D. Morais, J. Torres, and R. Guedes, Current Approaches and Future Trends to Promote Tendon Repair, The Achilles Tendon, pp.2025-2035, 2007.
DOI : 10.1007/s10439-015-1369-5

G. Riley, A. Lomas, C. Ryan, and A. Sorushanova, Tendinopathy???from basic science to treatment, Nature Clinical Practice Rheumatology, vol.25, issue.2, pp.82-89, 2008.
DOI : 10.1038/ncprheum0700

URL : https://ueaeprints.uea.ac.uk/1618/1/Riley_%2D_Nature_Clinical_Practice_Rheumatology%2C_2008%2C_4%2C_82%2D89.pdf

T. Lewis, J. Cook, F. Oliva, A. Via, N. Maffulli et al., Fluoroquinolones and Tendinopathy: A Guide for Athletes and Sports Clinicians and a Systematic Review of the Literature Calcific tendinopathy of the rotator cuff tendons The epidemiology of musculoskeletal tendinous and ligamentous injuries, J Athl Train Sports Med Arthrosc Rev Injury, vol.49, issue.39, pp.422-427, 2008.

D. Jong, J. Nguyen, J. Sonnema, and A. , The Incidence of Acute Traumatic Tendon Injuries in the Hand and Wrist: A 10-Year Population-based Study, Clinics in Orthopedic Surgery, vol.6, issue.2, p.196, 2014.
DOI : 10.4055/cios.2014.6.2.196

C. Sun, Q. Zhuo, and W. Chai, Conservative interventions for treating Achilles tendon ruptures (Protocol) Cochrane Database of Systematic Reviews 2013, pp.10-1002, 14651858.

A. Scott and M. Ashe, Common Tendinopathies in the Upper and Lower Extremities, Current Sports Medicine Reports, vol.5, issue.5, pp.233-241, 2006.
DOI : 10.1097/01.CSMR.0000306421.85919.9c

T. Sanders, M. Kremers, H. Bryan, and A. , The Epidemiology and Health Care Burden of Tennis Elbow: A Population-Based Study, The American Journal of Sports Medicine, vol.43, issue.5
DOI : 10.1177/0363546514568087

B. Pluim, Tennis injuries: occurrence, aetiology, and prevention, British Journal of Sports Medicine, vol.40, issue.5, pp.415-423, 2006.
DOI : 10.1136/bjsm.2005.023184

URL : http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2577485

E. Agency, . Safety, . Health, . Work, and . Osh-in-figures, Work-related musculoskeletal disorders in the EU -Facts and figures; 2010 Available from: osha.europa.eu/fr/tools-and- publications/publications/reports/TERO09009 ENC [15] Health and Safety Executive, UK. Workrelated Musculoskeletal disorder (WRMSDs) Statistics, Great Britain Available from: hse.gov.uk/statistics/ [16] Agency for Healthcare Research and Quality. Comparative Effectiveness of the Nonoperative and Operative Treatments for Rotator Cuff Tears Available from: ahrq.gov [17] European Agency for Safety and Health at Work. Work-related neck and upper limb musculoskeletal disorders, 0201.

N. Andarawis-puri, E. Flatow, and L. Soslowsky, Tendon basic science: Development, repair, regeneration, and healing, Journal of Orthopaedic Research, vol.21, issue.6, pp.780-784, 2015.
DOI : 10.1002/jor.22869

URL : http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4427041

S. Rawson, S. Cartmell, and J. Wong, Suture techniques for tendon repair; a comparative review, Muscles Ligaments Tendons J, vol.3, p.220, 2013.

C. Squier and W. Bausch, Three-dimensional organization of fibroblasts and collagen fibrils in rat tail tendon, Cell and Tissue Research, vol.238, issue.2, pp.319-327, 1984.
DOI : 10.1007/BF00217304

G. Zhang, B. Young, and Y. Ezura, Development of tendon structure and function: regulation of collagen fibrillogenesis, J Musculoskelet Neuronal Interact, vol.5, pp.5-21, 2005.

H. Screen, D. Berk, and K. Kadler, Tendon Functional Extracellular Matrix, Journal of Orthopaedic Research, vol.3, issue.6, pp.793-799, 2015.
DOI : 10.1002/jor.22818

URL : http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4507431

K. Kadler, C. Baldock, and J. Bella, Collagens at a glance, Journal of Cell Science, vol.120, issue.12, pp.1955-1958, 2007.
DOI : 10.1242/jcs.03453

J. Pohlhammer, O. Jr, and W. , Dependence of the ultrasonic scatter coefficient on collagen concentration in mammalian tissues, The Journal of the Acoustical Society of America, vol.69, issue.1, p.283, 1981.
DOI : 10.1121/1.385349

J. Scott and C. Morphology, Chemical morphology: The chemistry of our shape, in vivo and in vitro, Structural Chemistry, vol.6, issue.603, pp.257-265, 2007.
DOI : 10.1007/s11224-007-9155-0

H. Birch, Tendon matrix composition and turnover in relation to functional requirements, International Journal of Experimental Pathology, vol.414, issue.4, pp.241-248, 2007.
DOI : 10.1111/j.1365-2613.2007.00552.x

URL : http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2517317

S. Bancelin, C. Couture, and K. Légaré, Fast interferometric second harmonic generation microscopy, Biomedical Optics Express, vol.7, issue.2, pp.399-408, 2016.
DOI : 10.1364/BOE.7.000399

URL : http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4771458

I. Gusachenko, V. Tran, and Y. Houssen, Polarization-Resolved Second-Harmonic Generation in Tendon upon Mechanical Stretching, Biophysical Journal, vol.102, issue.9, pp.2220-2229, 2012.
DOI : 10.1016/j.bpj.2012.03.068

URL : https://hal.archives-ouvertes.fr/hal-00094221

A. Fouré, New Imaging Methods for Non-invasive Assessment of Mechanical, Structural, and Biochemical Properties of Human Achilles Tendon: A Mini Review, Frontiers in Physiology, vol.5, p.324, 2016.
DOI : 10.1111/j.1600-0838.2007.00638.x

D. Hulmes, Building Collagen Molecules, Fibrils, and Suprafibrillar Structures, Journal of Structural Biology, vol.137, issue.1-2, pp.2-10, 2002.
DOI : 10.1006/jsbi.2002.4450

URL : https://hal.archives-ouvertes.fr/hal-00313823

M. Benjamin, E. Kaiser, and S. Milz, Structure-function relationships in tendons: a review, Journal of Anatomy, vol.63, issue.4, pp.211-228, 2008.
DOI : 10.1016/S0094-1298(03)00074-9

P. Kannus, Structure of the tendon connective tissue, Scandinavian Journal of Medicine and Science in Sports, vol.10, issue.6, pp.312-320, 2000.
DOI : 10.1034/j.1600-0838.2000.010006312.x

S. Nicholls, L. Gathercole, and A. Keller, Crimping in rat tail tendon collagen: morphology and transverse mechanical anisotropy, International Journal of Biological Macromolecules, vol.5, issue.5, pp.283-288, 1983.
DOI : 10.1016/0141-8130(83)90043-0

J. Dlugosz, L. Gathercole, and A. Keller, Transmission electron microscope studies and their relation to polarizing optical microscopy in rat tail tendon, Micron (1969), vol.9, issue.2, pp.71-82, 1978.
DOI : 10.1016/0047-7206(78)90010-9

