteins.
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Introduction

Fluorescence microscopy is one of the most widely used techniques for the visualization and study of biological processes. Its good spatial resolution (a few hundreds of nanometers, ie ~ 10 2 ×10 2 nm 2 for conventional microscopy experiments) makes it well suited for sub-cellular imaging, since typical eukaryotic cell diameters are in the range of a few tens of micrometers. In addition, due to its good spatial resolution, fluorescence imaging in live cells is achievable, providing relevant dynamic information. A large set of fluorescent probes with high quantum yields and diverse excitation and emission wavelengths are available, thus enabling sensitive and multi-color imaging. Although highly valuable, fluorescence techniques also suffer from some drawbacks, such as photobleaching and photodamage of cells. Moreover, the fluorescence quantum yield of a probe is often sensitive to its environment (pH, hydrophobicity, polarity) and self-quenching can occur, for instance in the case of local accumulation of the probe (e.g. in a membrane). This means that intensity of fluorescence do not always correlate with quantity, which generally makes reliable quantification difficult. Ratiometric systems are proposed in the literature to solve these issues, but the question of the possible dependence on the relative quantum yields with environment and self-quenching extinction remains.

On the other hand, complementary methods for bio-imaging have recently emerged. Vibrational techniques such as infrared (IR) or Raman microspectroscopies have raised a particular interest over the past few years. IR spectroscopy and IR-imaging involve excitation in the vibrational levels. For fluorescence, excitation in the electronic levels is associated with modification in the electronic distribution and hence in the reactivity of the molecule: chemical reactions can thus occur, with possible photobleaching of the probes. In contrast, when vibrational levels are excited in the fundamental electronic state, the only dissipation is through the release of heat and thus no photobleaching occurs. In addition, IR microspectroscopy can be used to get chemical information about biological samples through signatures of lipids, esters, amides, or DNA [START_REF] Lasch | FT-IR spectroscopic investigations of single cells on the subcellular level[END_REF][START_REF] Sandt | Profiling pluripotent stem cells and organelles using synchrotron radiation infrared microspectroscopy[END_REF][START_REF] Clède | Fourier Transform Infrared (FT-IR) Spectromicroscopy to Identify Cell Organelles: Correlation with Fluorescence Staining in MCF-7 Breast Cancer Cells[END_REF]. The deeper penetration of IR radiation, in comparision with higher energy light, also enables tissues imaging. However, infrared microspectroscopy generally displays lower spatial resolution than fluorescence microscopy. In optical spectroscopy, the spatial resolution is limited by diffraction to ∼ λ/2 (Abbe diffraction limit), where λ is the light wavelength. For infrared microscopy, typical spatial resolution is thus in the 1-10 μm range. To overcome this limitation, near-field techniques in the IR regime have been implemented. Combining scanning probe microscopy with spectroscopy is a way to circumvent the limitations inherent to optical detection and to record highly spatially resolved spectral information: the spatial resolution is then mainly governed by the nanometric probe [START_REF] Lucas | Invited review article: combining scanning probe microscopy with optical spectroscopy for applications in biology and materials science[END_REF][START_REF] Keilmann | Near-field microscopy by elastic light scattering from a tip[END_REF]. In this field, scattering scanning near-field optical microscopy or s-SNOM [START_REF] Cricenti | Chemically resolved imaging of biological cells and thin films by infrared scanning near-field optical microscopy[END_REF] and atomic force microscope infrared (AFMIR) spectroscopy have been employed on biological samplesincluding cells -and enabled reaching resolution below 100 nm by using an atomic force microscope (AFM) tip [START_REF] Dazzi | Subwavelength infrared spectromicroscopy using an AFM as a local absorption sensor[END_REF][START_REF] Dazzi | Chapter 9 -AFM-IR: photothermal infrared nanospectroscopy: Application to cellular imaging[END_REF][START_REF] Policar | Subcellular IR Imaging of a Metal-Carbonyl Moiety Using Photothermally Induced Resonance[END_REF][START_REF] Clède | Detection of an estrogen derivative in two breast cancer cell lines using a single core multimodal probe for imaging (SCoMPI) imaged by a panel of luminescent and vibrational techniques[END_REF]. By recording IR spectra at given locations of cells or tissues, IR microspectroscopy enables information-rich mapping of biological samples. However, this information comes at a cost, which is often the temporal resolution of this mode of imaging: fixed samples, with long recording time, are generally used in order to obtain a good spatial resolution. Nevertheless, IR imaging of live cells is possible and has been successfully performed [START_REF] Zobi | Live-Fibroblast IR Imaging of a Cytoprotective PhotoCORM Activated with Visible Light[END_REF]. In this context, multimodal probes are thus attractive, as they combine the advantages of the different methods of imaging on a single molecule. Such probes can be used as tags if they can be conjugated to a molecule of interest (MOI). To reach that goal, a well-documented strategy consists of combining several modalities by covalently linking to a scaffold a molecular moiety dedicated to each probing modality. This leads to high molecular weight compounds, which require multi-step synthesis; if use as tags, they may alter the cell penetration of the MOI to large extent. The molecular construct may also be disrupted in the biological environment, which would result in inconsistent images in the various modalities. Alternatively, metal complexes bearing organic ligands may be particularly adapted to obtain multimodality, and the possible decoration of the ligand enable the combination of unique spectroscopic properties and of biologically relevant functionalization on a single molecular core. Re(I) tri-carbonyl complexes, in particular, display interesting luminescence properties (large Stokes shifts, long luminescence life-time) and intense absorption bands (1800-2200 cm -1 ) in the IR transparency window of biological samples. Indeed, their use for correlative fluorescence and infrared imaging was recently exemplified which demonstrates their validity as Single Core Multimodal Probes for Imaging (SCoMPIs) [START_REF] Clède | Detection of an estrogen derivative in two breast cancer cell lines using a single core multimodal probe for imaging (SCoMPI) imaged by a panel of luminescent and vibrational techniques[END_REF][START_REF] Clède | A rhenium tris-carbonyl derivative as a single core multimodal probe for imaging (SCoMPI) combining infrared and luminescent properties[END_REF][START_REF] Clède | Influence of the Side-Chain Length on the Cellular Uptake and the Cytotoxicity of Rhenium Triscarbonyl Derivatives: A Bimodal Infrared and Luminescence Quantitative Study[END_REF][START_REF] Clède | An easy-todetect nona-arginine peptide for epidermal targeting[END_REF]. Biological applications of Re(CO) 3 complexes based either on their luminescence or infrared properties have been extensively reviewed [START_REF] Salmain | Organometallic Complexes as Tracers in Non-isotopic Immunoassay[END_REF][START_REF] Salmain | Labeling of Proteins with Organometallic Complexes: Strategies and Applications[END_REF][START_REF] Patra | Organometallic compounds: an opportunity for chemical biology?[END_REF][START_REF] Clède | Metal-Carbonyl Units for Vibrational and Luminescence Imaging: Towards Multimodality[END_REF][START_REF] Lo | Recent Exploitation of Luminescent Rhenium(I) Tricarbonyl Polypyridine Complexes as Biomolecular and Cellular Probes[END_REF][START_REF] Lo | Non-covalent binding of luminescent transition metal polypyridine complexes to avidin, indole-binding proteins and estrogen receptors[END_REF][START_REF] Lo | Applications of luminescent inorganic and organometallic transition metal complexes as biomolecular and cellular probes[END_REF][START_REF] Coogan | Single amino acid chelate complexes of the M(CO) 3 + core for correlating fluorescence and radioimaging studies (M = 99m Tc or Re)[END_REF][START_REF] Thorp-Greenwood | Organometallic complexes of transition metals in luminescent cell imaging applications[END_REF][START_REF] Balasingham | Complexes in context: Attempting to control the cellular uptake and localisation of rhenium fac-tricarbonyl polypyridyl complexes[END_REF][START_REF] Fernández-Moreira | Application of d 6 transition metal complexes in fluorescence cell imaging[END_REF]. In the present review, after a brief overview on their applications and potential as probes or drugs relying on their photophysical properties, we will attempt to give a special focus on their use as multimodal probes for the labelling and imaging of peptides and proteins. 

Re(CO) 3 complexes in biological studies

Spectroscopic properties of luminescent Re(I) tricarbonyl complexes

Re(I) fac-tricarbonyl complexes bearing low energy π * orbitals (e.g. α-diimine or dipicolylaminederived ligands) display attractive luminescence properties and biocompatibility features (Figure 1). Similarly to other luminescent d 6 complexes (including luminescent Ir(III) and Ru(II) complexes), lowspin, 18-electron Re(I) tricarbonyl complexes are kinetically inert, which limits ligand exchange and the toxicity associated with the release of heavy metal ions [START_REF] Fernández-Moreira | Application of d 6 transition metal complexes in fluorescence cell imaging[END_REF]. The luminescence properties of [Re(CO) 3 (N^N)X] complexes (L = α-diimine, X = halide, pyridine...), e.g. low quantum yield, large Stokes shift and long emission lifetime, are typical of 3 MLCT excited states: upon irradiation, one electron is promoted from a metal-centered dπ orbital to a ligand-centered π * orbital ( 1 MLCT excited state). Inter-system crossing (ISC) then leads to the emissive 3 MLCT excited state.

However, halide-to-ligand charge-transfer ( 3 XLCT) or ligand-to-ligand charge-transfer ( 3 LLCT) may also occur, as well as mixing with intraligand 3 IL (π → π * ) states [START_REF] Lo | Non-covalent binding of luminescent transition metal polypyridine complexes to avidin, indole-binding proteins and estrogen receptors[END_REF][START_REF] Kumar | Photophysics and Photochemistry of Organometallic Rhenium Diimine Complexes[END_REF][START_REF] Leonidova | Enhanced Cytotoxicity through Conjugation of a "Clickable" Luminescent Re(I) Complex to a Cell-Penetrating Lipopeptide[END_REF]. Although the nature of their emission is thus phosphorescence, these complexes are widely referred to as luminescent in the literature, and we will use this terminology in the following. Finally, the emission properties of Re(I) complexes are often sensitive to the presence of triplet quenchers like 3 O 2 . Although interaction with 3 O 2 results in emission intensity loss (quenching), this mechanism does not chemically alter the complex, and is thus distinct from photobleaching [START_REF] Fernández-Moreira | Application of d 6 transition metal complexes in fluorescence cell imaging[END_REF].

