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ABSTRACT With the dense deployment of small cells in the next generation of mobile networks, the users
from different tiers suffer from high downlink interferences. In this paper, we propose a game theoretic
approach for joint co-tier and cross-tier collaboration in heterogeneous networks and analyze the relevance of
the proposed scheme. First, we propose a coalition structure gamewith a weightedOwen value as imputation,
where the small-cell base stations (SBSs) and their connecting macrocell user equipments (MUEs) form
a priori union. We prove that the proposed framework optimizes the users profit. As an additional global
benefit, the SBSs are encouraged to host the harmed public users in their vicinity. Second, we propose a
canonical game with a weighted solidarity value as imputation to allow cooperation among SBSs and MUEs
when they fail to connect to nearby SBSs. We prove that the weak players are protected in this scheme
and that a high degree of fairness is provided in the game. We compare through extensive simulations
the proposed frameworks with state-of-the-art resource allocation solutions, access modes, and legacy
game-theoretic approaches. We show that the proposed framework obtains the best performances for the
MUEs and small-cells user equipments in terms of throughput and fairness. Throughput gain is in order
of 40% even reaching 50% for both types of users.

INDEX TERMS Small-cells, heterogeneous networks, resource allocation, interference mitigation, game
theory, cooperative games.

I. INTRODUCTION
One of the main challenges of the fifth generation mobile net-
works is responding to the exponentially-increasing demand
for higher data capacity and data rates. This involves a greater
spectrum in low and high bands and more antennas, as well
as the deployment of more small-cells overlaying the existing
macrocells. Indeed, operators are looking to offload traffic
from their Macrocell Base Stations (MBSs) as they anticipate
data traffic to grow by 1000 times by 2018. Accordingly, the
dense deployment of small-cells is a crucial part of addressing
this growth. These small-cells are connected to the backhaul
network via optical fibre or DSL and allow not only higher
spectrum efficiency but also greater overall network capacity.
There are several additional advantages, such as improved
indoor coverage, reduced costs and power consumption along
with a higher Quality of Service (QoS) satisfaction [2].

However, the coexistence of users and base stations from both
tiers comes with several challenges.

In order for capacity to increase in tandemwith the addition
of small-cells, a rigorous interference and resource man-
agement has to be planned. An approach that eliminates
cross-tier interference is the split-spectrum policy in which
the small-cell tier uses a dedicated bandwidth distinct from
the macro-tier [3]–[5]. The drawback of this approach is
inefficiency in terms of spectrum reuse. On the other hand,
the co-channel deployment approach allows both macrocells
and small-cells to access to the entire spectrum resource,
though cooperation among the different tiers is required. Two
types of interferences induced by the co-channel deploy-
ment can seriously degrade the performances of the network,
e.g., the cross-tier interference (from the MBS to the SBSs)
and co-tier interference (from SBSs to SBSs). In order to
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mitigate these interferences several decentralized solu-
tions have been proposed [6]–[9]. On one hand, the non-
cooperative approaches have been widely studied and are
characterized by the independent decisions of the players
who aim to improve their own performances. To solve non-
cooperative games, the most widely-used concept is the well-
known Nash equilibrium [10]. Non-cooperative game theory
has been considered for resource allocation [11]–[14] and
power control [15], [16]. A non-cooperative evolutionary
game based on stochastic geometry analysis for small-
cells resource allocation is presented in [13]. On the other
hand, with the need for self-organizing, decentralized and
autonomous networks, cooperative approaches have emerged
as a key solution for the success of dense heterogeneous
networks.

According to cooperative approach, game theory is an
essential tool in helping the various entities make decisions
in two-tier networks [17]. A cooperative game can occur in a
group (i.e., a coalition) in which the players share information
and try to attempt to negotiate the attainment of common
objectives. Coalitional games can be classified into two cat-
egories [18]: canonical games and coalition structure games,
both will be studied in this paper. In a canonical game, all
players aim to form and stabilize a grand coalition. The value
of the coalition is then divided among the players such that
none of the players has any incentive to leave the grand
coalition. In coalition structure games, players are rational in
forming coalitions or a priori unions in order to maximize
profit.

In [19] and [20], the authors proposed a canonical and
a coalitional game model, respectively, as a technique for
co-tier interferences mitigation among cooperative small-
cells. In [21], the authors propose a bankruptcy game
approach for resource allocation in cooperative networks.
However, according to these three frameworks, a split-
spectrum approach is adopted, and hence the cross-tier
cooperation is not investigated. A theoretical game-based
cognitive radio resource management approach is proposed
in [22] and [23]. In these studies, a coalition game is devel-
oped for use in subchannel allocation in situations where
cognitive small-cells act as secondary users and have a higher
priority than MUEs but the collaboration between the two
tiers is not investigated; in these cases, the priority applied
can result in a deterioration of the macro-tier performances.
In [24], the authors consider the cross-tier cooperation among
SUEs and MUEs in order to alleviate the downlink interfer-
ence. It allows the MUEs to explore nearby small-cells by
cooperating with the SUEs, which act as relays; however, in
these cases the closed-access mode is adopted which pre-
vents the MBS from offloading its high data traffic to the
small-cell tier.

A hybrid access mode is a promising solution as it allows
a public user suffering from downlink interferences from a
nearby SBS to connect to this small-cell in order to process
its demands. However, only a limited amount of the small-cell
resources is available to all users, while the rest is operated

within a closed subscribed group (CSG) manner [25].
Very few papers have investigated the collaboration between
the harmed MUEs and neighbouring SBSs in instances when
the first fails to connect to the small-cell. Yet another problem
not fully investigated is when the cooperative games involve
hybrid or open-access small-cells. Several questions arise:
How can the cooperation between users and base stations
from different tiers be modelled? How can the small-cell
tier properly process the MUEs demands, while managing
the cooperative resource allocation in a fair and strategic
manner? How can the SBSs be encouraged to serve public
users without degrading their own performances? How can
the different bargaining power levels be managed in a game?