J. Wang, Mechanobiology of tendon, Journal of Biomechanics, vol.39, issue.9, pp.1563-1582, 2006.
DOI : 10.1016/j.jbiomech.2005.05.011

J. Shah, E. Palacios, and L. Palacios, Development of crimp morphology and cellular changes in chick tendons, Developmental Biology, vol.94, issue.2, pp.499-504, 1982.
DOI : 10.1016/0012-1606(82)90366-9

A. Herchenhan, N. Kalson, and D. Holmes, Tenocyte contraction induces crimp formation in tendon-like tissue, Biomechanics and Modeling in Mechanobiology, vol.7, issue.2, pp.449-459, 2012.
DOI : 10.1007/s10237-011-0324-0

URL : http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3822867

X. Hu, D. Knight, and J. Chapman, The effect of non-polar liquids and non-ionic detergents on the ultrastructure and assembly of rat tail tendon collagen fibrils in vitro, Biochimica et Biophysica Acta (BBA) - General Subjects, vol.1334, issue.2-3, pp.327-337, 1997.
DOI : 10.1016/S0304-4165(96)00112-2

J. Cartmell and M. Dunn, Effect of chemical treatments on tendon cellularity and mechanical properties, Journal of Biomedical Materials Research, vol.74, issue.1, pp.134-140, 2000.
DOI : 10.1002/(SICI)1097-4636(200001)49:1<134::AID-JBM17>3.0.CO;2-D

B. Vidal and C. , Image analysis of tendon helical superstructure using interference and polarized light microscopy, Micron, vol.34, issue.8, pp.423-432, 2003.
DOI : 10.1016/S0968-4328(03)00039-8

R. Grytz and G. Meschke, Constitutive modeling of crimped collagen fibrils in soft tissues, Journal of the Mechanical Behavior of Biomedical Materials, vol.2, issue.5, pp.522-533, 2009.
DOI : 10.1016/j.jmbbm.2008.12.009

S. Reese, S. Maas, and J. Weiss, Micromechanical models of helical superstructures in ligament and tendon fibers predict large Poisson's ratios, Journal of Biomechanics, vol.43, issue.7, pp.1394-1400, 2010.
DOI : 10.1016/j.jbiomech.2010.01.004

F. Livolant and A. Leforestier, Condensed phases of DNA: Structures and phase transitions, Progress in Polymer Science, vol.21, issue.6, pp.1115-1164, 1996.
DOI : 10.1016/S0079-6700(96)00016-0

N. Murthy, Liquid crystallinity in collagen solutions and magnetic orientation of collagen fibrils, Biopolymers, vol.73, issue.7, pp.1261-1267, 1984.
DOI : 10.1002/bip.360230710

H. Maeda, An Atomic Force Microscopy Study of Ordered Molecular Assemblies and Concentric Ring Patterns from Evaporating Droplets of Collagen Solutions, Langmuir, vol.15, issue.24, pp.8505-8513, 1999.
DOI : 10.1021/la981738l

M. Giraud-guille, Liquid crystallinity in condensed type I collagen solutions, Journal of Molecular Biology, vol.224, issue.3, pp.861-873, 1992.
DOI : 10.1016/0022-2836(92)90567-4

P. De-sa-peixoto, A. Deniset-besseau, and M. Schanne-klein, Quantitative assessment of collagen I liquid crystal organizations: role of ionic force and acidic solvent, and evidence of new phases, Soft Matter, vol.16, issue.23, p.11203, 2011.
DOI : 10.1039/c1sm06076g

URL : https://hal.archives-ouvertes.fr/hal-00804597

I. Williams, A. Craig, and D. Parry, Development of collagen fibril organization and collagen crimp patterns during tendon healing, International Journal of Biological Macromolecules, vol.7, issue.5, pp.275-282, 1985.
DOI : 10.1016/0141-8130(85)90025-X

S. Müller, A. Todorov, and P. Heisterbach, Tendon healing: an overview of physiology, biology, and pathology of tendon healing and systematic review of state of the art in tendon bioengineering, Knee Surgery, Sports Traumatology, Arthroscopy, vol.28, issue.7, pp.2097-2105, 2015.
DOI : 10.1007/s00167-013-2680-z

G. Nourissat, F. Berenbaum, and D. Duprez, Tendon injury: from biology to tendon repair, Nature Reviews Rheumatology, vol.48, issue.4, pp.223-233, 2015.
DOI : 10.1089/ten.tea.2012.0497

A. Wada, H. Kubota, and K. Miyanishi, Comparison of postoperative early active mobilization and immobilization in vivo From tendon injury to collagen repair Current Pharmaceutical Design, p.25, 2016.

M. Childress and A. Beutler, Management of chronic tendon injuries, Am Fam Physician, vol.87, pp.486-490, 2013.

K. Khan and A. Scott, Mechanotherapy: how physical therapists' prescription of exercise promotes tissue repair, British Journal of Sports Medicine, vol.43, issue.4, pp.247-252, 2009.
DOI : 10.1136/bjsm.2008.054239

URL : http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2662433

E. Sundman, B. Cole, and L. Fortier, Growth Factor and Catabolic Cytokine Concentrations Are Influenced by the Cellular Composition of Platelet-Rich Plasma, The American Journal of Sports Medicine, vol.103, issue.5, pp.2135-2140, 2011.
DOI : 10.1054/jcms.2002.0285

R. Gelberman, M. Boyer, and M. Brodt, The Effect of Gap Formation at the Repair Site on the Strength and Excursion of Intrasynovial Flexor Tendons. AN EXPERIMENTAL STUDY ON THE EARLY STAGES OF TENDON-HEALING IN DOGS*, The Journal of Bone & Joint Surgery, vol.81, issue.7, pp.975-982, 1999.
DOI : 10.2106/00004623-199907000-00010

P. Buckley and D. Pedowitz, Bone Reduction Clamp to Gain Length in Repairing Chronic Achilles Tendon Ruptures, Orthopedics, vol.39, pp.1223-1225, 2016.
DOI : 10.3928/01477447-20160808-04

Z. Feldbrin, D. Hendel, and A. Lipkin, Achilles tendon rupture and our experience with the achillon device, Isr Med Assoc J, vol.12, pp.609-612, 2010.

B. Huffard, O. Loughlin, P. Wright, and T. , Achilles tendon repair: Achillon system vs. Krackow suture: An anatomic in vitro biomechanical study, Clinical Biomechanics, vol.23, issue.9, pp.1158-1164, 2008.
DOI : 10.1016/j.clinbiomech.2008.05.007

J. Wang, Mechanobiology of tendon, Journal of Biomechanics, vol.39, issue.9, pp.1563-1582, 2006.
DOI : 10.1016/j.jbiomech.2005.05.011

M. Gomes, R. Reis, and M. Rodrigues, Tendon Regeneration: Understanding Tissue Physiology and Development to Engineer Functional Substitutes, 2015.

J. Maquirriain, Achilles Tendon Rupture: Avoiding Tendon Lengthening during Surgical Repair and Rehabilitation, Yale J Biol Med, vol.84, pp.289-300, 2011.