Due to their photophysical features, Re(I) tricarbonyl have raised an increasing interest for fluorescence bioimaging applications. Several cellular and biomolecular probes based on these complexes have thus been developed. In particular, efforts were made -and still are -to improve the spectroscopic features of these complexes, i.e. to obtain higher quantum yields and excitation at longer wavelength. This is generally done by tuning the structure of the N^N ligand, since it is involved in the MLCT. Two families of ligand have been particularly explored: (i) polypyridyl ligands, mostly derived from 2,2'bipyridine (bpy) and 1,10-phenanthroline (phen) [START_REF] Lo | Recent Exploitation of Luminescent Rhenium(I) Tricarbonyl Polypyridine Complexes as Biomolecular and Cellular Probes[END_REF][START_REF] Lo | Non-covalent binding of luminescent transition metal polypyridine complexes to avidin, indole-binding proteins and estrogen receptors[END_REF][START_REF] Lo | Applications of luminescent inorganic and organometallic transition metal complexes as biomolecular and cellular probes[END_REF][START_REF] Thorp-Greenwood | Organometallic complexes of transition metals in luminescent cell imaging applications[END_REF][START_REF] Balasingham | Complexes in context: Attempting to control the cellular uptake and localisation of rhenium fac-tricarbonyl polypyridyl complexes[END_REF][START_REF] Fernández-Moreira | Application of d 6 transition metal complexes in fluorescence cell imaging[END_REF][START_REF] Amoroso | Rhenium fac tricarbonyl bisimine complexes: biologically useful fluorochromes for cell imaging applications[END_REF][START_REF] Bhuvaneswari | Protein binding studies of luminescent rhenium(I) diimine complexes[END_REF][START_REF] Choi | Rhenium(I) polypyridine dibenzocyclooctyne complexes as phosphorescent bioorthogonal probes: Synthesis, characterization, emissive behavior, and biolabeling properties[END_REF][START_REF] Lo | Biological labelling reagents and probes derived from luminescent transition metal polypyridine complexes[END_REF][START_REF] Lo | Design of luminescent iridium(III) and rhenium(I) polypyridine complexes as in vitro and in vivo ion, molecular and biological probes[END_REF][START_REF] Lo | Luminescent rhenium(I) polypyridine complexes with an isothiocyanate moiety-versatile labelling reagents for biomolecules[END_REF][START_REF] Lo | Luminescent Rhenium(I) and Iridium(III) Polypyridine Complexes as Biological Probes, Imaging Reagents, and Photocytotoxic Agents[END_REF][START_REF] Lo | Synthesis, Characterization, Photophysical Properties, and Biological Labeling Studies of a Series of Luminescent Rhenium(I) Polypyridine Maleimide Complexes[END_REF][START_REF] Lo | Synthesis, Characterization, Crystal Structure, and Electrochemical, Photophysical, and Protein-Binding Properties of Luminescent Rhenium(I) Diimine Indole Complexes[END_REF][START_REF] Louie | Luminescent Polypyridinerhenium(I) Bis-Biotin Complexes as Crosslinkers for Avidin[END_REF][START_REF] Louie | Synthesis, Emission Characteristics, Cellular Studies, and Bioconjugation Properties of Luminescent Rhenium(I) Polypyridine Complexes with a Fluorous Pendant[END_REF][START_REF] Amoroso | 3-Chloromethylpyridyl bipyridine fac-tricarbonyl rhenium: a thiol-reactive luminophore for fluorescence microscopy accumulates in mitochondria[END_REF][START_REF] Fernández-Moreira | Uptake and localisation of rhenium fac-tricarbonyl polypyridyls in fluorescent cell imaging experiments[END_REF][START_REF] Coogan | Blue rhenium tricarbonyl DPPZ complexeslow energy charge-transfer absorption at tissue-penetrating wavelengths[END_REF][START_REF] Lo | Bifunctional Luminescent Rhenium(I) Complexes Containing an Extended Planar Diimine Ligand and a Biotin Moiety[END_REF] and (ii) bis-quinoline and its derivatives, e.g. bis(phenanthridinylmethyl)amine (bpm) [START_REF] Coogan | Single amino acid chelate complexes of the M(CO) 3 + core for correlating fluorescence and radioimaging studies (M = 99m Tc or Re)[END_REF][START_REF] Stephenson | Bridging the Gap between in Vitro and in Vivo Imaging: Isostructural Re and 99m Tc Complexes for Correlating Fluorescence and Radioimaging Studies[END_REF][START_REF] Raszeja | A Novel Organometallic ReI Complex with Favourable Properties for Bioimaging and Applicability in Solid-Phase Peptide Synthesis[END_REF][START_REF] Bartholomä | Single amino acid chelates (SAAC): a strategy for the design of technetium and rhenium radiopharmaceuticals[END_REF].

However, other polyazaheterocycles have also been developed, such as 1-R-4-(2-pyridyl)-1,2,3-triazole (pyta) and its derivatives [START_REF] Obata | Syntheses, structural characterization and photophysical properties of 4-(2-pyridyl)-1,2,3-triazole rhenium(I) complexes[END_REF][START_REF] Bertrand | Luminescence Modulations of Rhenium Tricarbonyl Complexes Induced by Structural Variations[END_REF][START_REF] Kim | Rhenium(I) complexes of readily functionalized bidentate pyridyl-1,2,3-triazole "click" ligands: A systematic synthetic, spectroscopic and computational study[END_REF]. More recently, Re(I) tricarbonyl complexes incorporating 5,5'-disubstituted 3,3'bisisoxazole have also been described [START_REF] Van Der Peet | A click chemistry approach to 5,5'-disubstituted-3,3'-bisisoxazoles from dichloroglyoxime and alkynes: luminescent organometallic iridium and rhenium bisisoxazole complexes[END_REF]. Modifications of the X ligand may also alter the luminescence properties of the complex. For instance, for the [Re(CO) 3 (bpy)(X)] complex, substituting the chloro for a pyridine (py) has an impact on both emission wavelength and quantum yield (Figure 2, Table 1). Spectroscopic properties of some rhenium complexes are summarized in Table 1. Interestingly, varying the bidentate or ancillary ligands may have a strong influence on quantum yield or emission wavelength. Excitation wavelength, on the other hand, is generally in the 340-360 nm range, which is not favorable for excitation of biological tissues. Indeed, most lasers available on confocal microscope offer excitation wavelength over 400 nm and more energetic lasers induce photodamages. Imaging (L)Re(CO) n remains possible thanks to the large bandwidth of their absorption band. Interestingly, though, Re(I) tricarbonyl complexes bearing a bis-quinoline ligand could be imaged in cells by fluorescence microscopy with excitation at 488 nm [START_REF] Viola-Villegas | Targeting the cubilin receptor through the vitamin B(12) uptake pathway: cytotoxicity and mechanistic insight through fluorescent Re(I) delivery[END_REF][START_REF] Bartholomä | Synthesis, cytotoxicity and cellular uptake studies of N3 functionalized Re(CO) 3 thymidine complexes[END_REF]. dppz py-CH2-NH-biotin >350 556, 599 sh 0.16 [START_REF] Lo | Bifunctional Luminescent Rhenium(I) Complexes Containing an Extended Planar Diimine Ligand and a Biotin Moiety[END_REF] pyta (R = Bn) Cl 355 538 0.33 [START_REF] Obata | Syntheses, structural characterization and photophysical properties of 4-(2-pyridyl)-1,2,3-triazole rhenium(I) complexes[END_REF] pyta (R = alkyl) Cl 332 522 0.1 [START_REF] Bertrand | Luminescence Modulations of Rhenium Tricarbonyl Complexes Induced by Structural Variations[END_REF] quinta Br N. E.

[b]

N.E.

[b] - [START_REF] Bertrand | Luminescence Modulations of Rhenium Tricarbonyl Complexes Induced by Structural Variations[END_REF] tapy Cl 360 569 0.19 [START_REF] Bertrand | Luminescence Modulations of Rhenium Tricarbonyl Complexes Induced by Structural Variations[END_REF] tapy Br 360 564 0.17 [START_REF] Bertrand | Luminescence Modulations of Rhenium Tricarbonyl Complexes Induced by Structural Variations[END_REF] taquin Br 380 617 0.06 [START_REF] Bertrand | Luminescence Modulations of Rhenium Tricarbonyl Complexes Induced by Structural Variations[END_REF] *Measured in degassed acetonitrile. All other measurements were made in aerated solution or it was not specified if the measurement was in degassed acetonitrile.

[a] Measurements were made in aerated ethylene glycol instead of acetonitrile.

[b] [Re(CO)3(quinta)(Br)] complexes are non emissive in acetonitrile but display typical MLCT features in aqueous solution containing DMSO. Typical photophysical data for those complexes are λexc = 335-345 nm, λem = 580-600 nm and Φ = 0.2-0.6% [START_REF] Bertrand | Luminescence Modulations of Rhenium Tricarbonyl Complexes Induced by Structural Variations[END_REF].