Such questions are essential to the successful dense deploy-
ment of small-cells; our proposed cooperativemodel attempts
to provide solutions to these issues. The main contribution
of this paper is to propose a new cooperative-game frame-
work for co-tier and cross-tier interference mitigation and
resource management under an open-access mode of small-
cells, which allows the MBS to offload its data traffic to the
dense small-cell tier. When MUEs are served by a nearby
SBS, we propose forming a union of the related SBS and
MUEs in a given game in order to attribute a reasonable profit
to the hostedMUEswhile rewarding the SBS for actively par-
ticipating in the interference mitigation process. Accordingly,
when the union SBS-MUEs is formed, its members commit
themselves to bargaining with the others as a unit. Any gain
obtained by the players of the unions are then shared accord-
ing to a coalition structure solution (i.e. Weighted Owen).
When the harmed MUE fails to connect with a nearby SBS,
it participates in a cooperative game with its interferers in
order to split the available resources following a solidarity-
based imputation scheme (see Fig.1 and Fig.2). Our key
contributions are summarized in the following:

1) We create a new collaborative framework based on two
different game theoretic approaches in which the end
user benefit is quantified in terms of throughput and
fairness for both MUEs and SUEs of the system.

2) We address the resource allocation problem when
MUEs and SUEs coexist in a small-cell coverage area
using a CS game based on the formation of unions
when SBSs host public users in their neighbourhood.
• We prove that the proposed CS game under a
Weighted Owen imputation value optimizes the
profit of the MUEs and SBSs which participate in
the unions. A direct consequence is that the SBSs
are encouraged to host the harmed public users in
their coverage area as the users joining forces get
a better profit than bargaining individually.

3) We address the co-tier and cross-tier resource alloca-
tion problem when MUEs are not hosted but inter-
fered by neighbouring SBSs using a canonical game
approach.
• We propose a new algorithm for the computation
of the canonical game imputation (i.e. a Weighted
Solidarity value). We prove that it protects the
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FIGURE 1. An illustration of a scenario leading to the proposed coalition
formation and coalition structure game.

FIGURE 2. An illustration of a scenario leading to the proposed coalition
formation and canonical game.

weak players when their power of bargaining is low
and provides a higher degree of fairness. Addition-
ally, it does not allow any user to obtain more than
its claim and discourages players from asking for
higher demands.

In the next section of this paper, we present the problem for-
mulation and motivations, followed by the SBSs and MUEs
interference set formation process in Section III. Section IV
presents the cooperative game framework and the identified
imputation values. Finally, to validate the effectiveness of
our proposed cooperative game approach, we present the
simulation results in Section V.

II. PROBLEM FORMULATION AND MOTIVATIONS
In cooperative games, users are given the opportunity to
collaborate in order to split the available resources. With
the development of self-organizing and decentralized small-
cells, the latter should be capable of managing not only the
interferences they induce to each other but also the inter-
ferences induced to the neighbouring MUEs. To do so, it is
essential to incorporate a cross-tier interference collaborative
mitigation scheme into the existing co-tier models. The SUEs
can be easily represented by their SBSs that participate in
the game and redistribute the payoff among their CSG users.
However, as we want our model to be distributed, we need
to incorporate the MUEs into the game as players. Indeed,
when MUEs are interfered with one or several SBSs, they
compete with the latter for the same resources in a co-channel
deployment. Hence, they can form a coalition and bargain
their resources with the interfering SBSs. A second plausible
scenario might involve the MUE connecting with a nearby
hybrid or open-access SBS: if the SBS represents the MUE
in the game, it might unfairly split the resources among its
own CSG and public users. The concept that players have a
‘‘right to talk’’ in a game, has been introduced in [26] and it is
one that we also wish to be extended to MUEs of the system.
Indeed, in a resource allocation game, the SBSs express their
demands in terms of a number of tiles (i.e. resources) and
participate in a game with the other agents in order to split the
available resources. When the nearby MUEs are attached to a
given SBS, their demands are ‘‘absorbed’’ by the paired SBS
(added to the initial demand of the SBSCGS users). However,
the reward might be unfairly redistributed by the hosting SBS
among the users of both types (subscribers or public users).

The coalition structure will give us an essential model in
which players need to organize themselves into groups for
the purpose of sharing the network’s resources. This is a
great opportunity for heterogeneous networks in which the
neighbourhood small-cells concept described earlier in which
the small-cells are encouraged to allow the access to public
users in their neighbourhood. It is no longer appropriate to
consider the SBSs as single players. Indeed, the SBS plays
the game for the purpose of reallocating its payoff to its own
users but the MUEs must have the chance to participate in
the negotiation process too, in order to not be cheated by the
SBSs who might prioritize their own subscriber users. This
is facilitated by the introduction of a coalition structure into
the game which consists of a partition of players into a union.
This can be considered analogous to a family that has to take
into account all its members before making decisions that
impact them. Such an approach also creates a better bargain-
ing situation, as the other party has to convince jointly all the
members. Some imputation values, like the Owen value [27]
ignore the power of the unions and attribute the same weight
to the unions as to single players. The imputation value of
our model is therefore superior because it gives a greater
weight to the unions while allowing entities from both tiers to
participate in the spectrum sharing. In this way, a single game
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allows us to fairly manage inter-union collaboration as well
as intra-union resource bargaining. In turn, this also facilitates
the achievement of an overall consensus, in which each user
has a ‘‘right to talk’’ in the game.