B. Schliemann, N. Grüneweller, and D. Yao, Biomechanical evaluation of different surgical techniques for treating patellar tendon ruptures, International Orthopaedics, vol.14, issue.1, pp.1717-1723, 2016.
DOI : 10.1186/1471-2474-14-120

B. Hohendorff, W. Siepen, and L. Spiering, Long-term Results after Operatively Treated Achilles Tendon Rupture: Fibrin Glue versus Suture, The Journal of Foot and Ankle Surgery, vol.47, issue.5, pp.392-399, 2008.
DOI : 10.1053/j.jfas.2008.05.006

S. Rose, A. Prevoteau, and P. Elzière, Nanoparticle solutions as adhesives for gels and biological tissues, Nature, vol.7, issue.7483, pp.382-385, 2014.
DOI : 10.1038/nature12806

URL : https://hal.archives-ouvertes.fr/hal-01078535

B. Erol, B. Kocao?lu, and T. Esemenli, Spiral-shaped Metallic Implant in the Treatment of Achilles Tendon Ruptures: An Experimental Study on the Achilles Tendon of Sheep, The Journal of Foot and Ankle Surgery, vol.46, issue.3, pp.155-171, 2007.
DOI : 10.1053/j.jfas.2006.10.008

?. A??r, M. Aytekin, and O. Ba?ç?, Tendon-Holding Capacities of Two Newly Designed Implants for Tendon Repair: An Experimental Study on the Flexor Digitorum Profundus Tendon of Sheep, The Open Orthopaedics Journal, vol.8, issue.1, pp.135-139, 2014.
DOI : 10.2174/1874325001408010135

S. Wolfe, A. Willis, and D. Campbell, Biomechanic Comparison of the Teno Fix Tendon Repair Device With the Cruciate and Modified Kessler Techniques, The Journal of Hand Surgery, vol.32, issue.3, pp.356-366, 2007.
DOI : 10.1016/j.jhsa.2006.10.004

S. Lacoste, J. Féron, and B. Cherrier, Percutaneous Tenolig?? repair under intra-operative ultrasonography guidance in acute Achilles tendon rupture, Orthopaedics & Traumatology: Surgery & Research, vol.100, issue.8, pp.925-930, 2014.
DOI : 10.1016/j.otsr.2014.09.018

URL : http://doi.org/10.1016/j.otsr.2014.09.018

R. Magnussen, R. Glisson, and C. Moorman, Augmentation of Achilles Tendon Repair With Extracellular Matrix Xenograft, The American Journal of Sports Medicine, vol.88, issue.12, pp.1522-1527, 2011.
DOI : 10.1177/0363546510397815

M. Carmont, N. Maffulli, and A. Foda, Less invasive Achilles tendon reconstruction Less Invasive Reconstruction of Chronic Achilles Tendon Rupture with free Semitendinosus Tendon Autograft -A case Series, BMC Musculoskelet Disord Int J Orthop, vol.8, issue.3, pp.539-543, 2007.

W. Phipatanakul and S. Petersen, Porcine small intestine submucosa xenograft augmentation in repair of massive rotator cuff tears, Am J Orthop Belle Mead NJ, vol.38, pp.572-575, 2009.

S. Sclamberg, J. Tibone, and J. Itamura, Six-month magnetic resonance imaging follow-up of large and massive rotator cuff repairs reinforced with porcine small intestinal submucosa, Journal of Shoulder and Elbow Surgery, vol.13, issue.5, pp.538-541, 2004.
DOI : 10.1016/j.jse.2004.03.005

L. Song, R. Olsen, and J. Spalazzi, Biomechanical Evaluation of Acellular Collagen Matrix Augmented Achilles Tendon??Repair in Sheep, The Journal of Foot and Ankle Surgery, vol.49, issue.5, pp.438-441, 2010.
DOI : 10.1053/j.jfas.2010.06.009

D. Lee, A Preliminary Study on the Effects of Acellular Tissue Graft Augmentation in Acute Achilles Tendon Ruptures, The Journal of Foot and Ankle Surgery, vol.47, issue.1, pp.8-12, 2008.
DOI : 10.1053/j.jfas.2007.08.015

S. Hollawell and W. Baione, Chronic Achilles Tendon Rupture Reconstructed With Achilles Tendon Allograft and Xenograft Combination, The Journal of Foot and Ankle Surgery, vol.54, issue.6, pp.1146-1150, 2015.
DOI : 10.1053/j.jfas.2014.09.006

A. Herbert, G. Jones, and E. Ingham, A biomechanical characterisation of acellular porcine super flexor tendons for use in anterior cruciate ligament replacement: Investigation into the effects of fat reduction and bioburden reduction bioprocesses, Journal of Biomechanics, vol.48, issue.1, pp.22-29, 2015.
DOI : 10.1016/j.jbiomech.2014.11.013

J. Branch, A Tendon Graft Weave Using an Acellular Dermal Matrix for Repair of the Achilles Tendon and Other Foot and Ankle Tendons, The Journal of Foot and Ankle Surgery, vol.50, issue.2, pp.257-265, 2011.
DOI : 10.1053/j.jfas.2010.12.015

D. Gaspar, K. Spanoudes, and C. Holladay, Progress in cell-based therapies for tendon repair, Advanced Drug Delivery Reviews, vol.84, pp.240-256, 2015.
DOI : 10.1016/j.addr.2014.11.023

C. Güngörmü?, D. Kolankaya, and E. Aydin, Histopathological and biomechanical evaluation of tenocyte seeded allografts on rat Achilles tendon regeneration, Biomaterials vol, vol.2015, issue.51, pp.108-118

S. Kew, J. Gwynne, and D. Enea, Regeneration and repair of tendon and ligament tissue using collagen fibre biomaterials, Acta Biomaterialia, vol.7, issue.9, pp.3237-3247, 2011.
DOI : 10.1016/j.actbio.2011.06.002

M. Stapp, Implantable materials and grafts in tendon surgery In: Reconstructive surgery of the foot and leg: update '93, pp.289-292, 1993.

R. Williams and S. August, Experimental evaluation of a Teflon tendon prosthesis, The American Journal of Surgery, vol.107, issue.6, pp.913-916, 1964.
DOI : 10.1016/0002-9610(64)90192-8

M. Holtz, M. Midenberg, and S. Kirschenbaum, Utilization of a silastic sheet in tendon repair of the foot, J Foot Surg, vol.21, pp.253-259, 1982.

M. Morrey, J. Barlow, and M. Abdel, Synthetic Mesh Augmentation of Acute and Subacute Quadriceps Tendon Repair, Orthopedics, vol.39, issue.1, pp.9-13, 2016.
DOI : 10.3928/01477447-20151218-02

S. Abdullah, Usage of synthetic tendons in tendon reconstruction, BMC Proceedings, vol.9, issue.Suppl 3, p.68, 2015.
DOI : 10.1016/S0968-0160(03)00076-0

A. Melvin, A. Litsky, and J. Mayerson, An artificial tendon with durable muscle interface, Journal of Orthopaedic Research, vol.11, pp.218-224, 2010.
DOI : 10.1002/jor.20971

URL : http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2847839

D. Jenkins and B. Mckibbin, The role of flexible carbon-fibre implants as tendon and ligament substitutes in clinical practice. A preliminary report, J Bone Joint Surg Br, pp.62-497, 1980.

S. Corey, Tendon grafts and implants In: Reconstructive surgery of the foot and leg: update '88, pp.58-61, 1988.

J. Roberts, G. Goldstrohm, and T. Brown, Comparison of Unrepaired, Primarily Repaired, and Polyglactin Mesh-reinforced Achilles Tendon Lacerations in Rabbits, Clinical Orthopaedics and Related Research, vol.&NA;, issue.181, pp.244-249, 1983.
DOI : 10.1097/00003086-198312000-00038

C. Howard, B. Mckibbin, and Z. Ralis, The use of Dexon as a replacement for the calcaneal tendon in sheep, Bone Jt J, vol.67, pp.313-316, 1985.