Re(I) tricarbonyl complexes with specific cell localization

Owing to their luminescence properties, Re(I) tricarbonyl complexes have been imaged in biological contexts and in particular in cells. A great attention has been paid to the development of Re(I) complexes targeting the different cell compartments, that can be used as organelles trackers. A thiolreactive chloromethyl group was, for instance, appended to a Re(I) tricarbonyl complex (1, R=Cl, Figure 3) in order to immobilized the complex into the mitochondria through its reaction with reduced thiols [START_REF] Amoroso | 3-Chloromethylpyridyl bipyridine fac-tricarbonyl rhenium: a thiol-reactive luminophore for fluorescence microscopy accumulates in mitochondria[END_REF]. Indeed, compound 1 (R=Cl) was found to co-localize with TMRE (tetramethylrhodamine ethyl ester), a known marker of mitochondria, in MCF-7 human breast cancer cell line (Figure 4.1). This organelle specificity is thought to be due to the greater transmembrane potential of the inner mitochondrial membrane that attract positively charged lipophilic molecules. A similar complex bearing a hydroxymethyl group (1, R = OH) displayed a very similar localization pattern in MCF-7 cells, despite the apparent lack of a thiol-reactive group, supposedly necessary to anchor the complex to the organelle [START_REF] Fernández-Moreira | Uptake and localisation of rhenium fac-tricarbonyl polypyridyls in fluorescent cell imaging experiments[END_REF]. To explain this, it was postulated that phosphorylation of the internalized complex could lead to a thiol-reactive moiety, although no experimental evidence for this hypothesis was obtained.

Coogan and co-workers synthesized a range of Re(I) tricarbonyl polypyridyl complexes varying in charge, size and lipophilicity in a first attempt to rationalize the cell localization of such compounds [START_REF] Fernández-Moreira | Uptake and localisation of rhenium fac-tricarbonyl polypyridyls in fluorescent cell imaging experiments[END_REF]. Although rationalization proved sometimes difficult, they could observe for instance that compound 2 (Figure 3) was localized at the plasma membrane of MCF-7 cells, probably interacting with the cationic residues of the glycoproteins layers (glycocalyx). Additionally, compound 3 (Figure 3) was found to be internalized only in dead or damaged cells, being thus a potential cell-death marker.

Examples of biotinylated Re(CO) 3 polypyridyl complexes (compounds 4, 5, Figure 3) were found to localize in lipophilic compartments like Golgi apparatus or endoplasmic reticulum [START_REF] Louie | Luminescent Polypyridinerhenium(I) Bis-Biotin Complexes as Crosslinkers for Avidin[END_REF][START_REF] Lo | Recent Exploitation of Luminescent Rhenium(I) Tricarbonyl Polypyridine Complexes as Biomolecular and Cellular Probes[END_REF].

A few years ago, Policar et al. developed Re(CO) 3 complexes for correlative imaging. This led to the concept of Single Core Multimodal Probes for Imaging (SCoMPIs) [START_REF] Clède | A rhenium tris-carbonyl derivative as a single core multimodal probe for imaging (SCoMPI) combining infrared and luminescent properties[END_REF]. The idea underlying the single core concept is that both modalities (IR and luminescence) are carried by the same molecular moiety, and are thus closely linked. Indeed, disruption of Re-CO bond(s) upon irradiation for instance, leads to a disappearance of the luminescence signal is observed (unpublished data). On the other hand, the energy of CO vibration is closely related to the nature of the entire (L)Re(CO) 3 core, and if L is exchanged a shift in the ν(CO) bands will likely be observed. A Re(I) tricarbonyl complex bearing a 4-(2-pyridyl)-1,2,3-triazole (pyta) ligand appended with a long alkyl chain (compound 6, Figure 3) was synthesized, and incubated with MDA-MB-231 cells, another breast cancer cell line [START_REF] Clède | A rhenium tris-carbonyl derivative as a single core multimodal probe for imaging (SCoMPI) combining infrared and luminescent properties[END_REF]. The azide moiety was used for comparison of the infrared signals from N 3 and CO groups inside cells. The compound could be detected by both fluorescence and infrared microspectroscopies, with consistent perinuclear localization in both imaging modes, Figure 4.2. The precise location assignment of the SCoMPI was performed through colocalization experiments by fluorescence, which revealed that 6 was accumulated into the Golgi apparatus.

Very recently, Metzler-Nolte et al. designed rhenium tricarbonyl complexes bearing asymmetric tridentate ligands derived from the bis-phenanthridine scaffold (compounds 7, symmetric, and 8-9, assymetric) [START_REF] Raszeja | Asymmetric rhenium tricarbonyl complexes show superior luminescence properties in live cell imaging[END_REF]. The resulting asymmetric complexes had enhanced luminescence properties, in particular longer emission wavelength (>600 nm in water) and good quantum yields in water for such complexes (around 0.15-0.2%). In cells, these complexes displayed a perinuclear localisation.

Colocalisation studies with known markers of the different cell organelles showed that the complexes were found in the endoplasmic reticulum, but not in the Golgi nor in the mitochondria. This was confirmed in five different cell lines. Of note, they observed that the organic organelle stains could show dramatic photobleaching upon prolonged irradiation, whereas the complexes showed stable luminescence intensity throughout these photobleaching experiments.

Finally, a few examples of localization in the nucleus (compounds 10,11, Figure 3) can also be found [START_REF] Agorastos | Cell-Specific and Nuclear Targeting with [M(CO) 3 ] + (M = 99m Tc, Re)-Based Complexes Conjugated to Acridine Orange and Bombesin[END_REF][START_REF] Esteves | M = Re, 99m Tc) complexes bearing acridine fluorophores: synthesis, characterization, DNA interaction studies and nuclear targeting[END_REF]. It should be noted that for compound 10, the luminescence comes from acridine rather than from the Re core. 

Photoresponsive Re(I) complexes

Beside their use as inert luminescent probes, Re(I) tricarbonyl complexes are attracting an increasing interest as potential photoresponsive drugs. Here we summarize some of their applications as COreleasing molecules or as photosensitizers for photodynamic therapy.

CO releasing Re(CO)

x complexes CO is endogenously produced through heme degradation by the heme oxygenase (HO) enzyme [START_REF] Wu | Carbon monoxide: endogenous production, physiological functions, and pharmacological applications[END_REF]. At low doses, CO was recently shown to play beneficial roles in various physiopathological situations such as inflammation and oxidative stress or during ischemia-reperfusion [START_REF] Otterbein | Carbon monoxide has anti-inflammatory effects involving the mitogen-activated protein kinase pathway[END_REF][START_REF] Otterbein | Heme oxygenase: colors of defense against cellular stress[END_REF][START_REF] Clark | Cardioprotective actions by a water-soluble carbon monoxide-releasing molecule[END_REF]. Controlled CO delivery is therefore of importance and attracting an increasing attention, and can be rationalized by the electronic structure of CO and M-CO, as detailed below. CO bears an electronic extra density on the C and not on the O, which explains why CO binds to metal ion by the carbon atom and not the oxygen atom. The Lewis structure of CO (see Figure 5) is unusual because the electronic density lies on the less electronegative atom. This is due to the fact that the HOMO in the CO molecular orbitals diagram is a quasi non-bonding orbital resulting from a 3-orbital interaction which shows a higher atomic orbital coefficient for the 2p C atomic orbital than for the 2p O . An important feature for CO reactivity is the presence of a low-lying π* level (2π in Figure 5), antibonding between the C and O atoms. Both the frontier orbitals (HOMO 3σ and LUMO 2π) can interact with a d-orbital from a metal center to create a M-CO bond. The primary interaction is with the 3σ, which shows a very strong density on the C atom, and to maximise the overlap with the d-orbital (dz 2 is exemplified on Figure 5), a linear geometry M-C-O is favoured. The LUMO 2π can also efficiently interact with a metal d-orbital of appropriate symmetry (exemplified in the case of dxy in Figure 5). This interaction, called back-bonding, contributes to increasing the strength of the M-CO bonding with a weakening of the C-O bonding. The MCO Lewis structure can then be written with two mesomeric forms, one involving a single M-C bond and the other a double M=C bond as shown in Figure 5, the M-C bonding strength increasing at the expense of the C-O strength. The more electronic density in the d-orbital, the more efficient the back-bonding process and the stronger the M-C bond. Hence, any decrease in the d-electronic density will be associated with a weakening of the M-CO bond and can trigger CO release. Oxidation, or excitation in the MLCT band -which promotes one electron from the d-manifold to the excited level mainly localized on the ligand, or modification of a ligand becoming less electro-donating to the metal, can trigger release. The rationale for the design of CORMs based on this principle has been recently described in an excellent review [START_REF] Schatzschneider | Novel lead structures and activation mechanisms for CO-releasing molecules (CORMs)[END_REF]. In a pioneering work, Motterlini et al. used metal-CO complexes called CO-RMs (CO-releasing molecules) considered as a condensed reservoir of CO or a "solid form of CO gaz" (personal communication with Dr. Motterlini): Mn 2 (CO) 10 , [Ru(CO) 3 Cl 2 ] 2 and Fe(CO) 5 can be used as prodrugs to release CO, spontaneously or upon a specific trigger [START_REF] Motterlini | Carbon monoxidereleasing molecules: characterization of biochemical and vascular activities[END_REF]. Now, many examples based on V, Cr, Mo, W, Co, B and Re bearing organic ancillary ligands are reported in the literature [START_REF] Mann | Carbon Monoxide: An Essential Signalling Molecule[END_REF]. Among them, uncommon monomeric 17-electron dicarbonyl Re complexes were developed (compound 12, Figure 6) by Zobi et al. The CO-releasing rate could be modulated by tuning the pH (half-lives shorter at lower pH) and by varying the ligand [START_REF] Zobi | CO releasing properties and cytoprotective effect of cis-trans-[Re(II)(CO) 2 Br 2 L 2 ] n complexes[END_REF]. However, these complexes were poorly soluble in aqueous media and a second generation conjugated with cyanocobalamin (a vitamin B 12 derivative, compound 13, Figure 6) has been studied and showed a protective effect in an ischemia-reperfusion injury model [START_REF] Zobi | 17 erhenium dicarbonyl COreleasing molecules on a cobalamin scaffold for biological application[END_REF]. Efforts have also been devoted to the development of photo-activable CO-RMS. For example, Ford and co-workers have developed a rhenium-based non cytotoxic water-soluble photoCO-RM [Re(bpy)(CO)3-(thp)], (compound 14, Figure 6) which combines luminescence properties and CO photo-releasing ability [START_REF] Pierri | A luminescent and biocompatible photoCORM[END_REF]. The release of one CO induces a red-shift of fluorescence emission maximum of compound 14. After incubation in human prostatic carcinoma cells (PPC-1), the internalization of the complex into the cytoplasm was observed by fluorescence microscopy. Upon irradiation at 405 nm, the release of CO and its replacement by a water molecule was evidenced since the emission intensity decreased in the 465-495 nm window and strongly increased at higher wavelengths (> 660 nm) (Figure 7). Although very interesting, the main limitation of this complex relies on the fact that high-energy light is required to promote CO release. In an attempt to increase the excitation wavelength of Re-based photo-CORMS, Mascharak et al. have developed Re complexes exhibiting strong MLCT bands in the visible region, compound 15, Figure 6 [START_REF] Chakraborty | Photodelivery of CO by designed PhotoCORMs: correlation between absorption in the visible region and metal-CO bond labilization in carbonyl complexes[END_REF]. However, CO release was not observed upon illumination in the visible region, the absorbed energy being dissipated through pathways that do not initiate CO release. This highlights the difficulty in tuning the properties of Re-based photoCORMS. 