III. SYSTEM MODEL
We consider the downlink of an Orthogonal Freqency
Division Multiple Access (OFDMA) macrocell network
overlaid by N SBSs and K MUEs. The SBSs reuse the
entire bandwidth allocated to the underlying macrocell. Let
F = {F1, ..,Fn, ..,FN } be the set of SBSs and M =

{M1, ..,Mn, ..,MK }, the set of MUEs in a given macrocell.
For their downlink transmission, SBSs might cause co-tier
interference to the neighbouring SBSs and cross-tier interfer-
ence to the surrounding MUEs as we consider a spectrum-
sharing approach. In non-cooperative networks, the users of
both tiers consider the downlink interferences of all surround-
ing SBSs. Here, under the cooperative approach, SBSs and
MUEs of the system collaborate in order to share the available
resources andmitigate the co-tier and cross-tier interferences.
Each SBS and MUE of the system determines its interfering
set in the downlink in order to form cooperative sets as
depicted in Fig.1 and Fig.2.

A. INTERFERENCE SET DETECTION
Each user SUE within a given small-cell Fn boundary, cal-
culates the ratio of the received signal from Fn to the sig-
nal received from all surrounding macrocells and from the
surrounding SBSs [19]. To determine the interference set
of the small-cell of interest, we need to consider only the
interference induced by one SBS at a time. The downlink
signal-to-interference-plus-noise ratio (SINR) achieved by a
SUE yn associated with small-cell Fn on a particular tile k
when interfered by small-cell Fn′ is given by [19]:

γ kyn,Fn =
PkFnG

k
yn,Fn∑

m∈M
Pkmhkyn,mG

k
yn,m + P

k
Fn′
Gkyn,Fn′ + σ

2
(1)

whereGkyn,Fn andG
k
yn,m represent the channel gains from SBS

Fn and MBS m to SUE yn, respectively, in small-cell Fn on
tile k , σ 2 the noise power andM the set of surroundingMBSs.

Let I fn be the interference set of Fn composed of Fn and
SBSs causing interferences to its users. If the SINR γ kyn,Fn
achieved by FUE Fn is inferior to a certain SINR threshold δf ,
then the SBS Fn′ is considered to be an interferer of Fn and
joins its interference set I fn . We proceed this way for each
SBS in the network until all SBSs have formed their interfer-
ence set or remained alone if they are not interfered by any
neighbouring SBSs.

In the same manner, each MUE calculates the ratio of the
received signal from its corresponding MBS to the signal
received from all surrounding small-cells and macrocells.
Similarly, we take into account only the interference induced
by one SBS at a time to determine if it is an interferer of
the MUE Mn. The SINR achieved by a MUE Mn associated

with macrocell m on a particular tile k when interfered by the
small-cell Fn can be written as:

γ kMn,m =
PkmG

k
Mn,mh

k
Mn,m∑

m′∈M ′
Pkm′h

k
Mn,m′

GkMn,m′
+ PkFnG

k
Mn,Fn + σ

2
(2)

where hkMn,m is the exponentially-distributed channel fading
power gain associated with tile k .GkMn,m andGkMn,Fn represent
the path loss associated with k from a MBS m and SBS Fn
to a MUE Mn, respectively, in macrocell m. Let Imn be the
interference set ofMn composed ofMn and SBSs interfering
with Mn. Here, if the SINR γ kMn,m achieved by MUE Mn

is under to a certain SINR threshold δm, the SBS Fn is
considered to be an interferer ofMn and joins the interference
set Imn .
Within the interference set Imn , if the MUE Mn is located

in the coverage area of a SBS Fn, and if the MUE receives
a better SINR from this SBS than from its serving MBS it
always tries to connect to the corresponding SBS. If the MUE
succeeds in connecting to a nearby SBS, the two are assumed
to be paired in the sequel. These pairs will be used in the
next section to build the CS games. Once we have determined
the interference set for each SBS and MUE of the system,
we sort these interference sets in descending order, firstly
according to their cardinality and secondly according to the
overall demand of the interference set.

IV. CROSS-TIER MACROCELL-SMALLCELLS
COOPERATION AS COALITIONAL GAMES
A. PROPOSED GAME THEORY APPROACH
In the presence of dense small-cell deployment within urban
environments, the overall demand in the shared spectrum
often exceeds the number of available tiles |Z | [21]. Assum-
ing that in the same interference set, the SBSs and MUEs
can share information about their demands, we formulate the
problem of co-tier and cross-tier interference mitigation and
resource allocation as a cooperative game. To solve the prob-
lem mentioned above, we propose the following approach.
When a MUE connects to a SBS, the latter does not absorb
the demand of the connecting public user. Instead, the MUE
is considered as a player, even if the demand of the MUE
will be processed by the paired SBS. The MUE will join
the SBS in a union, known as a priori union. If the MUE
fails to connect to the nearby SBS, the MUE acts as a single
player and participates in a resource allocation game with the
nearby SBSs. In such a case, the demand of the MUE will be
processed by the MBS. Such a game is also played when only
SBSs are involved in an interference set (co-tier model).

Cooperative games involve a set of players in a system,
who seek to form cooperative groups (i.e interference sets) in
order to improve their performances. The aim of the proposed
cooperative approach is: 1) to form an interference set in order
to reduce co-tier and cross-tier downlink interferences, 2) to
find a binding agreement among the agents of the same set to
split the available resources.
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FIGURE 3. General flow chart describing the formation of the coalition structures and the
classification of the two games.

We follow the steps described in Figure 3. The first step
is the interference set detection developed in section III.A.
The next step is a game iteration following the order in the
sorted list of detected interference sets. The type of the game
depends upon the type of the harmed agent in the formed
interference set (MUE or SBS). If a SBS is not hosting any
MUE or if a harmed MUE fails to connect to a nearby SBS,
it participates in a canonical game with its interference set
members. However, if the SBS is hosting a MUE, they form
a union and a CS game is played between this union and the
interference set of the paired SBS. Both type of games are
defined in the sequel.