M. Liem, H. Zegel, and F. Balduini, Repair of Achilles tendon ruptures with a polylactic acid implant: assessment with MR imaging., American Journal of Roentgenology, vol.156, issue.4, pp.769-773, 1991.
DOI : 10.2214/ajr.156.4.2003444

H. Alexander, A. Weiss, and J. Parsons, Absorbable polymer-filamentous carbon composites--a new class of tissue scaffolding materials, Aktuelle Probl Chir Orthop, vol.26, pp.78-91, 1983.

Y. Cao, Y. Liu, and W. Liu, Bridging Tendon Defects Using Autologous Tenocyte Engineered Tendon in a Hen Model, Plastic and Reconstructive Surgery, vol.110, issue.5, pp.1280-1289, 2002.
DOI : 10.1097/00006534-200210000-00011

A. Shoaib and V. Mishra, Surgical repair of symptomatic chronic achilles tendon rupture using synthetic graft augmentation, Foot Ankle Surg, 2016.
DOI : 10.1177/2473011416s00283

G. Verdiyeva, K. Koshy, and N. Glibbery, Tendon Reconstruction with Tissue Engineering Approach???A Review, Journal of Biomedical Nanotechnology, vol.11, issue.9, pp.1495-1523, 2015.
DOI : 10.1166/jbn.2015.2121

M. Ladd, S. Lee, and J. Stitzel, Co-electrospun dual scaffolding system with potential for muscle???tendon junction tissue engineering, Biomaterials, vol.32, issue.6, pp.1549-1559, 2011.
DOI : 10.1016/j.biomaterials.2010.10.038

H. Jung, M. Fisher, and S. Woo, Role of biomechanics in the understanding of normal, injured, and healing ligaments and tendons, BMC Sports Science, Medicine and Rehabilitation, vol.15, issue.3, pp.1-9, 2009.
DOI : 10.1089/ten.tea.2007.0384

W. Tong, W. Shen, and C. Yeung, Functional replication of the tendon tissue microenvironment by a bioimprinted substrate and the support of tenocytic differentiation of mesenchymal stem cells, Biomaterials, vol.33, issue.31, pp.7686-7698, 2012.
DOI : 10.1016/j.biomaterials.2012.07.002

S. Park, I. Kim, and Y. Lee, Biological responses of ligament fibroblasts and gene expression profiling on micropatterned silicone substrates subjected to mechanical stimuli, Journal of Bioscience and Bioengineering, vol.102, issue.5, pp.402-412, 2006.
DOI : 10.1263/jbb.102.402

J. Wang, F. Jia, and T. Gilbert, Cell orientation determines the alignment of cell-produced collagenous matrix, Journal of Biomechanics, vol.36, issue.1, pp.97-102, 2003.
DOI : 10.1016/S0021-9290(02)00233-6

F. Van-delft, F. Van-den-heuvel, and W. Loesberg, Manufacturing substrate nano-grooves for studying cell alignment and adhesion, Microelectronic Engineering, vol.85, issue.5-6, pp.1362-1366, 2008.
DOI : 10.1016/j.mee.2008.01.028

L. Mertz, What Is Biocompatibility?: A New Definition Based on the Latest Technology, IEEE Pulse, vol.4, issue.4, pp.14-15, 2013.
DOI : 10.1109/MPUL.2013.2262138

D. Hutmacher, Scaffolds in tissue engineering bone and cartilage, Biomaterials, vol.21, issue.24, pp.2529-2543, 2000.
DOI : 10.1016/S0142-9612(00)00121-6

S. Badylak, R. Tullius, and K. Kokini, The use of xenogeneic small intestinal submucosa as a biomaterial for Achille's tendon repair in a dog model, Journal of Biomedical Materials Research, vol.III, issue.8, pp.977-985, 1995.
DOI : 10.1002/jbm.820290809

T. Gilbert, A. Stewart-akers, and A. Simmons-byrd, Degradation and Remodeling of Small Intestinal Submucosa in Canine Achilles Tendon Repair, The Journal of Bone and Joint Surgery-American Volume, vol.89, issue.3, pp.621-630, 2007.
DOI : 10.2106/00004623-200703000-00020

S. Kew, J. Gwynne, and D. Enea, Regeneration and repair of tendon and ligament tissue using collagen fibre biomaterials, Acta Biomaterialia, vol.7, issue.9, pp.3237-3247, 2011.
DOI : 10.1016/j.actbio.2011.06.002

J. Glowacki and S. Mizuno, Collagen scaffolds for tissue engineering, Biopolymers, vol.19, issue.5, pp.338-344, 2008.
DOI : 10.1002/bip.20871

M. Barczyk, S. Carracedo, and D. Gullberg, Integrins, Cell and Tissue Research, vol.137, issue.1, pp.269-280, 2010.
DOI : 10.1007/s00441-009-0834-6

J. Jokinen, Integrin-mediated Cell Adhesion to Type I Collagen Fibrils, Journal of Biological Chemistry, vol.279, issue.30, pp.31956-31963, 2004.
DOI : 10.1074/jbc.M401409200

S. Murphy, A. Skardal, and A. Atala, Evaluation of hydrogels for bio-printing applications, Journal of Biomedical Materials Research Part A, vol.26, issue.11 Suppl, pp.272-284, 2013.
DOI : 10.1002/jbm.a.34326

B. Walters and J. Stegemann, Strategies for directing the structure and function of three-dimensional collagen biomaterials across length scales, Acta Biomaterialia, vol.10, issue.4, pp.1488-1501, 2014.
DOI : 10.1016/j.actbio.2013.08.038

S. Muller, L. Durselen, and P. Heisterbach, Effect of a Simple Collagen Type I Sponge for Achilles Tendon Repair in a Rat Model, The American Journal of Sports Medicine, vol.26, issue.8, pp.1998-2004, 2016.
DOI : 10.1177/0363546508314416

J. Cavallaro, P. Kemp, and K. Kraus, Collagen fabrics as biomaterials, Biotechnology and Bioengineering, vol.86, issue.8, pp.781-791, 1994.
DOI : 10.1002/bit.260430813

S. Truhlsen and J. Fitzpatrick, The Extruded Collagen Suture, Archives of Ophthalmology, vol.74, issue.3, pp.371-374, 1965.
DOI : 10.1001/archopht.1965.00970040373017

D. Enea, F. Henson, and S. Kew, Extruded collagen fibres for tissue engineering applications: effect of crosslinking method on mechanical and biological properties, Journal of Materials Science: Materials in Medicine, vol.36, issue.6, pp.1569-1578, 2011.
DOI : 10.1007/s10856-011-4336-1

D. Zeugolis, R. Paul, and G. Attenburrow, Factors influencing the properties of reconstituted collagen fibers prior to self-assembly: Animal species and collagen extraction method, Journal of Biomedical Materials Research Part A, vol.23, issue.4, pp.892-904, 2008.
DOI : 10.1002/jbm.a.31694

G. Pins, D. Christiansen, and R. Patel, Self-assembly of collagen fibers. Influence of fibrillar alignment and decorin on mechanical properties, Biophysical Journal, vol.73, issue.4, pp.2164-2172, 1997.
DOI : 10.1016/S0006-3495(97)78247-X

M. Wang, G. Pins, and F. Silver, Collagen fibres with improved strength for the repair of soft tissue injuries, Biomaterials, vol.15, pp.507-512, 1994.