Rhenium based complexes for Photodynamic therapy (PDT)

Photodynamic therapy relies on the use of a non toxic photosensitizer which, upon irradiation and in presence of dioxygen, will generate toxic species. Very frequently, these toxic species are reactive oxygen species (ROS) such as 1 O 2 . This results in oxidative damage of cellular components and then induces cell death. This strategy can consequently find applications in the treatment of cancers or infections. Generally, the sensitizers involved are organic dyes but some transition metal complexes have been used [START_REF] Derosa | Photosensitized singlet oxygen and its applications[END_REF]. Although Ru(II) polypyridyl species have been shown to be efficient photosensitizers for 1 O 2 , there are only scarce examples of use of Re(I) complexes for this application. In a pioneering work, Abdel-Shafi and co-workers studied three Re carbonyl complexes bearing either a 1,10-phenanthroline, a 2,2'-bipyridine, or a benzo[h]-quinoline ligand [START_REF] Abdel-Shafi | Photosensitized generation of singlet oxygen from rhenium(I) and iridium(III) complexes[END_REF] and showed that these complexes were good sensitizers for singlet oxygen. More recently, others complexes with improved properties (higher irradiation wavelengths, higher absorption coefficient…) have been developed [START_REF] Ragone | Photosensitized generation of singlet oxygen from Re(I) complexes: a photophysical study using LIOAS and luminescence techniques[END_REF]. Some of these complexes could even be embedded in a flexible polymeric silesquioxane (SSO) film while retaining their photophysical features, which opens up the possibility to use such films as biological or microbial-photoinactivating surfaces [START_REF] Spada | Clean Singlet Oxygen Production by a Re(I) Complex Embedded in a Flexible Self-Standing Polymeric Silsesquioxane Film[END_REF]. The Meggers' group designed complex 16 (Figure 8) and tuned the N^N and the R 1 ligands in order to be able to irradiate the complexes with either visible light [START_REF] Kastl | Rhenium complexes with visible-light-induced anticancer activity[END_REF] or red-light [START_REF] Wähler | Rhenium Complexes with Red-Light-Induced Anticancer Activity[END_REF]. In both cases, the complexes were incubated on HeLa cells and were found cytotoxic after irradiation only, with IC 50 in the nanomolar range. In addition, cytotoxicity of one of the complexes was also shown in 3D models: melanoma spheroids incubated with the complex and irradiated displayed cell death and loss of spheroid integrity at their edges [START_REF] Kastl | Rhenium complexes with visible-light-induced anticancer activity[END_REF]. As discussed later in this review (Section 2.2), Gasser et al also designed Re(CO) 3 complexes and peptide conjugates for PDT [START_REF] Leonidova | Towards cancer cell-specific phototoxic organometallic rhenium(I) complexes[END_REF]. These examples illustrate the potential of Re carbonyl complexes in PDT, so far understudied. 

Re(CO)x complexes for vibrational imaging

Beside their interesting properties in the UV-visible region, as mentioned earlier, metal-carbonyl complexes present attractive infrared properties, with intense absorption bands in the 1800-2200 cm -1 range. There is little IR-absorption from the biological sample in this energy range, which is called the transparency region in IR. The first use of these unique properties in a biological context was a Carbonyl Metallo-ImmunoAssay (CMIA) developed by Jaouen's group. CMIAs are non-radioisotopic (as the tracer is not a radiolabel), competitive (as a known quantity of labelled analyte and a known smaller quantity of the corresponding antibody are introduced in the sample to be analyzed) and heterogenous (as a separation step of bound and unbound fractions is required prior to quantification) immuno-assays, where the tracer conjugated to the analyte for quantifications is a metal-carbonyl moiety. They were able to design mono-immunoassays for various molecules of clinical relevance, such as anti-epileptics and hormones, or of environmental interest (pesticides) [START_REF] Salmain | Organometallic Complexes as Tracers in Non-isotopic Immunoassay[END_REF]. Interestingly, when the infrared bands of different M(CO) x do not overlap, simultaneous immunoassay (multi-CMIA) can be envisioned. In that sense, M(CO) can be used as multicolor probes or markers. Multi-CMIA of compounds 17, 18 and 19 was reported (Figure 9) [START_REF] Salmain | A new application of bioorganometallics: the first simultaneous triple assay by the carbonylmetalloimmunoassay (CMIA) method[END_REF]. Although example of Re carbonyl complexes has not been yet reported for such assay, their IR properties perfectly meet all requirements and they can be considered as potential candidates for CMIAs.

More recently, Policar et al. have tagged a mestranol derivative 20 (Figure 9) and showed that the labelled molecule could be imaged in MDA-MB-231 and MCF-7 breast cancer cell lines using synchrotron based FTIR microspectroscopy (SR-FTIR-MS), AFMIR and confocal Raman microscopy [START_REF] Clède | Detection of an estrogen derivative in two breast cancer cell lines using a single core multimodal probe for imaging (SCoMPI) imaged by a panel of luminescent and vibrational techniques[END_REF]. This illustrates the potential of Re(I) tricarbonyl complexes as tags for vibrational imaging techniques, including IR and Raman. Interestingly, correlative imaging could also be performed using synchrotron-based UV microspectroscopy (SR-UV-MS), wide field and confocal fluorescence microscopies. Due to the low resolution of optical IR microscopy (see above), IR imaging of cells can be more challenging than fluorescence microscopy. However, the deeper penetration of IR radiation makes IR imaging more suitable for tissues imaging. Recently López et al. used a Re(CO) 3 SCoMPI conjugated to a long alkyl chain (C 12 ) to follow the penetration of lipid assemblies into skin by SR-FTIR-MS [START_REF] Fernández | A rhenium tris-carbonyl derivative as a model molecule for incorporation into phospholipid assemblies for skin applications[END_REF]. In this work, the bicosomes could be easily imaged and also quantified in skin sections using the IR signature of a Re(CO) 3 which would not have been straightforward without this tag.

Very interestingly, vibrational imaging is not anymore limited to two dimensions using a standard infrared microscope since Quaroni et al. have implemented a method and protocols to access a quantitative 3D distribution of an exogenous Re carbonyl complex (Re(CO) 3 (H 2 O) 3 + ) [START_REF] Quaroni | Three-Dimensional Mid-Infrared Tomographic Imaging of Endogenous and Exogenous Molecules in a Single Intact Cell with Subcellular Resolution[END_REF]. This opens up the opportunity to perform computed 3D tomography of cells.