B. DEFINITION AND FORMULATION OF THE GAME
As mentioned before, in the presence of dense small-cell
deployment within urban environments, the overall demand
in the shared spectrum often exceeds the number of available
tiles |Z | [21]. Assuming that the SBSs and MUEs belonging
to the same interference set In can share informations about
their respective demands and allocations, the resource alloca-
tion problem can be formulated as a cooperative game with
transferable utility. Let In denotes the interference set of the
current game iteration. It corresponds either to I fn or Imn but
we omit this differentiation for simplicity.
Definition 1: A cooperative game with transferable utility

(TU-game) is a pair (N , v) where N is a non-empty set and
v : 2P → R a characteristic function defined on the power
set of N satisfying v(∅) = 0.
We consider N ≡ In and we define the worth v(S)

associated to each coalition S ⊆ N the amount of available
resources not claimed by its complement nor already allo-
cated to players of N in a precedent iteration of the game.

v(S) = max{0, |Z | −
∑
j∈N \S

d(j)−
∑
j′∈C

p(j′)},∀S ⊆ N \{∅}

(3)

with C ⊆ N being the set of players of In that have already
participated to the game in a previous iteration, p(j′) being

the number of resources allocated obtained by the users of
C and d(j) the number of tiles claimed by the complement of
the coalition S. Indeed, a SBS or MUE can be part of several
interference sets, and following the order of the interference
sets described above (i.e the largest and most demanding sets
first), one agent might have already played and received its
payoff in a previous interference set.

C. NON-EMPTINESS OF THE CORE AND STABILITY
OF THE GRAND COALITION
We assume that the grand coalition N will be formed, it is
then necessary to explain why it is stable. Hence, as the core
of a canonical game is directly related to the grand coalition’s
stability we need first to prove that the core is non-empty
for the considered game in (3). It has been proven in [28]
that convex games have non-empty core, hence ensuring the
stability of the grand coalition.

A TU game is convex if and only if:

v(S ∪ T )+ v(S ∩ T ) ≥ v(S)+ v(T )∀S,T ⊆ N (4)

Yet, as the characteristic function in (3) corresponds to the
function of a bankruptcy game, the proof of the convexity
of a bankruptcy games as the one considered here in (3)
can be found in [29]. This convexity property also implies
that the game is superadditive and supermodular [30], hence
satisfying the following inequality: v(S ∪ {i})− v(S) ≤ v(T ∪
{i})−v(T ) ∀S ⊂ T ⊂ N \{i}. This inequality implies that the
marginal contribution of a player to a coalition is larger than
its marginal contribution to another smaller coalition, hence
ensuring the stability of the grand coalition.

For the CS game proposed in the subsection D, we consider
the same characteristic function defined in (3). The union
formed and the coalition structure incorporated into the game
act only as an additional element which influences how the
worth of the grand coalition is split among its members.

Once we assumed that the players of a game form the
so-called grand coalition; the problem then is to agree on
how to share the received profit v(N ) among the players in
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an interference set. The output of this decision is called the
imputation of the game x = (x1, x2, . . . , xn) which is a payoff
vector where player i receives xi.
In the next section, we discuss the possible imputation

values satisfying efficiency (
∑
i∈N

xi = v(N )) that we can use

for the proposed games. We will explain which imputation
values are the most appropriate for these games if fairness
and stability are the most desired properties of the payoff.

D. THE PROPOSED CANONICAL GAME
As depicted in Fig.3, upon each significant change in
demands or network topology, the SBSs and the MUEs of
the system determine their set of interferences following the
method detailed in Section III. If the MUE fails to connect to
a nearby SBS, it participates in a canonical game with the
members of its interference set. Similarly, if a SBS is not
hosting any MUE, it participates in a canonical game with
the other agents of its coalition. Aforementioned, we assumed
that the SBSs and MUEs of each interference set agree to
form the grand coalition.Wewill develop here how the payoff
of the grand coalition v(N ) will be split among these players.

1) IMPUTATION VALUE FOR THE CANONICAL GAME
Let us first define the most well-known solution, the Shapley
value Sh(N , v) as [30]:

Shi(N , v)=
∑

S⊆N :i∈S

(|N | − |S|)!(|S|−1)!
|N |!

1i(v, S) ∀i ∈ N

(5)

1i(v, S) is the marginal contribution of a player i in coali-
tion S defined as 1i(v, S) = v(S ∪ i)− v(S).

The drawback of this solution is that it essentially considers
the productivity of the players. In other words, the stronger a
player is, the higher its payoff in the game. Yet, the strength
of a player in the proposed game is determined by its demand,
and therefore low-demand users might be affected by this
imputation value. With both types of players in the game,
the SBSs generally have more bargaining power in the game
as they collect the demands of their several SUEs, while the
MUE acts as a single player weighing only its own demand.
In any case, it is important to avoid rewarding the players who
have higher demands so that those who would claim more
resources in order to gain a stronger position within the game
are prevented from doing so.

a: SOLIDARITY VALUE
We want to apply a solution concept that incorporates some
degree of solidarity so as to protect the MUEs from powerful
SBSs and also to protect other weak SBSs within a given
interference set. An appealing solution is the Solidarity value
Sl(N , v) which takes into account the principles of produc-
tivity and redistribution, expressed as [31]:

Sli(N , v)=
∑

S⊆N :i∈S

(|N |−|S|)!(|S|−1)!
|N |!