E. Lai, C. Anderson, and G. Fuller, Designing a tubular matrix of oriented collagen fibrils for tissue engineering, Acta Biomaterialia, vol.7, issue.6, pp.2448-2456, 2011.
DOI : 10.1016/j.actbio.2011.03.012

M. Dunn, P. Avasarala, and J. Zawadsky, Optimization of extruded collagen fibers for ACL reconstruction, Journal of Biomedical Materials Research, vol.13, issue.12, pp.1545-1552, 1993.
DOI : 10.1002/jbm.820271211

Y. Kato, D. Christiansen, and R. Hahn, Mechanical properties of collagen fibres: a comparison of reconstituted and rat tail tendon fibres, Biomaterials, vol.10, issue.1, pp.38-42, 1989.
DOI : 10.1016/0142-9612(89)90007-0

K. Cornwell, F. Collagen, . Biopolymer-microthreads-for-bioengineered-ligament, B. Dong, O. Arnoult et al., Electrospinning of Collagen Nanofiber Scaffolds from Benign Solvents, Macromol Rapid Commun, vol.130, issue.30, pp.539-542, 2009.

N. Choktaweesap, K. Arayanarakul, and D. Aht-ong, Electrospun Gelatin Fibers: Effect of Solvent System on Morphology and Fiber Diameters, Polymer Journal, vol.39, issue.6, pp.622-631, 2007.
DOI : 10.1002/polb.20671

Y. Wan, J. He, and J. Yu, Electrospinning of high-molecule PEO solution, Journal of Applied Polymer Science, vol.45, issue.6, pp.3840-3843, 2007.
DOI : 10.1002/app.25472

J. Bürck, . Heissler, and U. Geckler, Resemblance of Electrospun Collagen Nanofibers to Their Native Structure, Langmuir, vol.29, issue.5, pp.1562-1572, 2013.
DOI : 10.1021/la3033258

J. Matthews, G. Wnek, and D. Simpson, Electrospinning of Collagen Nanofibers, Biomacromolecules, vol.3, issue.2, pp.232-238, 2002.
DOI : 10.1021/bm015533u

J. Matthews, E. Boland, and G. Wnek, Electrospinning of Collagen Type II: A Feasibility Study, Journal of Bioactive and Compatible Polymers, vol.18, issue.2, pp.125-134, 2003.
DOI : 10.1177/0883911503018002003

K. Rho, L. Jeong, and G. Lee, Electrospinning of collagen nanofibers: Effects on the behavior of normal human keratinocytes and early-stage wound healing, Biomaterials, vol.27, issue.8, pp.1452-1461, 2006.
DOI : 10.1016/j.biomaterials.2005.08.004

S. Zhong, W. Teo, and X. Zhu, Development of a novel collagen???GAG nanofibrous scaffold via electrospinning, Materials Science and Engineering: C, vol.27, issue.2, pp.262-266, 2007.
DOI : 10.1016/j.msec.2006.05.010

D. Zeugolis, S. Khew, and E. Yew, Electro-spinning of pure collagen nano-fibres ??? Just an expensive way to make gelatin?, Biomaterials, vol.29, issue.15, pp.2293-2305, 2008.
DOI : 10.1016/j.biomaterials.2008.02.009

A. Szentivanyi, U. Assmann, and R. Schuster, Production of biohybrid protein/PEO scaffolds by electrospinning, Materialwissenschaft und Werkstofftechnik, vol.18, issue.(5), pp.65-72, 2009.
DOI : 10.1002/mawe.200800376

L. Buttafoco, N. Kolkman, and P. Engbers-buijtenhuijs, Electrospinning of collagen and elastin for tissue engineering applications Electrospun type 1 collagen matrices preserving native ultrastructure using benign binary solvent for cardiac tissue engineering, Biomaterials Artif Cells Nanomedicine Biotechnol, vol.27, issue.44, pp.724-734, 2006.

. Caprolactone, Collagen Nanoyarn Network as a Novel, Three-Dimensional, Macroporous, Aligned Scaffold for Tendon Tissue Engineering, Tissue Eng Part C Methods, vol.19, pp.925-936, 2013.

S. Deville, Ice-templating, freeze casting: Beyond materials processing, Journal of Materials Research, vol.87, issue.17, pp.2202-2219, 2013.
DOI : 10.1016/j.coldregions.2009.02.001

URL : https://hal.archives-ouvertes.fr/hal-00933994

M. Haugh, C. Murphy, O. Brien, and F. , Novel Freeze-Drying Methods to Produce a Range of Collagen???Glycosaminoglycan Scaffolds with Tailored Mean Pore Sizes, Tissue Engineering Part C: Methods, vol.16, issue.5, pp.887-894, 2009.
DOI : 10.1089/ten.tec.2009.0422

K. Pawelec, A. Husmann, and S. Best, A design protocol for tailoring ice-templated scaffold structure, Journal of The Royal Society Interface, vol.280, issue.7, 2014.
DOI : 10.1002/jps.1039

URL : http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3899864

K. Pawelec, A. Husmann, and S. Best, Understanding anisotropy and architecture in ice-templated biopolymer scaffolds, Materials Science and Engineering: C, vol.37, pp.141-147, 2014.
DOI : 10.1016/j.msec.2014.01.009

URL : https://www.repository.cam.ac.uk/bitstream/1810/245122/1/Pawelec%20-%20anisotropy%20%28preprint%20before%20review%29.pdf

K. Pawelec, A. Husmann, and R. Wardale, Ionic solutes impact collagen scaffold bioactivity, Journal of Materials Science: Materials in Medicine, vol.6, issue.10, p.91, 2015.
DOI : 10.1007/s10856-015-5457-8

URL : http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4381095

K. Pawelec, A. Husmann, and S. Best, Altering crystal growth and annealing in ice-templated scaffolds, Journal of Materials Science, vol.7, issue.8, pp.7537-7543, 2015.
DOI : 10.1007/s10853-015-9343-z

URL : http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4572702

K. Pawelec, R. Wardale, and S. Best, The effects of scaffold architecture and fibrin gel addition on tendon cell phenotype, Journal of Materials Science: Materials in Medicine, vol.33, issue.7, 2015.
DOI : 10.1007/s10856-014-5349-3

N. Davidenko, D. Bax, and C. Schuster, Optimisation of UV irradiation as a binding site conserving method for crosslinking collagen-based scaffolds, Journal of Materials Science: Materials in Medicine, vol.121, issue.3, p.14, 2016.
DOI : 10.1007/s10856-015-5627-8

C. Lowe, I. Reucroft, and M. Grota, Production of Highly Aligned Collagen Scaffolds by Freeze-drying of Self-assembled, Fibrillar Collagen Gels, ACS Biomaterials Science & Engineering, vol.2, issue.4, pp.643-651, 2016.
DOI : 10.1021/acsbiomaterials.6b00036

S. Caliari and B. Harley, The effect of anisotropic collagen-GAG scaffolds and growth factor supplementation on tendon cell From tendon injury to collagen repair Current Pharmaceutical Design 29 recruitment, alignment, and metabolic activity, Biomaterials, vol.0, issue.32, pp.5330-5340, 2011.