Re(CO) 3 as surrogates for 99m Tc(CO) 3

Radiotracers and radiopharmaceuticals are widely used in nuclear medicine for diagnosis and treatment. Among radionuclides, 99m Tc displays attractive features, including well-suited properties (t 1/2 = 6 h, 140 keV) and availability from commercial generators [START_REF] Coogan | Single amino acid chelate complexes of the M(CO) 3 + core for correlating fluorescence and radioimaging studies (M = 99m Tc or Re)[END_REF][START_REF] Lu | Synthesis and SAR of Novel Re/ 99m Tc-Labeled Benzenesulfonamide Carbonic Anhydrase IX Inhibitors for Molecular Imaging of Tumor Hypoxia[END_REF][START_REF] Morais | Target-specific Tc(CO) 3 -complexes for in vivo imaging[END_REF][START_REF] Alberto | Radiopharmaceuticals[END_REF][START_REF] Kluba | Click-to-Chelate: Development of Technetium and Rhenium-Tricarbonyl Labeled Radiopharmaceuticals[END_REF]. Moreover, the use of [ 99m Tc(H 2 O) 3 (CO) 3 ] + reagent, developed by Alberto and Schibli et al., enables efficient preparation of the radiotracer from any ligand [START_REF] Alberto | Synthesis and Properties of Boranocarbonate: A Convenient in Situ CO Source for the Aqueous Preparation of [ 99m Tc(OH 2 ) 3 (CO) 3 +[END_REF]. Finally, non-radioactive isostructural Re(I) tricarbonyl complexes can be prepared and characterized without handling radioactive materials. As a consequence, a large number of protein-specific Re(CO) 3 complexes have been developed as cold analogs of the hot Tc complexes, with the intent to replace Re by its 99m Tc counterpart for the final application. Various proteins have been targeted, including Translocator Protein TSPO [START_REF] Piccinonna | Synthesis, Characterization, and Binding to the Translocator Protein (18 kDa, TSPO) of a New Rhenium Complex as a Model of Radiopharmaceutical Agents[END_REF], metallothioneins [START_REF] Lecina | Rhenium and technetium tricarbonyl, M(CO) 3 + (M = Tc, Re), binding to mammalian metallothioneins: new insights into chemical and radiopharmaceutical implications[END_REF], G Protein-Coupled Estrogen Receptor GPER/GPR30 [START_REF] Burai | Synthesis and Characterization of Tricarbonyl-Re/Tc(I) Chelate Probes Targeting the G Protein-Coupled Estrogen Receptor GPER/GPR30[END_REF] or Carbonic Anhydrase IX [START_REF] Akurathi | Development and biological evaluation of 99m Tc-sulfonamide derivatives for in vivo visualization of CA IX as surrogate tumor hypoxia markers[END_REF]. As an example, the synthesis of a series of M(CO) 3 -based (M = Re, Tc) Carbonic Anhydrase IX inhibitors was developed using Re(CO) 3 , while the affinity for CA-IX was evaluated using the final 99m Tc complexes [START_REF] Lu | Synthesis and SAR of Novel Re/ 99m Tc-Labeled Benzenesulfonamide Carbonic Anhydrase IX Inhibitors for Molecular Imaging of Tumor Hypoxia[END_REF]. Peptides were also labelled with Re/Tc tricarbonyl complexes, generally in order to target specific cell lines or events [START_REF] Tavaré | Efficient Site-Specific Radiolabeling of a Modified C2A Domain of Synaptotagmin I with [ 99m Tc(CO) 3 ] + : A New Radiopharmaceutical for Imaging Cell Death[END_REF][START_REF] Kothari | 99m Tc(CO) 3 -VIP analogues: Preparation and evaluation as tumor imaging agent[END_REF][START_REF] Schaffer | Isostructural fluorescent and radioactive probes for monitoring neural stem and progenitor cell transplants[END_REF][START_REF] Hickey | An Integrated Imaging Probe Design: The Synthesis of 99m Tc/Re-Containing Macrocyclic Peptide Scaffolds[END_REF]. In most of these examples, the rhenium is used for its reactivity close to the technetium and for the similarities of the Re and Tc complexes. Moreover, as mentioned earlier, efforts are made to use the potential of Re(CO) 3 complexes as luminescent probes, and to develop isostructural nuclear and optical probes based on 99m Tc and Re, respectively [START_REF] Coogan | Single amino acid chelate complexes of the M(CO) 3 + core for correlating fluorescence and radioimaging studies (M = 99m Tc or Re)[END_REF][START_REF] Stephenson | Bridging the Gap between in Vitro and in Vivo Imaging: Isostructural Re and 99m Tc Complexes for Correlating Fluorescence and Radioimaging Studies[END_REF][START_REF] Schaffer | Isostructural fluorescent and radioactive probes for monitoring neural stem and progenitor cell transplants[END_REF][START_REF] Bartholomä | Single amino acid chelates (SAAC): a strategy for the design of technetium and rhenium radiopharmaceuticals[END_REF]91]. In addition, 186 Re and 188 Re isotopes can be used for radiotherapy, and 186/188 Re tricarbonyl complexes have been designed for that purpose [START_REF] Chen | In vivo examination of 188 Re(I)-tricarbonyl-labeled trastuzumab to target HER2-overexpressing breast cancer[END_REF][START_REF] Ogawa | Preparation and evaluation of 186/188 Re-labeled antibody (A7) for radioimmunotherapy with rhenium(I) tricarbonyl core as a chelate site[END_REF][START_REF] Ni | Preparation and imaging of rhenium-188 labeled human serum albumin microsphere in orthotopic hepatoma rats[END_REF]. Generally, these complexes, luminescent or not, may be inspirational for further development of Re(CO) 3 complexes as multimodal imaging probes.

In this first part, a brief overview of the use of Re(I) carbonyl complexes based on their photophysical properties in biological contexts has been given. The next section will focus on strategies developed to specifically label and image peptides or proteins of interest.

Labelling of peptides with Re(CO) 3 complexes

Conjugation to single amino-acids and Single Amino-Acid Chelate (SAAC) strategy

Single amino-acids have been derivatized with luminescent Re(CO) 3 complexes in order to incorporate them into peptides, or to study their photophysical properties as such in cuvette or in a cellular context [START_REF] Coogan | Single amino acid chelate complexes of the M(CO) 3 + core for correlating fluorescence and radioimaging studies (M = 99m Tc or Re)[END_REF][START_REF] Stephenson | Bridging the Gap between in Vitro and in Vivo Imaging: Isostructural Re and 99m Tc Complexes for Correlating Fluorescence and Radioimaging Studies[END_REF][START_REF] Bartholomä | Single amino acid chelates (SAAC): a strategy for the design of technetium and rhenium radiopharmaceuticals[END_REF][START_REF] Reece | Direct Tyrosine Oxidation Using the MLCT Excited States of Rhenium Polypyridyl Complexes[END_REF][START_REF] Fernández-Moreira | Bioconjugated Rhenium(I) Complexes with Amino Acid Derivatives: Synthesis, Photophysical Properties, and Cell Imaging Studies[END_REF][START_REF] Viola-Villegas | Targeting the Folate Receptor (FR): Imaging and Cytotoxicity of Re(I) Conjugates in FR-Overexpressing Cancer Cells[END_REF]. Complexes 21 and 22 (Figure 10), for instance, have been appended with phenylalanine and tyrosine, and their photophysical properties were studied [START_REF] Reece | Direct Tyrosine Oxidation Using the MLCT Excited States of Rhenium Polypyridyl Complexes[END_REF]. The study particularly focused on the use of the rhenium complex as photo-oxidant to generate tyrosyl radicals by exciting the MLCT. This fast and controlled generation of tyrosyl radicals may be used to study redox biological processes and in particular electron transfer. Gimeno et al. synthesized two series of amino-acids appended with [Re(CO) 3 (bpy)(py)] + complexes (compounds 23 and 24, Figure 10) [START_REF] Fernández-Moreira | Bioconjugated Rhenium(I) Complexes with Amino Acid Derivatives: Synthesis, Photophysical Properties, and Cell Imaging Studies[END_REF]. The amino acids were linked to the complex through the pyridine ligand, at either the meta (23) or para (24) position on the pyridine. They studied the cellular uptake of both series and could observe that this minor change (meta or para) in structure could have major consequences on the properties of the complex: the para derivatives proved highly cytotoxic and displayed high photobleaching, whereas the cells incubated with the meta derivatives remained healthy and displayed localization patterns typical for monocationic, lipophilic Re(I) tricarbonyl complexes (i.e. cytoplasmic staining, with some concentration in mitochondria) (Figure 11). Although no explanation could be given as certain, the authors hypothesized that unidirectional electron shuttling from the metal centre to the amino-acid was easier with the para than with the meta derivatives, generating an aminoacid radical supposed to be involved in an intramolecular deleterious photoinduced reaction with an unidentified biological species. The single amino-acid chelate (SAAC) strategy was developed in the early 2000s to incorporate Re/ 99m Tc complexes into peptides by solid-phase peptide synthesis (using Fmoc strategy). Valliant, Zubieta et al. modified a lysine with a bis-quinoline ligand to form the SAAC ligand 25 (Figure 12), which could then be reacted with a Re(CO) 3 precursor to form the SAAC-Re complex 26 (Figure 12) [START_REF] Stephenson | Bridging the Gap between in Vitro and in Vivo Imaging: Isostructural Re and 99m Tc Complexes for Correlating Fluorescence and Radioimaging Studies[END_REF][START_REF] Stephenson | A New Strategy for the Preparation of Peptide-Targeted Radiopharmaceuticals Based on an Fmoc-Lysine-Derived Single Amino Acid Chelate (SAAC). Automated Solid-Phase Synthesis, NMR Characterization, and in Vitro Screening of fMLF(SAAC)G and fMLF[(SAAC-Re(CO) 3 ) + ]G[END_REF]. Both SAAC and SAAC-Re could be incorporated by automated peptide synthesis into the formylated MLF peptide fMLF peptide (fMLF(SAAC-Re)G, 27, Figure 12), a peptide sequence targeting the formyl peptide receptor (FPR). FPR is expressed on neutrophils and is a target for the (radio)imaging of trafficking of white blood cells.

Figure 12. Example of a SAAC ligand and its corresponding complex. This modified amino acid has been incorporated into the fMLF peptide [START_REF] Stephenson | Bridging the Gap between in Vitro and in Vivo Imaging: Isostructural Re and 99m Tc Complexes for Correlating Fluorescence and Radioimaging Studies[END_REF][START_REF] Stephenson | A New Strategy for the Preparation of Peptide-Targeted Radiopharmaceuticals Based on an Fmoc-Lysine-Derived Single Amino Acid Chelate (SAAC). Automated Solid-Phase Synthesis, NMR Characterization, and in Vitro Screening of fMLF(SAAC)G and fMLF[(SAAC-Re(CO) 3 ) + ]G[END_REF].