1av(v, S) ∀i ∈ N

(6)

with 1av(v, S) = 1
S

∑
i∈S
1i(v, S). Productivity is taken into

account as the marginal contribution 1i(v, S) appears in the
calculation. This value also shows some redistribution; not
only is the player’s marginal contribution considered, but so
too is that of the players in a given coalition. In this way, the
weak players of the game are protected.

Let E[δγi (N , v)] be the average gain of player i. This value
refers to the expected variation in the payoff of player i
assuming that each player of N has the same opportunity to
leave the game .
Axiom 1: An imputation value satisfies the equal aver-

age gains if ∀ (N , v)and ∀{i, j} ⊆ N , E[δγi (N , v)] =
E[δγj (N , v)].
It has been proven in Theorem 3 [32] that the solidarity

value satisfies the equal average gains axiom. This provides
two important assets for wireless communications systems.
First, it incorporates a major sense of fairness into the game
due to the equal average gain described above. Secondly, the
agents of the network are not motivated by claiming more
than what they really need to process their calls, thereby
avoiding the cheating behaviour of some players who might
ask for more resources in order to increase their bargaining
power. However, this solution has an important limit, which
is expressed in the remark below.
Remark 1: A player might receive more than their claim

when the solidarity value is used as imputation, thereby
violating the satiation axiom defined below.
Axiom 2: After applying an imputation value to a game

(N , v), no player of a bankruptcy game should receive more
than their claim. Therefore, if

∑
i∈N

di > Z; xi ≤ di, ∀i ∈ N .

Note that the game under study, defined in (3), is a
bankruptcy game, since the amount of resources available
for each interference set is below the total demand of the
members of the set. However, when the solidarity imputation
value is applied in order to share the amount of available
resources, some claimants may receive more than they claim,
which violates the above satiation axiom. This is based on
the fact that the solidarity value contributes to the expected
average marginal contribution of a player. Here, productive
players cede some parts of their marginal contributions to the
weaker members, which reflects a sort of social sympathy and
is a desired property of the solidarity value. Thus, the variance
of the payoff distribution has been reduced. When a user with
a low demand is part of an interference set containing several
powerful users, the satiation axiom is difficult to satisfy as
several of them will contribute to the marginal contribution
of the weak members.

b: PROPOSED WEIGHTED SOLIDARITY VALUE
When the problem specified in Remark 1 is encountered,
we need to apply a solution with the same degree of social
empathy but that protects the system from attributing a profit
exceeding the claim of the users. Indeed, in this case the
solidarity value outperforms its initial role of protecting weak
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users and actually allocates a bigger payoff to them than it
should.We propose a weighted solidarity value when the pay-
off obtained by the solidarity value is higher than a player’s
claim. The weights of the weighted solidarity value allow us
to decrease the power of some users who receive an excessive
amount of resources in order to limit the maximum of their
profit to their demands. We propose to compute the appro-
priate weights in order to satisfy the satiation axiom for every
player of the game. To do so, we need first to identify the users
for whom the payoff obtained by the solidarity value is greater
than the demand. If there is only one user of the interference
set violating the satiation axiom, the weight applied to this
user is the ratio of the demand by the payoff obtained from
the solidarity value. This is explained by the fact that the non-
weighted form of the Solidarity value simply uses a weight
vector equal to one. Otherwise, if there are more than two
users in a given interference set violating the satiation axiom,
we need to compute the optimal weight vector to remedy
this violation. To do so, we solve an equation in which the
number of variables is equal to the number of users violating
the satiation rule. Let J ⊆ N be the partition of users for
whom the payoff obtained by the solidarity value exceeds
their demands, and let d = (d1, . . . , dn) be the vector of
demands where di stands for the demand of user iforalli ∈ N .
Let w = (w1, . . . ,wn) be the vector of weights where wi is
the weight of the player i ∈ N and

∑
i∈N

wi
|N |
= 1.

We need to solve the linear system for all i ∈ J of the
form:

wi =

di
|J |
∗

(
|N | +

∑
k∈J−{i}

wk − |J |
)

Sli(N , v)
∀i ∈ J (7)

We can then update the vector of weights with the set of
solutions obtained from the resolution of the above set of
equations (wi)∗i∈J . We express the final weight vector to be
used for the weighted solidarity value as:

wi =

{
1 if i ∈ N \{J }
(wi)∗ otherwise

(8)

Algorithm 1 summarizes the different steps to compute the
proposed weighted solidarity value.
Axiom 3: The weighted solidarity value with the computed

weights satisfies the satiation rule.
This is explained simply by the fact that the weight vector

that has been applied does not allow any user to obtain more
than its claim.

E. THE PROPOSED COALITION STRUCTURE GAME
We recall first the motivations behind the CS game. After the
MUEs have identified their set of interferers, a harmed MUE
leaves its interference set and joins that of a hosting SBS, if
it can connect to it. Note that two types of SBSs have been
identified: the hosting SBS which corresponds to the small-
cell permitting access to one or more MUEs; and the non-
hosting SBSs that do not have any connected MUE. In the

Algorithm 1 Calculate the Imputation (xi)i∈N of (N , v)
1: Initialize (wi) = 1 ∀i ∈ N {The weight vector elements

are all set to one} and initialize J = {∅}
2: xi ← Sli(N , v) ∀i ∈ N {We compute the imputation

value with the Solidarity Value}
3: for all i ∈ N do
4: if xi > di then
5: J := J ∪ i {If the payoff obtained by the solidarity

value exceeds the demand of user i, i joins the subset
J of satiation axiom violating users}