S. Caliari and B. Harley, Composite Growth Factor Supplementation Strategies to Enhance Tenocyte Bioactivity in Aligned Collagen-GAG Scaffolds, Tissue Engineering Part A, vol.19, issue.9-10, pp.1100-1112, 2013.
DOI : 10.1089/ten.tea.2012.0497

URL : http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3609632

S. Caliari, M. Ramirez, and B. Harley, The development of collagen-GAG scaffold-membrane composites for tendon tissue engineering, Biomaterials, vol.32, issue.34, pp.8990-8998, 2011.
DOI : 10.1016/j.biomaterials.2011.08.035

S. Caliari, D. Weisgerber, and W. Grier, Collagen Scaffolds Incorporating Coincident Gradations of Instructive Structural and Biochemical Cues for Osteotendinous Junction Engineering, Advanced Healthcare Materials, vol.40, issue.6, pp.831-837, 2015.
DOI : 10.1039/c4bm00397g

L. Mozdzen, R. Rodgers, and J. Banks, Increasing the strength and bioactivity of collagen scaffolds using customizable arrays of 3D-printed polymer fibers, Acta Biomaterialia, vol.33, pp.25-33, 2016.
DOI : 10.1016/j.actbio.2016.02.004

E. Mccullough and V. Yadavalli, Surface modification of fused deposition modeling ABS to enable rapid prototyping of biomedical microdevices, Journal of Materials Processing Technology, vol.213, issue.6, pp.947-954, 2013.
DOI : 10.1016/j.jmatprotec.2012.12.015

S. Murphy and A. , 3D bioprinting of tissues and organs, Nature Biotechnology, vol.2, issue.8, pp.773-785, 2014.
DOI : 10.1056/NEJMc1206319

B. Derby, Printing and Prototyping of Tissues and Scaffolds, Science, vol.16, issue.11, pp.921-926, 2012.
DOI : 10.1016/j.biomaterials.2004.04.024

URL : https://www.escholar.manchester.ac.uk/api/datastream?publicationPid=uk-ac-man-scw:184649&datastreamId=POST-PEER-REVIEW-NON-PUBLISHERS.PDF

A. Do, B. Khorsand, and S. Geary, 3D Printing of Scaffolds for Tissue Regeneration Applications, Advanced Healthcare Materials, vol.384, issue.398, pp.1742-1762, 2015.
DOI : 10.1002/adhm.201500168

J. Inzana, D. Olvera, and S. Fuller, 3D printing of composite calcium phosphate and collagen scaffolds for bone regeneration, Biomaterials, vol.35, issue.13, pp.4026-4034, 2014.
DOI : 10.1016/j.biomaterials.2014.01.064

D. Campos, D. Blaeser, A. Buellesbach, and K. , Bioprinting Organotypic Hydrogels with Improved Mesenchymal Stem Cell Remodeling and Mineralization Properties for Bone Tissue Engineering, Advanced Healthcare Materials, vol.22, issue.11, pp.1336-1345, 2016.
DOI : 10.1002/adhm.201501033

K. Lin, S. He, and Y. Song, Low-Temperature Additive Manufacturing of Biomimic Three-Dimensional Hydroxyapatite/Collagen Scaffolds for Bone Regeneration, ACS Applied Materials & Interfaces, vol.8, issue.11, pp.6905-6916, 2016.
DOI : 10.1021/acsami.6b00815

J. Park, J. Choi, and J. Shim, A comparative study on collagen type I and hyaluronic acid dependent cell behavior for osteochondral tissue bioprinting, Biofabrication, vol.6, issue.3
DOI : 10.1088/1758-5082/6/3/035004

K. Legemate, S. Tarafder, and Y. Jun, Engineering Human TMJ Discs with Protein-Releasing 3D-Printed Scaffolds, Journal of Dental Research, vol.134, issue.1, pp.800-807, 2016.
DOI : 10.1126/scitranslmed.3009696

H. Lee, Y. Kim, and S. Ahn, A New Approach for Fabricating Collagen/ECM-Based Bioinks Using Preosteoblasts and Human Adipose Stem Cells, Advanced Healthcare Materials, vol.18, issue.9, pp.1359-1368, 2015.
DOI : 10.1002/adhm.201500193

Z. Wu, X. Su, and Y. Xu, Bioprinting three-dimensional cell-laden tissue constructs with controllable degradation, Scientific Reports, vol.6, issue.1, p.24474, 2016.
DOI : 10.1016/j.actbio.2010.03.026

URL : http://doi.org/10.1038/srep24474

T. Xu, K. Binder, and M. Albanna, Hybrid printing of mechanically and biologically improved constructs for cartilage tissue engineering applications, Biofabrication, vol.5, issue.1, p.15001, 2013.
DOI : 10.1088/1758-5082/5/1/015001

K. Sun, R. Li, and W. Jiang, Comparison of three-dimensional printing and vacuum freeze-dried techniques for fabricating composite scaffolds, Biochemical and Biophysical Research Communications, vol.477, issue.4, pp.1085-1091, 2016.
DOI : 10.1016/j.bbrc.2016.07.050

A. Lode, M. Meyer, and S. Brüggemeier, Additive manufacturing of collagen scaffolds by three-dimensional plotting of highly viscous dispersions, Biofabrication, vol.8, issue.1, p.15015, 2016.
DOI : 10.1088/1758-5090/8/1/015015

C. Liu, Z. Xia, and Z. Han, Novel 3D collagen scaffolds fabricated by indirect printing technique for tissue engineering, Journal of Biomedical Materials Research Part B: Applied Biomaterials, vol.269, issue.2, pp.519-528, 2008.
DOI : 10.1002/jbm.b.30975

S. Ahn, S. Lee, and Y. Cho, Fabrication of three-dimensional collagen scaffold using an inverse mould-leaching process, Bioprocess and Biosystems Engineering, vol.64, issue.1, pp.903-911, 2011.
DOI : 10.1007/s00449-011-0541-z

M. Yeo, J. Lee, and W. Chun, An Innovative Collagen-Based Cell-Printing Method for Obtaining Human Adipose Stem Cell-Laden Structures Consisting of Core???Sheath Structures for Tissue Engineering, Biomacromolecules, vol.17, issue.4, pp.1365-1375, 2016.
DOI : 10.1021/acs.biomac.5b01764

S. Moon, S. Hasan, and Y. Song, Layer by Layer Three-dimensional Tissue Epitaxy by Cell-Laden Hydrogel Droplets, Tissue Engineering Part C: Methods, vol.16, issue.1, pp.157-166, 2009.
DOI : 10.1089/ten.tec.2009.0179

URL : http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2818246

H. Kang, S. Lee, and I. Ko, A 3D bioprinting system to produce human-scale tissue constructs with structural integrity, Nature Biotechnology, vol.34, issue.3, pp.312-319, 2016.
DOI : 10.1016/j.biomaterials.2013.01.029

T. Merceron, M. Burt, and Y. Seol, A 3D bioprinted complex structure for engineering the muscle???tendon unit, Biofabrication, vol.7, issue.3, p.35003, 2015.
DOI : 10.1088/1758-5090/7/3/035003

H. Baker, S. Merschrod, . Ef, and K. Poduska, Electrochemically Controlled Growth and Positioning of Suspended Collagen Membranes, Langmuir, vol.24, issue.7, pp.2970-2972, 2008.
DOI : 10.1021/la703743m