The Re(CO) 3 -labelled peptide could be observed by fluorescence microscopy in human leukocytes, and its localization was consistent with previous reports on chemotactic peptides (i.e. the peptide localized first at the membrane at 4°C and then into the cytoplasm when the temperature was increased to room temperature). The 99m Tc(CO) 3 analogue could be easily prepared by reacting the precursor [ 99m Tc(CO) 3 (H 2 O) 3 ] + with the Re-free peptide fMLF(SAAC)G, thus enabling correlative studies in fluorescence and radioimaging. This strategy was later applied to peptides such as HIV-Tat basic domain [START_REF] Schaffer | Isostructural fluorescent and radioactive probes for monitoring neural stem and progenitor cell transplants[END_REF] or β-breaker peptides [START_REF] Stephenson | Synthesis and Screening of a Library of Re/Tc-Based Amyloid Probes Derived from β-Breaker Peptides[END_REF]. Other biomolecules could also be labelled and imaged, e.g. biotin [START_REF] James | Extension of the single amino acid chelate concept (SAAC) to bifunctional biotin analogues for complexation of the M(CO) 3 (+1) Core (M = Tc and Re): syntheses, characterization, biotinidase stability, and avidin binding[END_REF][START_REF] James | Isostructural Re and 99m Tc complexes of biotin derivatives for fluorescence and radioimaging studies[END_REF], folic acid [START_REF] Viola-Villegas | Targeting the Folate Receptor (FR): Imaging and Cytotoxicity of Re(I) Conjugates in FR-Overexpressing Cancer Cells[END_REF] or thymidine derivatives [START_REF] Coogan | Single amino acid chelate complexes of the M(CO) 3 + core for correlating fluorescence and radioimaging studies (M = 99m Tc or Re)[END_REF][START_REF] Bartholomä | Synthesis, cytotoxicity and cellular uptake studies of N3 functionalized Re(CO) 3 thymidine complexes[END_REF][START_REF] Bartholomä | Synthesis, cytotoxicity, and insight into the mode of action of Re(CO) 3 thymidine complexes[END_REF].

N-terminal labelling of peptide

A Re(I) tricarbonyl complex [START_REF] Amoroso | Rhenium fac tricarbonyl bisimine complexes: biologically useful fluorochromes for cell imaging applications[END_REF], suitable for N-terminal labelling of peptides, could be coupled to neurotensin [START_REF] Dazzi | Chapter 9 -AFM-IR: photothermal infrared nanospectroscopy: Application to cellular imaging[END_REF][START_REF] Policar | Subcellular IR Imaging of a Metal-Carbonyl Moiety Using Photothermally Induced Resonance[END_REF][START_REF] Clède | Detection of an estrogen derivative in two breast cancer cell lines using a single core multimodal probe for imaging (SCoMPI) imaged by a panel of luminescent and vibrational techniques[END_REF][START_REF] Zobi | Live-Fibroblast IR Imaging of a Cytoprotective PhotoCORM Activated with Visible Light[END_REF][START_REF] Clède | A rhenium tris-carbonyl derivative as a single core multimodal probe for imaging (SCoMPI) combining infrared and luminescent properties[END_REF][START_REF] Clède | Influence of the Side-Chain Length on the Cellular Uptake and the Cytotoxicity of Rhenium Triscarbonyl Derivatives: A Bimodal Infrared and Luminescence Quantitative Study[END_REF] fragment on solid-phase (Figure 13) [START_REF] Raszeja | A Novel Organometallic ReI Complex with Favourable Properties for Bioimaging and Applicability in Solid-Phase Peptide Synthesis[END_REF]. The complex 28 and the labelled peptide 29 (Figure 13) were both internalized in various cell lines, and displayed cytosolic localization. Uptake of the unconjugated complex seemed more efficient than uptake of the labelled peptide. This observation is general: peptides are not very efficient at enhancing the cell-penetration of molecules that are very hydrophobic or amphiphilic. However they can provide specificity, and peptides may also be conjugated to Re(I) tricarbonyl complexes to target the complex to specific subcellular compartments or to enhance their uptake by specific cells, generally for therapeutic purposes. This was the case for the labeled peptide 29 that exhibited more pronounced differences in its cellular uptake between the cell lines than the parent complex, suggesting some selectivity in its uptake mechanism. Gasser et al. conjugated Re(I) tricarbonyl bisquinoline compound 30 with a Nuclear Localization Signal (NLS) sequence [START_REF] Lo | Biological labelling reagents and probes derived from luminescent transition metal polypyridine complexes[END_REF] and to a derivative of the Bombesin neuropeptide (32) (Figure 13) [START_REF] Leonidova | Towards cancer cell-specific phototoxic organometallic rhenium(I) complexes[END_REF]. Bombesin is often used to selectively target cancer cells over healthy cells, since its receptor is overexpressed in some types of cancers. The aim of the study was consequently to evaluate the potential of Re(I) tricarbonyl complexes as photodynamic therapy (PDT) photosensitizers. Fluorescence microscopy showed that the NLS-conjugated complex 31 accumulated in nucleoli of HeLa cells, whereas its parent complex was homogeneously distributed in the cells. The Bombesin conjugate [START_REF] Lo | Design of luminescent iridium(III) and rhenium(I) polypyridine complexes as in vitro and in vivo ion, molecular and biological probes[END_REF], however, displayed only weak fluorescence in those cells, which was explained by either low uptake of the conjugate or quenching of the luminescence of the complex in the cell. To be used in photodynamic therapy, photosensitizers should not be cytotoxic in absence of irradiation. Neither the parent complex 30 nor the Bombesin conjugate 32 displayed cytotoxicity in the dark, whereas conjugation to NLS sequence increased the cytotoxicity of the compound 31. However, irradiation of the cells incubated with 30 or 32 at 50-100 µM resulted in increased cytotoxicity (up to 20-fold for Re-Bombesin 32), which is encouraging for further studies on Re(I) tricarbonyl complexes as photosensitizers. 1 O 2 production involves non-radiative quenching of the 3 MLCT excited state, and thus decreases the effective quantum yield of the complex. Nevertheless, all derivatives could be detected by fluorescence microscopy in live and fixed cells, with the exception of the Bombesin derivative, which can be due to a poor cellular uptake or the quenching of the fluorescence inside cells.

The same group reported the conjugation of a Re(I) tricarbonyl bipyridine complex to a lipopeptide (namely, myristoylated HIV Tat peptide) known for its cell-penetration properties [START_REF] Leonidova | Enhanced Cytotoxicity through Conjugation of a "Clickable" Luminescent Re(I) Complex to a Cell-Penetrating Lipopeptide[END_REF]. The conjugate compound 33 (Figure 13) displayed enhanced uptake in HeLa cells (Figure 14), as well as increased cytotoxicity. In another example, Alberto et al. reported the synthesis of an other Bombesin-conjugated Re(I) tricarbonyl complex, compound 34 (Figure 13) [START_REF] Agorastos | Cell-Specific and Nuclear Targeting with [M(CO) 3 ] + (M = 99m Tc, Re)-Based Complexes Conjugated to Acridine Orange and Bombesin[END_REF]. The goal of the study was to design Re/Tc tricarbonyl complexes that could be addressed selectively to the nucleus of cancer cells. The acridine moiety was appended for nucleus targeting, and the Bombesin derivative for cancer cell selectivity. Interestingly, compound 34 could be observed by fluorescence microscopy in PC-3 (human prostate adenocarcinoma) cells, which express the GRP receptor (gastrin releasing peptide receptor) targeted by Bombesin, but was not detected in B16-F1 cells (mouse melanoma cell line), which do not express this receptor. As mentioned above, the complex 11 missing the Bombesin sequence accumulated in the nucleus. However, the Bombesin conjugate displayed homogenous distribution and no nuclear uptake. It was thus hypothesized that the bombesin sequence prevented the nuclear uptake of 34.

Policar's group labelled cell penetrating peptides (CPP) with SCoMPI and imaged them correlatively by fluorescence microscopy and IR microspectroscopy in skin biopsies (compound 35, Figures 13 and14) and in cells (compounds 36, Figure 13) [START_REF] Clède | An easy-todetect nona-arginine peptide for epidermal targeting[END_REF][START_REF] Hostachy | Photophysical properties of single core multimodal probe for imaging (SCoMPI) in a membrane model and in cells[END_REF]. In cells, they took advantage of the IR modality of the probe to quantify the internalization of the conjugates. They could also show that apparent discrepancies with fluorescence quantification were due to a variable fluorescence enhancement of the probes in membrane environment, which hampered rigorous quantification [START_REF] Clède | Influence of the Side-Chain Length on the Cellular Uptake and the Cytotoxicity of Rhenium Triscarbonyl Derivatives: A Bimodal Infrared and Luminescence Quantitative Study[END_REF][START_REF] Hostachy | Photophysical properties of single core multimodal probe for imaging (SCoMPI) in a membrane model and in cells[END_REF][START_REF] Joshi | A Bis(dipyridophenazine)(2-(2-pyridyl)pyrimidine-4-carboxylic acid)ruthenium(II) Complex with Anticancer Action upon Photodeprotection[END_REF][START_REF] Joshi | A Bis(dipyridophenazine)(2-(2-pyridyl)pyrimidine-4-carboxylic acid)ruthenium(II) Complex with Anticancer Action upon Photodeprotection[END_REF][START_REF] Swiecicki | How to unveil self-quenched fluorophores and subsequently map the subcellular distribution of exogenous peptides[END_REF]. In skin biopsies, the IR modality also enabled them to quantify the penetration of the peptide conjugate into skin, while the fluorescence modality could be used to compare its localization with those of nuclei, using common fluorescence stain like DAPI. More generally, quantification using fluorescence can be difficult due to the dependence of quantum yield with the environment. IR-detection based of the vibrational properties of M(CO) does not suffer from this strong drawback and SCoMPI with both fluorescence and IR are thus quite valuable for reliable quantification [START_REF] Clède | Influence of the Side-Chain Length on the Cellular Uptake and the Cytotoxicity of Rhenium Triscarbonyl Derivatives: A Bimodal Infrared and Luminescence Quantitative Study[END_REF][START_REF] Hostachy | Photophysical properties of single core multimodal probe for imaging (SCoMPI) in a membrane model and in cells[END_REF]. The multimodality of the Re(I) complex proved here useful to access information on both quantification and localization. 

Labelling of proteins with Re(CO) 3 complexes

As emphasized in this review, Re(CO) 3 complexes are interesting IR and luminescent probes for bioimaging. This has motivated the development of Re(CO) 3 complexes suitable for the labelling of more complex biomolecules such as proteins. Although the properties of the resulting Re-protein conjugates were mainly studied in cuvette in a first time, these bio-reactive Re complexes are the first step towards the multimodal imaging of proteins in cells.