6: end if
7: end for
8: if J 6= {∅} then
9: Go to procedure {We need to compute the weighted

solidarity value ∀i ∈ N }
10: else
Output: xi {The satiation axiom has not been violated by

any user of N }
11: end if
12: Procedure: Slwii {Procedure to compute the weighted

solidarity value of users i ∈ J }
Input: (Sli(N , v), di)∀i ∈ J
13: Find the solutions of the set of linear equations (7)
14: wi = (wi)∗∀i ∈ J and wi = 1 ∀i ∈ N \ {J } {We update

the vector of weights with the weights resulting from the
resolution of the linear equations as in (8)}

15: x∗i ← Slwii ∀i ∈ N {We compute the imputation value
with the weighted Solidarity Value}

Output: xi← x∗i ∀i ∈ N

latter case, the non-hosting SBS participates in a canonical
game with its interference set members, as discussed in the
previous section. On the other hand, when a SBS type is
hosting, it participates with its interference set members in
a cooperative resource allocation game in which the SBS and
its hosted MUEs (one or several) form a priori union. The
resulting coalition structure is incorporated into the game.
Definition 2: If P = {P1,P2, . . . ,Pm} is a partition of In

that satisfies ∪1≤j≤mPj = N and Pi
⋂
Pj = ∅ if i 6= j then

P is a coalition structure over N . The sets Pj ∈ P are the
unions of the coalition structure.

Let P(N ) be the set of all coalition structures overN ≡ In.
We will denote the game (N , v) with the coalition structure
P ∈ P(N ) as (P,N , v) [32]. In the proposed game, a MUE
always tries first to connect to the closest SBS of the formed
interference set.

If connected, the hosting SBS F1 and its n′ connecting
MUEs form a union {F1,M1, . . . ,Mn′}. The coalition struc-
ture obtained from the incorporation of this union can be
expressed as: P = {F1,M1, . . . ,Mn′}, {F2}, {F3}, . . . {Fn}},
where {F1,M1, . . . ,Mn′} is a partition of I fn formed by the
related SBS-MUEs; every other player is a singleton.

Hence, we need to find an appropriate coalitional value
to split the resources among and within the unions.
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Specifically, we propose that in a coalitional structure game
the hosting SBS and its interference set members first play
a quotient game (i.e game among the unions) in which the
union acts as a single player. Next, they play an internal game
(a game within a union among the members of the union) to
split what the SBS-MUE union has obtained. Let (M , vP) be
the quotient game induced by the CS game (P,N , v), consid-
ering the unions of P as players. Furthermore, let (Pk , vk ) be
the internal game taking place among the players within each
union. Earlier, we defined a value as a function that assigns
to each game (N , v) a vector (x)i∈N representing the amount
that each player i in N expects to get in the game. Similarly
here, a coalitional value is a function that assigns a vector of
worth to each game with coalition structure (P,N , v). One of
the most important coalitional values is the Owen value [27].
The Owen value applies the Shapley value at both levels,
among the unions and within the unions.

1) THE WEIGHTED OWEN VALUE AS THE IMPUTATION
VALUE OF THE CS GAME
We restrict our attention here to coalitional values satisfying
the efficiency property; yet, the grand coalition is formed
and the coalition structure described above is incorporated in
the game, hence influencing the way the amount obtained by
the grand coalition is shared among itsmembers. Note that the
agents of a CS game play first a quotient game (i.e, a game
among the unions) where the union acts as a unit, followed by
an internal game (a game within a union among the players
of the union) to split what the union has obtained. We will
separately define the values applied to compute the payoff
of the player in the quotient game from those applied in the
internal game. The coalitional value applied to this type of
game is the weighted Owen value [33]. The weighted Owen
value takes the size of each union into account. Indeed, the
use of a symmetric imputation value would be unjustified as
the players are groups of agents in the proposed model. The
size of the unions depends on the number of MUEs hosted
by the SBSs in the system. An obvious candidate for the
quotient game is the weighted Shapley value by which users
are weighted by the size of the unions they stand for. The
inter-coalitions and intra-coalitions bargaining processes and
the corresponding imputation values are now described.

a: THE QUOTIENT GAME
When a SBS and its connecting MUEs form a partition
and compete with the other members of the harmed SBS
interference set as a unit, a situation in which coalitions
have different sizes develops. It seems reasonable to assign a
size-aware weight to each coalition. Lets define the reduced
game (M , vP) corresponding to the quotient game induced
by the CS game (P,N , v), considering the unions of P as
players. Here, M = (1, 2, . . . ,m), with m representing the
number of unions in the game and vP(K ) := v(∪i∈KPi) for all
K ⊆ M . In the quotient game, the profits are divided among
unions following the weighted Shapley value. The weighted
Owen value computes the weights from the given coalition

structure, the weights being proportional to the size of the

coalition. Hence wu =
|Pu|
|N |
∀Pu ∈ P, having

∑
u∈M

wu = 1.

The unanimity games will allow us to define the weighted
Shapley value, which describes how a coalition splits one unit
between its members: for all K ⊆ N , the unanimity game of
the coalition K , (N , uK )), is defined by:

uK (S) =

{
1 if S ⊇ K
0 otherwise

(9)

Recall that the unanimity game is only used to help us define
the used values.

We can then define the weighted Shapley value for each
unanimity game (N , uK ) as [33]:

Shwi (N , uK ) =


wi∑

j∈K
wj

for i ∈ K

0 otherwise

(10)

Where w = (wi)i∈N is a vector of positive weights. The
coalition splits the payoff among its members proportionally
according to their weight.

As the SBS and MUE form a union and the other players
are singletons in an interference set, the union has more
weight in the game, and therefore gets a larger profit than
if the MUE and SBS were acting as singletons. Hence, we
protect the MUE and we reward the collaborating SBS by
allowing the harmed public users to connect.
Remark 2: As the weighted Shapley value satisfies effi-

ciency in the internal game (P,v), it follows that the weighted
Owen value satisfies the quotient game property. We can
then state that the profit of each coalition corresponds to its
weighted Shapley value in the game among coalitions, with
weights given by its size. Then

∀Pu ∈ P,
∑
i∈Pu

ϕNi = ShwMi (v\P) (11)

Proposition 1: When the estate is shared with the weighted
Owen value, a player of both types (e.g., MUE or SBS) gets
a better profit by joining forces than they do bargaining
themselves.