URL : http://research.library.mun.ca/6248/3/Baker2008.pdf

X. Cheng, U. Gurkan, and C. Dehen, An electrochemical fabrication process for the assembly of anisotropically oriented collagen bundles, Biomaterials, vol.29, issue.22, pp.3278-3288, 2008.
DOI : 10.1016/j.biomaterials.2008.04.028

M. Younesi, A. Islam, and V. Kishore, Fabrication of compositionally and topographically complex robust tissue forms by 3D-electrochemical compaction of collagen, Biofabrication, vol.7, issue.3, p.35001, 2015.
DOI : 10.1088/1758-5090/7/3/035001

M. Abu-rub, K. Billiar, and M. Van-es, Nano-textured self-assembled aligned collagen hydrogels promote directional neurite guidance and overcome inhibition by myelin associated glycoprotein, Soft Matter, vol.58, issue.6, pp.2770-2781, 2011.
DOI : 10.1039/c0sm01062f

URL : https://aran.library.nuigalway.ie/bitstream/10379/4230/1/AbuRub_et_al_2011.pdf

J. Uquillas, V. Kishore, and O. Akkus, Effects of phosphate-buffered saline concentration and incubation time on the mechanical and structural properties of electrochemically aligned collagen threads, Biomedical Materials, vol.6, issue.3, p.35008, 2011.
DOI : 10.1088/1748-6041/6/3/035008

V. Kishore, W. Bullock, and X. Sun, Tenogenic differentiation of human MSCs induced by the topography of electrochemically aligned collagen threads, Biomaterials, vol.33, issue.7, pp.2137-2144, 2012.
DOI : 10.1016/j.biomaterials.2011.11.066

V. Kishore, J. Uquillas, and A. Dubikovsky, In vivo response to electrochemically aligned collagen bioscaffolds, Journal of Biomedical Materials Research Part B: Applied Biomaterials, vol.15, issue.Pt 2, pp.400-408, 2012.
DOI : 10.1002/jbm.b.31962

J. Uquillas, V. Kishore, and O. Akkus, Genipin crosslinking elevates the strength of electrochemically aligned collagen to the level of tendons, Journal of the Mechanical Behavior of Biomedical Materials, vol.15, pp.176-189, 2012.
DOI : 10.1016/j.jmbbm.2012.06.012

M. Younesi, A. Islam, and V. Kishore, Tenogenic Induction of Human MSCs by Anisotropically Aligned Collagen Biotextiles, Advanced Functional Materials, vol.100, issue.36
DOI : 10.1002/adfm.201400828

A. Islam, K. Chapin, and M. Younesi, Computer aided biomanufacturing of mechanically robust pure collagen meshes with controlled macroporosity, Biofabrication, vol.7, issue.3, p.35005, 2015.
DOI : 10.1088/1758-5090/7/3/035005

E. Bell, B. Ivarsson, and C. Merrill, Production of a tissue-like structure by contraction of collagen lattices by human fibroblasts of different proliferative potential in vitro., Proceedings of the National Academy of Sciences, vol.76, issue.3, pp.1274-1278, 1979.
DOI : 10.1073/pnas.76.3.1274

D. Stopak and A. Harris, Connective tissue morphogenesis by fibroblast traction, Developmental Biology, vol.90, issue.2, pp.383-398, 1982.
DOI : 10.1016/0012-1606(82)90388-8

V. Barocas and R. Tranquillo, An Anisotropic Biphasic Theory of Tissue-Equivalent Mechanics: The Interplay Among Cell Traction, Fibrillar Network Deformation, Fibril Alignment, and Cell Contact Guidance, Journal of Biomechanical Engineering, vol.119, issue.2, pp.137-145, 1997.
DOI : 10.1115/1.2796072

D. Huang, T. Chang, and A. Aggarwal, Mechanisms and dynamics of mechanical strengthening in ligament-equivalent fibroblast-populated collagen matrices, Annals of Biomedical Engineering, vol.58, issue.3, pp.289-305, 1993.
DOI : 10.1007/BF02368184

R. Young, D. Butler, and W. Weber, Use of mesenchymal stem cells in a collagen matrix for achilles tendon repair, Journal of Orthopaedic Research, vol.3, issue.4, pp.406-413, 1998.
DOI : 10.1002/jor.1100160403

H. Awad, G. Boivin, and M. Dressler, Repair of patellar tendon injuries using a cell???collagen composite, Journal of Orthopaedic Research, vol.16, issue.3, pp.420-431, 2003.
DOI : 10.1016/S0736-0266(02)00163-8

D. Butler, N. Juncosa-melvin, and G. Boivin, Functional tissue engineering for tendon repair: A multidisciplinary strategy using mesenchymal stem cells, bioscaffolds, and mechanical stimulation, Journal of Orthopaedic Research, vol.9, issue.1, pp.1-9, 2008.
DOI : 10.1002/jor.20456

N. Juncosa-melvin, G. Boivin, and M. Galloway, Effects of Cell-to-Collagen Ratio in Mesenchymal Stem Cell-Seeded Implants on Tendon Repair Biomechanics and Histology, Tissue Engineering, vol.11, issue.3-4, pp.448-457, 2005.
DOI : 10.1089/ten.2005.11.448

S. Calve, R. Dennis, and P. Kosnik, Engineering of Functional Tendon, Tissue Engineering, vol.10, issue.5-6, pp.755-761, 2004.
DOI : 10.1089/1076327041348464

URL : https://deepblue.lib.umich.edu/bitstream/2027.42/63428/1/1076327041348464.pdf

S. Swasdison and R. Mayne, Formation of highly organized skeletal muscle fibers in vitro. Comparison with muscle development in vivo, J Cell Sci, vol.102, pp.643-652, 1992.

Z. Kapacee, S. Richardson, and Y. Lu, Tension is required for fibripositor formation, Matrix Biology, vol.27, issue.4, pp.371-375, 2008.
DOI : 10.1016/j.matbio.2007.11.006

M. Guerquin and B. Charvet, Transcription factor EGR1 directs tendon differentiation and promotes tendon repair, Journal of Clinical Investigation, vol.123, issue.8, pp.3564-3576, 2013.
DOI : 10.1172/JCI67521DS1

URL : https://hal.archives-ouvertes.fr/hal-01239410

D. Neal, M. Sakar, and L. Ong, Formation of elongated fascicle-inspired 3D tissues From tendon injury to collagen repair Current Pharmaceutical Design 31 consisting of high-density, aligned cells using sacrificial outer molding, Lab Chip, vol.0, issue.14, 1907.

C. Yeung, L. Zeef, and C. Lallyett, Chick tendon fibroblast transcriptome and shape depend on whether the cell has made its own collagen matrix, Scientific Reports, vol.4, issue.1, p.13555, 2015.
DOI : 10.1038/nprot.2008.211

URL : http://doi.org/10.1038/srep13555

A. Breidenbach, N. Dyment, and Y. Lu, Fibrin Gels Exhibit Improved Biological, Structural, and Mechanical Properties Compared with Collagen Gels in Cell-Based Tendon Tissue-Engineered Constructs, Tissue Engineering Part A, vol.21, issue.3-4, pp.438-450, 2015.
DOI : 10.1089/ten.tea.2013.0768

URL : http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4333253

J. Torbet and M. Ronziere, Magnetic alignment of collagen during self-assembly, Biochemical Journal, vol.219, issue.3, pp.1057-1059, 1984.
DOI : 10.1042/bj2191057

URL : https://hal.archives-ouvertes.fr/hal-00314203

S. Guido and R. Tranquillo, A methodology for the systematic and quantitative study of cell contact guidance in oriented collagen gels. Correlation of fibroblast orientation and gel birefringence, J Cell Sci, vol.105, pp.317-331, 1993.