In vitro covalent labelling of proteins

Luminescent Re(I) tricarbonyl complexes have been functionalized with thiol-or amine-reactive groups in order to label peptides or proteins in vitro. For instance, N-hydroxysuccinimide (NHS)activated ester 37 (Figure 15) was used to label human serum albumin (HSA) and Immunoglobulin G (IgG) [START_REF] Guo | A Long-Lived, Highly Luminescent Re(I) Metal-Ligand Complex as a Biomolecular Probe[END_REF]. The authors later used Re-labelled HSA in a Fluorescence Polarization Immunoassay [START_REF] Guo | Use of a Long-Lifetime Re(I) Complex in Fluorescence Polarization Immunoassays of High-Molecular-Weight Analytes[END_REF]. The isothiocyanate-functionalized complexes 38 (Figure 15), bearing various bidentate ligands, were coupled to HSA [START_REF] Lo | Luminescent rhenium(I) polypyridine complexes with an isothiocyanate moiety-versatile labelling reagents for biomolecules[END_REF]. Similarly, thiol-reactive groups such as iodoacetamide (39, Figure 15) and maleimide [START_REF] Fernández-Moreira | Uptake and localisation of rhenium fac-tricarbonyl polypyridyls in fluorescent cell imaging experiments[END_REF] have been appended to Re(I) tricarbonyl complexes. Compound 39 was successfully used to label HSA, with a final dye:protein ratio of 0.7 [START_REF] Dattelbaum | Synthesis and Characterization of a Sulfhydryl-Reactive Rhenium Metal-Ligand Complex[END_REF]. Similarly, compound 40, bearing a thiolreactive maleimide moiety, was used to label HSA and BSA (Bovine Serum Albumin) [START_REF] Lo | Synthesis, Characterization, Photophysical Properties, and Biological Labeling Studies of a Series of Luminescent Rhenium(I) Polypyridine Maleimide Complexes[END_REF]. Between four and five cystein residues were labelled, over the 35 cystein residues BSA and HSA contain. A luminescent Re(I) complex bearing an epoxide-functionalized bidentate ligand (41, Figure 15) was used to label various cystein mutants of cytochrome P450 BM3 heme domain [START_REF] Dwaraknath | A facile and versatile methodology for cysteine specific labeling of proteins with octahedral polypyridyl d 6 metal complexes[END_REF]. Interestingly, the 5,6epoxy-5,6-dihydro- [START_REF] Lasch | FT-IR spectroscopic investigations of single cells on the subcellular level[END_REF][START_REF] Clède | Detection of an estrogen derivative in two breast cancer cell lines using a single core multimodal probe for imaging (SCoMPI) imaged by a panel of luminescent and vibrational techniques[END_REF] phenanthroline bidentate ligand could be coordinated to other metal centers (e.g. Ir III , Ru II , Os II ).

Recently, Lo and co-workers published a Re(I) tricarbonyl complex functionalized with a dibenzocyclooctyne (DIBO) (compound 42, Figure 15) for labelling azide-modified biomolecules using copper-free azide-alkyne cycloaddition [START_REF] Choi | Rhenium(I) polypyridine dibenzocyclooctyne complexes as phosphorescent bioorthogonal probes: Synthesis, characterization, emissive behavior, and biolabeling properties[END_REF]. They could modify BSA and HSA with an azide function at N-terminal position, and then label the azide-modified proteins with the DIBO-appended rhenium complex. The same group also designed tetrazine-appended Re(I) tricarbonyl complexes (43,44, Figure 15) for labelling bicyclo[6.1.0]nonyne (BCN)-modified proteins through an inverse electron-demand Diels-Alder reaction between the BCN and the tetrazine [START_REF] Choi | Modification of 1,2,4,5tetrazine with cationic rhenium(I) polypyridine units to afford phosphorogenic bioorthogonal probes with enhanced reaction kinetics[END_REF]. They could label efficiently BCNmodified apo-transferrin (aTf) as well as BSA and HSA. Interestingly, upon excitation of the 3 MLCT of the Re complex (ca. 371-390 nm), the luminescence of the tetrazine-appended Re(I) complexes (at ca. 515-546 nm) was quenched due to energy transfer to the non-emissive tetrazine transition at ca. 540 nm (Figure 16, molecules 44). Upon reaction with dienophile-labelled proteins, the tetrazine moiety led to a non-quenching moiety and the luminescence was restored. This is thus an outstanding example of phosphorogenic Re(I) complexes. Figure 16. Labelling of a protein of interest (POI) by a Re appended tetrazine complex adapted from ref [START_REF] Choi | Modification of 1,2,4,5tetrazine with cationic rhenium(I) polypyridine units to afford phosphorogenic bioorthogonal probes with enhanced reaction kinetics[END_REF] As mentioned earlier, the area of the IR bands corresponding to the coordinated CO can be used to reliably quantify the complex. Indeed, the area under the A 1 -band has been shown to be weakly dependent on the environment [START_REF] Delor | Dynamics of Ground and Excited State Vibrational Relaxation and Energy Transfer in Transition Metal Carbonyls[END_REF] and efficient for quantification in biological samples where the polarity of the environment can change to a large extent [START_REF] Clède | An easy-todetect nona-arginine peptide for epidermal targeting[END_REF]. On the other hand, the energy position of the bands, including the E-bands, can vary depending on the environment [START_REF] Stephenson | Organometallic Bioprobes[END_REF]. More generally, vibrational spectroscopies may be used to probe the structure and dynamics of biomolecules [START_REF] Kim | Infrared Probes for Studying the Structure and Dynamics of Biomolecules[END_REF][START_REF] Dunbar | Ultrafast 2D-IR and Simulation Investigations of Preferential Solvation and Cosolvent Exchange Dynamics[END_REF][START_REF] Ross | Histidine Orientation Modulates the Structure and Dynamics of a de Novo Metalloenzyme Active Site[END_REF][START_REF] Kiefer | NOESY-Like 2D-IR Spectroscopy Reveals Non-Gaussian Dynamics[END_REF]. The position, width, lifetimes of signal of IR probes may for instance give information on the local conformation and dynamics of a protein or on the local electric field near a catalytic site. Although other IR probes (nitrile, azide, etc.) can be used, Re(CO) 3 display more intense signals [START_REF] Woys | A Strongly Absorbing Class of Non-Natural Labels for Probing Protein Electrostatics and Solvation with FTIR and 2D IR Spectroscopies[END_REF], thus allowing a better sensitivity. In vitro labelling of proteins with Re(CO) 3 complexes may thus be of use not only for further vibrational imaging, but also to study intrinsic properties of the protein. Towards this goal, non-luminescent Re(CO) 3 complexes have been grafted onto proteins as for luminescent Re(CO) 3 . Amine-specific (compounds 45, 46, 47, 48, Figure 17) and thiol-specific (49, Figure 17) groups have been appended to the cyclopentadienyl rhenium tricarbonyl complex. NHS-activated esters 45, 46, 47 and pyrilium ion 48 were synthesized and used to label BSA, for instance [START_REF] Salmain | Labeling of proteins by organometallic complexes of rhenium(I). Synthesis and biological activity of the conjugates[END_REF][START_REF] Salmain | η 5 -Cyclopentadienyl]metal Tricarbonyl Pyrylium Salts: Novel Reagents for the Specific Conjugation of Proteins with Transition Organometallic Labels[END_REF]. Compound 49 (Figure 17) bears a thiol-reactive group frequently used for nitroxide spin labelling in EPR (Electron Paramagnetic Resonance) [START_REF] Woys | A Strongly Absorbing Class of Non-Natural Labels for Probing Protein Electrostatics and Solvation with FTIR and 2D IR Spectroscopies[END_REF]. Upon reaction with a cystein side chain, a nucleophilic substitution occurs leading to the removal of the methanethiosulfonate group and the formation of a disulfide bond between the label and the protein. This complex (49) was used to label cystein mutants of ubiquitin (K6C and K63C) and α-synuclein (V71C). The authors used 2D IR spectroscopy to measure lifetime and frequency of symmetric stretching band in various solvents and when bound to the proteins. They could relate these parameters to solvation and electrostatic field, which gave insights into the structure and dynamics of the proteins. The above mentioned strategies involve the functionalization of the ligand of the Re(I) complexes to make it reactive toward the protein of interest. An interesting alternative takes advantage of the reactivity of aqua Re(I) tricarbonyl complexes with amino acids side chains such as histidine imidazole (Figure 18) [START_REF] Tavaré | Efficient Site-Specific Radiolabeling of a Modified C2A Domain of Synaptotagmin I with [ 99m Tc(CO) 3 ] + : A New Radiopharmaceutical for Imaging Cell Death[END_REF][START_REF] Tavaré | Re(CO) 3 ] + labelling of a novel cysteine/hexahistidine tag: Insights into binding mode by liquid chromatography-mass spectrometry[END_REF][START_REF] Blanco-Rodríguez | Excited-State Dynamics of Structurally Characterized [Re I (CO) 3 (phen)(HisX)] + (X = 83, 109) Pseudomonas aeruginosa Azurins in Aqueous Solution[END_REF][START_REF] Shih | Tryptophan-Accelerated Electron Flow through Proteins[END_REF][START_REF] Blanco-Rodríguez | Relaxation Dynamics of Pseudomonas aeruginosa Re I (CO) 3 (α-diimine)(HisX) +[END_REF]. A luminescent aqua complex [Re(CO) 3 (phen)(H 2 O)] + (phen = 1,10phenanthroline, compound 50) and its derivate [Re(CO) 3 (dmp)(H 2 O)]+ (dmp =4,7-dimethyl-1,10phenanthroline) were shown to label His residues of azurin from Pseudomonas aeruginosa and mutants by substitution of the aqua ligand by the imidazole ring of histidine (see 51, Figure 18) [START_REF] Blanco-Rodríguez | Excited-State Dynamics of Structurally Characterized [Re I (CO) 3 (phen)(HisX)] + (X = 83, 109) Pseudomonas aeruginosa Azurins in Aqueous Solution[END_REF]. Photoexcitation of [Re(CO) 3 (N^N)(His)] in the labelled azurins led to the oxidation of the copper center of the protein. Interestingly, the carbonyl ligands were used in these studies to sense the environment of the complex by Time-Resolved Infrared (TRIR) spectroscopy, thus enabling the authors to study structural changes of the protein, as well as electron transfer processes. It may thus be considered as an example of the use of the multimodality of Re(I) tricarbonyl complexes. 