Proof: Let Pu and Pv represent two coalitions belonging
to P, and let Pu+v = (P\{Pu,Pv}) ∪ {Pu ∪ Pv}. We will say
that a coalitional value f is joint monotonic if [26]:∑

i∈Pu
⋃
Pv

fN
i (P) 6

∑
i∈Pu

⋃
Pv

fN
i (P

u+v) (12)

This means that if Pu and Pv join forces, they win a better
profit than they would acting as singletons. It has been proven
in [26] that the weighted Owen value is joint-monotonic in
convex games (Proposition 3-1). Our game under study in (3)
corresponds to a bankruptcy game, it has been proven it is
convex in [29]. The proof of the joint monotonicity of the
weighted Owen value in convex games concludes the proof
of Proposition 1. �
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Algorithm 2 Proposed Algorithm for Cooperative Down-
link Cross-Tier Interferences Mitigation and Resource
Management

Initial State: Deployment of the SBSs and MUEs in the system
and each agent express its demand in term of number of tiles.
Phase I:Interference set detection

a) Based on the minimum required SINR the SBSs and MUEs of
the system determine their set of interferences I fn and Imn ∀f ∈
F and ∀m ∈ K . If the SINR received by a harmed MUE from a
nearby SBS is higher than the one received by the MBS, the MUE
tries to connect to the corresponding SBS.
b) The interference sets are sorted according first to cardinality,
then to the overall demand in a descending order.
Phase II: The game iteration

repeat For each interference set Imn following the settled order
if the harmed MUE succeeded in connecting to a nearby SBS
then

a) The MUE leaves its respective interference set and joins the
one of its hosting SBS.
b) The agents of the interference set who have not participated
to a game in a precedent iteration form a coalition structure
N with the formed a priori union and all the other SBSs as
singletons
c) A CS game (P, n, v) is played (i.e a quotient game and an
internal game)
d) Every player i ∈ N receives the payoff xi from theWeighted
Owen value

else
a) The MUEs and their interfering SBS who have not played
to a game in a precedent iteration form the grand coalition and
participate in a canonical game
b) The players receive their payoff from the Solidarity value or
the weighted Solidarity value

end if
until all players of the system have played
Phase III: Resource allocation

The MUEs and SUEs receive from their serving base station
(MBS or SBS) the resources obtained from the game

b: THE INTERNAL GAME
Regarding the internal game, the weighted Owen value
attributes the final payoff to the users of each union by
splitting the worth gained by the quotient game with the
Shapley value. The solution value for the internal game
(Pk , vk ) is the Shapley value with vk (S) = Shwk (M , vP|S ).
That is, ϕi(P,N , v) = Shi(P, vk ). We remind here that the
internal game will take place among the hosting SBS and
its hosted MUEs. We note that we use the Shapley value
in the internal game to avoid penalizing the hosting SBS.
Indeed, if a solidarity-based value is applied in the internal
game, the unique SBS if its demand is high, will have to
participate to the marginal contribution of the several MUEs
in its union. This will result in lower SBS performances. On
the other hand, as a Weighted Owen value has been applied
in the quotient game, a substantial amount of resources have
been obtained by the union, and as there is only one SBS per
union, the MUEs will still have a significant payoff. As it
is important to reward the hosting SBSs while attributing a
reasonable amount of resource to the hosted MUES in each
union, the Shapley value is the most appropriate in this case.

TABLE 1. Numerical values.

V. SIMULATION RESULTS AND ANALYSIS
In this section, we present the simulation results of our pro-
posed cooperative game approach. We assume that a macro-
cell is overlaid by 200 small-cells in a spectrum-sharing
network. We simulated several scenarios of varying user
demand and location within the network. The simulation
parameters are summarized in Table 1. Based on the SINR,
the agents determine their interfering sets. We consider the
pathloss model of Winner II calculated in dB as: Gki,j(d) =
44.9− 6.55 log10(hBS ) log10(d)+ 34.46+ 5.83 log10(hBS )+
23 log10(fc/5)+nijWi,j, d being the distance between a user i
and a base station of either type j, hBS the height of the base
station, fc the carrier frequency. Also, nij denotes the number
of walls and Wi,j = 5dB denotes the wall loss. Note that
for communications from a SBS to an indoor SUE attached
to an other SBS, nij = 2, for all other cases nij = 1. The
SBSs collect the demands of their users and the MUEs of
the system express their demands in terms of number of tiles.
We assume that the users of the system have equal priority;
the proposed framework can be easily adapted to different
degrees of priority in a future study. We ran 500 simulations,
allowing us to reach a confidence level close to 100%.