S. Chen, N. Hirota, and M. Okuda, Microstructures and rheological properties of tilapia fish-scale collagen hydrogels with aligned fibrils fabricated under magnetic fields, Acta Biomaterialia, vol.7, issue.2, pp.644-652, 2011.
DOI : 10.1016/j.actbio.2010.09.014

C. Guo and L. Kaufman, Flow and magnetic field induced collagen alignment, Biomaterials, vol.28, issue.6, pp.1105-1114, 2007.
DOI : 10.1016/j.biomaterials.2006.10.010

P. Lee, R. Lin, and J. Moon, Microfluidic alignment of collagen fibers for in vitro cell culture, Biomedical Microdevices, vol.65, issue.8, pp.35-41, 2006.
DOI : 10.1007/s10544-006-6380-z

N. Saeidi, E. Sander, and J. Ruberti, Dynamic shear-influenced collagen self-assembly, Biomaterials, vol.30, issue.34
DOI : 10.1016/j.biomaterials.2009.07.070

URL : http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3299540

B. Lanfer, U. Freudenberg, and R. Zimmermann, Aligned fibrillar collagen matrices obtained by shear flow deposition, Biomaterials, vol.29, issue.28, pp.3888-3895, 2008.
DOI : 10.1016/j.biomaterials.2008.06.016

C. Haynl, E. Hofmann, and K. Pawar, Microfluidics-Produced Collagen Fibers Show Extraordinary Mechanical Properties, Nano Letters, vol.16, issue.9, pp.5917-5922, 2016.
DOI : 10.1021/acs.nanolett.6b02828

S. Yunoki, H. Hatayama, and M. Ebisawa, A novel fabrication method to create a thick collagen bundle composed of uniaxially aligned fibrils: An essential technology for the development of artificial tendon/ligament matrices, Journal of Biomedical Materials Research Part A, vol.221, issue.9, pp.3054-3065, 2015.
DOI : 10.1002/jbm.a.35440

J. Paten, S. Siadat, and M. Susilo, Flow-Induced Crystallization of Collagen: A Potentially Critical Mechanism in Early Tissue Formation, ACS Nano, vol.10, issue.5, pp.5027-5040, 2016.
DOI : 10.1021/acsnano.5b07756

C. Ghezzi, N. Muja, and B. Marelli, Real time responses of fibroblasts to plastically compressed fibrillar collagen hydrogels, Biomaterials, vol.32, issue.21, pp.4761-4772, 2011.
DOI : 10.1016/j.biomaterials.2011.03.043

V. Mudera, M. Morgan, and U. Cheema, Ultra-rapid engineered collagen constructs tested in anin vivo nursery site, Journal of Tissue Engineering and Regenerative Medicine, vol.364, issue.3, pp.192-198, 2007.
DOI : 10.1002/term.25

B. Marelli, C. Ghezzi, and M. James-bhasin, Fabrication of injectable, cellular, anisotropic collagen tissue equivalents with modular fibrillar densities, Biomaterials, vol.37, pp.183-193, 2015.
DOI : 10.1016/j.biomaterials.2014.10.019

M. Killian, L. Cavinatto, and L. Galatz, The role of mechanobiology in tendon healing, Journal of Shoulder and Elbow Surgery, vol.21, issue.2, pp.228-237, 2012.
DOI : 10.1016/j.jse.2011.11.002

G. Pins, E. Huang, and D. Christiansen, Effects of static axial strain on the tensile properties and failure mechanisms of self-assembled collagen fibers, Journal of Applied Polymer Science, vol.63, issue.11, pp.1429-1440, 1997.
DOI : 10.1002/(SICI)1097-4628(19970314)63:11<1429::AID-APP5>3.0.CO;2-O

C. Chaubaroux, F. Perrin-schmitt, and B. Senger, Cell Alignment Driven by Mechanically Induced Collagen Fiber Alignment in Collagen/Alginate Coatings, Tissue Engineering Part C: Methods, vol.21, issue.9, pp.881-888, 2015.
DOI : 10.1089/ten.tec.2014.0479

URL : http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4553373

U. Cheema, C. Chuo, and P. Sarathchandra, Engineering Functional Collagen Scaffolds: Cyclical Loading Increases Material Strength and Fibril Aggregation, Advanced Functional Materials, vol.40, issue.14, pp.2426-2431, 2007.
DOI : 10.1002/adfm.200700116

J. Zeichen, M. Van-griensven, and U. Bosch, The proliferative response of isolated human tendon fibroblasts to cyclic biaxial mechanical strain, Am J Sports Med, vol.28, pp.888-892, 2000.

J. Riboh, A. Chong, and H. Pham, Optimization of Flexor Tendon Tissue Engineering With a Cyclic Strain Bioreactor, The Journal of Hand Surgery, vol.33, issue.8, pp.1388-1396, 2008.
DOI : 10.1016/j.jhsa.2008.04.019

L. Zhang, C. Kahn, and H. Chen, Effect of uniaxial stretching on rat bone mesenchymal stem cell: Orientation and expressions of collagen types I and III and tenascin-C, Cell Biology International, vol.32, issue.3, pp.344-352, 2008.
DOI : 10.1016/j.cellbi.2007.12.018

J. Garvin, J. Qi, and M. Maloney, Novel System for Engineering Bioartificial Tendons and Application of Mechanical Load, Tissue Engineering, vol.9, issue.5, pp.967-979, 2003.
DOI : 10.1089/107632703322495619

C. Kuo and R. Tuan, Mechanoactive Tenogenic Differentiation of Human Mesenchymal Stem Cells, Tissue Engineering Part A, vol.14, issue.10, pp.1615-1627, 2008.
DOI : 10.1089/ten.tea.2006.0415

A. Scott, P. Danielson, and T. Abraham, Mechanical force modulates scleraxis expression in bioartificial tendons, J Musculoskelet Neuronal Interact, vol.11, pp.124-132, 2011.

N. Juncosa-melvin, J. Shearn, and G. Boivin, Effects of Mechanical Stimulation on the Biomechanics and Histology of Stem Cell???Collagen Sponge Constructs for Rabbit Patellar Tendon Repair, Tissue Engineering, vol.12, issue.8, pp.2291-2300, 2006.
DOI : 10.1089/ten.2006.12.2291

N. Juncosa-melvin, K. Matlin, and R. Holdcraft, Mechanical Stimulation Increases Collagen Type I and Collagen Type III Gene Expression of Stem Cell???Collagen Sponge Constructs for Patellar Tendon Repair, Tissue Engineering, vol.13, issue.6, pp.1219-1226, 2007.
DOI : 10.1089/ten.2006.0339

V. Nirmalanandhan, J. Shearn, and N. Juncosa-melvin, Improving Linear Stiffness of the Cell-Seeded Collagen Sponge Constructs by Varying the Components of the Mechanical Stimulus, Tissue Engineering Part A, vol.14, issue.11, pp.1883-1891, 2008.
DOI : 10.1089/ten.tea.2007.0125

J. Shearn, N. Juncosa-melvin, and G. Boivin, Mechanical Stimulation of Tendon Tissue Engineered Constructs: Effects on Construct Stiffness, Repair Biomechanics, and Their Correlation, J Biomech Eng, vol.129, pp.848-854, 2007.