Non covalent labelling of proteins

The protein labelling methods described above, although useful for proof of concept and for in vitro studies of purified proteins, are difficult to apply for the selective labelling of proteins in a complex cell environment. To the best of our knowledge, fluorescence cell imaging of proteins with Re(I) tricarbonyl has only been performed using non-covalent methods, i.e. by labelling a specific ligand of the protein of interest with a luminescent Re(I) tricarbonyl complex. For instance, biotinylated complexes 4 and 5 were designed as cross-linkers for avidin. Similarly, Re(I) tricarbonyl complexes were appended to estrogen derivatives to target estrogen receptors [START_REF] Policar | Subcellular IR Imaging of a Metal-Carbonyl Moiety Using Photothermally Induced Resonance[END_REF][START_REF] Lo | Non-covalent binding of luminescent transition metal polypyridine complexes to avidin, indole-binding proteins and estrogen receptors[END_REF] or to indoles to target indole-binding proteins [START_REF] Lo | Non-covalent binding of luminescent transition metal polypyridine complexes to avidin, indole-binding proteins and estrogen receptors[END_REF]. Doyle et al. conjugated luminescent Re(I) bisquinoline complexes to folic acid and to vitamin B12 to target folate receptor and cubilin receptor, respectively [START_REF] Viola-Villegas | Targeting the cubilin receptor through the vitamin B(12) uptake pathway: cytotoxicity and mechanistic insight through fluorescent Re(I) delivery[END_REF][START_REF] Viola-Villegas | Targeting the Folate Receptor (FR): Imaging and Cytotoxicity of Re(I) Conjugates in FR-Overexpressing Cancer Cells[END_REF]. We also mentioned in this review the conjugation of Re(I) complexes to bombesin to target GPR receptor. The inertness of Re(CO) X complexes and the recent developments for the in cells specific labelling of proteins may open the way to the use of such complexes for live bio imaging of proteins.

Conclusion

Owing to their unique photophysical properties, Re(I) metal carbonyl complexes have been extensively used in biological contexts as probes, 99m Tc surrogates, drugs and as photosensitizers for photodynamic therapies. In this review we focused on their application as probes for bio-imaging, and in particular for the imaging of peptides and proteins. Several strategies aiming at labelling peptides and proteins with Re complexes have been highlighted. These strategies have enabled the study of these biomolecules at different scales by several bio-imaging techniques involving UV-vis or infrared light. Although tuning the photophysical properties of the (L)(X)Re(CO) x complexes can be achieved by modifying the ligands (L and X), no rational have clearly emerged so far. Examples of probes possessing fully biocompatible properties enabling live imaging are still lacking and this constitutes a limitation for the use of these complexes. However, the inertness of some Re(CO) X complexes, the ease of their synthesis and functionalization may offer the opportunity to develop suitable probe for live imaging by IR or fluorescence.

Figure 1 .

 1 Figure 1. -Simplified Jablonski diagram for [Re(CO) 3 (diimine)(X)] complexes (MLCT model). Solid arrows represent radiative processes, dotted arrows represent non radiative processes.

Figure 2 .

 2 Figure 2. Selection of ligands tested to tune the spectroscopic properties of Re(I) tricarbonyl complexes [19,44,47,49].

Figure 3

 3 Figure 3 Examples of luminescent Re(I) tricarbonyl complexes targeting the different cell compartments[START_REF] Clède | A rhenium tris-carbonyl derivative as a single core multimodal probe for imaging (SCoMPI) combining infrared and luminescent properties[END_REF][START_REF] Lo | Recent Exploitation of Luminescent Rhenium(I) Tricarbonyl Polypyridine Complexes as Biomolecular and Cellular Probes[END_REF][START_REF] Louie | Luminescent Polypyridinerhenium(I) Bis-Biotin Complexes as Crosslinkers for Avidin[END_REF][START_REF] Amoroso | 3-Chloromethylpyridyl bipyridine fac-tricarbonyl rhenium: a thiol-reactive luminophore for fluorescence microscopy accumulates in mitochondria[END_REF][START_REF] Fernández-Moreira | Uptake and localisation of rhenium fac-tricarbonyl polypyridyls in fluorescent cell imaging experiments[END_REF][START_REF] Bartholomä | Single amino acid chelates (SAAC): a strategy for the design of technetium and rhenium radiopharmaceuticals[END_REF][START_REF] Agorastos | Cell-Specific and Nuclear Targeting with [M(CO) 3 ] + (M = 99m Tc, Re)-Based Complexes Conjugated to Acridine Orange and Bombesin[END_REF][START_REF] Esteves | M = Re, 99m Tc) complexes bearing acridine fluorophores: synthesis, characterization, DNA interaction studies and nuclear targeting[END_REF].

Figure 4 . 1 )

 41 Figure 4. 1) Colocalisation of 1 and TMRE in MCF-7. A 1. B TMRE C. Merge and cross section adapted from ref [39]. 2) MDA-MB-231 cell incubated with 6. Bright field image (scale bar 10 μm). A merge of 6 (green) and DAPI (blue). B merge of the Golgi tracker (red) and DAPI (blue). C merge of 6 (green) and the Golgi tracker (red) with their overlay in yellow and DAPI (blue). D Bright field image. E-G SR-FTIR mappings (pixel size: 3 × 3 μm 2 ): E phosphate asymmetric stretching (green), F E-band (red), G A1-band (cyan). H Epifluorescence image, adapted from ref [12].

Figure 5 .

 5 Figure 5. CO Molecular Orbitals and M-CO bonding. Inspired from [60].

12 RFigure 6 .

 126 Figure 6. Selected examples of CO releasing Re(I) carbonyl complexes [63-66].

Figure 7 .

 7 Figure 7. Confocal fluorescence microscopy images of PPC-1 cells that were incubated for 60 min with 50 μM of 14. The left image (in blue, λ em = 465-495 nm) was collected with minimal photolysis from the 405 nm excitation source and indicates the incorporation of 14 into the cellular cytosol. The right image (in green, λ em > 660 nm) was collected after 405 nm photolysis for 15 min and indicates the transformation of 14. Adapted from ref [65].

Figure 8 .

 8 Figure 8. Family of Re(I) tricarbonyl complexes used for PDT and that necessitates low energy irradiation (UV-vis or red light) [71,72].

Figure 9 .

 9 Figure 9. Examples of molecules labelled with metal-carbonyl complexes for Carbonyl MetalloImmunoAssay and a mestranol derivative labelled with a multimodal tag [10,15,74].

Figure 10 .

 10 Figure 10. Examples of Re-appended amino acids [95,96].

Figure 11 .

 11 Figure 11. A. Cell imaging with complexes 23 showing clustering. B. Cell imaging with complexes 24 showing localization. Adapted from ref [96].

Figure 13 .

 13 Figure 13. Examples of Re(I) tricarbonyl complexes conjugated to peptide via N-terminal labelling for cell or organelle targeting [14,27,44,51,73,103].

Figure 14 .

 14 Figure 14. Imaging of N-terminal labelled peptides in cells 1 and in skin biopsies 2. 1) Fluorescence microscopy of HeLa cells fixed after 2 h: (A) untreated cells; (B) treated with [Re(CO) 3 (bipy)(py-alkyne)](BF 4 ) at 100 μM; and (C) treated with 33 at 20 μM adapted from ref [27]. 2) Skin slice after a 24 h-exposure to a 2 10 -2 M solution of 35 in water. A. mapping of the integral of the absorbance of the A 1 -band (2040-2000 cm -1 ). B. Bright field image merged with the luminescence signal of 32. C. Bright field image merged with the staining of nuclei by DAPI. Scale bar 20 µm. Adapted from ref[START_REF] Clède | An easy-todetect nona-arginine peptide for epidermal targeting[END_REF] 

Figure 15 .

 15 Figure 15. Examples of luminescent Re(I) tricarbonyl complexes for amine (1 st line), thiol (2 nd line) and bio-orthogonal (3 rd line) protein labelling [30,52,107-112].

Figure 17 .

 17 Figure 17. Examples of non luminescent Re(I) carbonyl complexes for amine and thiol protein labelling for IR studies.

Figure 18 .

 18 Figure 18. An aqua complex for Re(I)-modification of azurin and its resulting imidazole adduct [123].

  

Table 1 . Photophysical properties of selected Re(I) tricarbonyl complexes in acetonitrile at 298K.

 1 

	N^N ligand	X ligand	λexc (nm)	λem (nm)	Φem (%)	Ref.
	bisquinoline	[a]	-	366	425, 580	0.44	[43]
	bpm		-	350	570-575	N.A.	[44]
	bpy		Cl	355	633	0.27	[46]
	bpy		py-3C(O)NH2	343	551	15.6*	[29]
	phen		py-3C(O)NH2	368	546	12.2*	[29]
	phen		py-3C(O)NHEt	355	548	33	[36]
	Me2-phen		py-3C(O)NHEt	355	536	30	[36]
	Me4-phen		py-3C(O)NHEt	355	515	54	[36]
	Ph2-phen		py-3C(O)NHEt	355	560	34	[36]
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Highlights

 The photophysical properties of Re(CO) x derivatives used for biological application are the main topic  The biological application of Re(CO) x derivatives are reviewed  Photoresponsive Re(CO) x complexes used as CORMs and for PDT are described  Strategies for labelling of peptides and proteins with Re(CO) x are presented