A. COMPUTATIONAL COMPLEXITY
First, we will discuss the computational complexity of the
proposed framework. The complexity of the different coali-
tional values can be compared for the canonical game.
Recalling that the Shapley value is obtained with O(2n) oper-
ations with n the number of players in an interference set
(maximum 12 in our simulations) [34]. For the CS game, the
computational complexity of the Owen and weighted Owen
value are similar. These values are the average of all marginal
contributions of i in all orderings of the players that preserve
the grouping of the players into unions. Hence, they need
O(A∗2k +2A) operations to be computed, with A the number
of unions and k the maximum number of agents in a union.
In Equation 6, we can see that the computational complexity
of the solidarity value is similar to the Shapley value, which
is O(2n). However the computation time of the Solidarity
value is slightly higher but the difference is negligible. This
is explained in Equation 6, as to compute the Solidarity value
we do not only need to compute themarginal contribution of a
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player but also the marginal contribution of the other players
in a given coalition. In terms of average computation time,
the solidarity values needs 0.23 seconds to be computed in the
symmetric version and 0.27 seconds for the weighted version.
For the coalition structure values, 0.028 seconds are needed
for the Owen value and 0.032 seconds for theWeighted Owen
value. These lower computational time of the CS game are
justified by the partnership in this type of games that allows
us to treat a union of partners as an individual, hence reducing
the size of the game. At the same time, the size of the game
is essential to the computational complexity in game theory
which permits a lower computational time. The computa-
tional complexity of the solidarity value is marginally higher,
but still polynomial. The empirical tests performed on the
executing times of each method show that the variances are
very small (executing times are nearly similar). This is an
expected result as we are calculating polynomial formulas
in each case studied here. However, the computational com-
plexity of the centralized approach is much higher and has
an average computation time of dozens of seconds. Note that
the centralized approach simulated in this paper refers to the
Centralized-Dynamic Frequency Planning [35].

FIGURE 4. A snapshot of a dense small-cell networks. The SBSs are
modelled by a Poisson process represented by green points. The center
red square represents the MBS, the blue triangles represent the MUES:
those with a red point in the centre are served by the MBS; those with a
blue point are served by the SBS offering the best SINR. The blue lines
represent the link between a SBS and its hosted MUE.

B. COMPARISON WITH OTHER SCHEMES OF THE ART
In Figure 4, we presented a snapshot of a dense heteroge-
neous network in which 200 small-cells overlay a macrocell
with 100 MUEs. This shows that the MUEs located in the
center area of the cell are better served by the MBS as the
required SINR is reached. However, in the cell edge most of
the MUEs fail to reach their required SINR when connected
to the MBS, and therefore need to be served by the SBS
offering the best signal. We notice from the density of the
network that in both cases cooperative spectrum access is
needed as the users from both tiers compete for the same
resources under the co-channel deployment. In Figure 5,

FIGURE 5. Throughput Cumulative Distribution Function for users of both
types: Comparison of the centralized approach, the F-Aloha method and
the proposed framework.

we compare the F-ALOHA [36] and the centralized
approach [35] to the proposed game theory model. Our pro-
posed model shows better performances in all cases for dense
(100 SBSs) and very dense (200 SBSs) network configura-
tions. In high-density cases, with our model we have 50%
of users obtain a throughput of more than 90% compared to
only 30% with the centralized approach.

FIGURE 6. Throughput Cumulative Distribution Function for users of both
types: Comparison of the proposed framework with the open-access
mode and the traditional hybrid-access mode δ = 0.8.

C. COMPARISON WITH OTHER TYPES OF ACCESS
In Figure 6, we compare our model to a traditional open-
access mode and hybrid prioritized access. In the former
case, the SBSs of the system collect the demands of the
connected users of both types (CSG users and public users)
and participate to a resource allocation game with the neigh-
bouring SBSs. The MUEs that are served by a SBS do not
participate in the canonical game. The SBSs redistributes
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the obtained payoff proportionally among their users of both
types. Under the hybrid-access model, the SBSs similarly
collect the demand of both type of users but prioritize their
CSG users during the redistribution stage; in fact, 80% of
resources are reserved for the CSG users. We can observe that
the median throughput is always higher for our framework
and specially for the high density case as it is equal to 0.9,
meaning that 50% of the users have a throughput of 0.9 or
more while the median throughput is only equal to 0.45 for
the other access modes. Our framework outperforms these
two access modes for the following reason: it incorporates
the coalition structure, and so the number of users in the
resulting union impacts the payoff distribution. This proves
that it is not only sufficient to have more bargaining power
(a larger demand), but also numerical superiority in order to
reap a better reward, which our model achieves. Moreover,
the hybrid access heavily penalizes the MUEs in the system,
as the hybrid SBSs will take advantage of the connection of
the MUEs to obtain more bargaining power in the game and
then unfairly redistribute the resources.

D. COMPARISON WITH OTHER COOPERATIVE
GAME SOLUTIONS
We want to show the superiority of our two-level models.
Therefore, it is necessary to compare them with several other
game-theoretic models. First, we compare our framework to
a coalitional game without a coalition structure, which means
the unions are not taken into consideration and the payoff
is distributed as if every player of a given interference set
is a singleton. We divide the estate using the most common
value, the Shapley value. The second model of comparison
used the proposed coalitional structure game model while
applying the Owen value. Therefore, the size of the unions
are not taken into account and have the same weight equal to
that of the single players in the interference set. It is essential
to compare our model to these two approaches, as it shows
that the incorporated formation of the union is necessary, as
is the application of the imputation value. In Figure 7, we
present these performances for both types of users in the
system. We can observe our framework outperforms the two
other approaches: the median throughput is always higher for
our framework and specially for the high density case as it is
equal to 0.9, meaning that 50% of the users have a throughput
of 0.9 or more while the median throughput is only equal to
0.5 for the other cooperative gamemodels. In Figures 8 and 9,
we analyze separately the performances of the MUEs and
the SUEs in the system to show that we have not penalized
one type of player for the benefit of another. Clearly, all
the MUEs and the SUEs have consistently achieved better
performances in the system. In Figure 8, we can observe that
our model allows 88% of the MUEs with a throughput higher
than 0.9 compared to 58% with the centralized approach
62% with the Shapley value and 65% with the Owen value.
In Figure 9, we can observe that the median throughput is
always higher for our framework :in the high density case
the median throughput is equal to 0.55 while it is only equal

FIGURE 7. Throughput Cumulative Distribution Function for users of both
types: Comparison of the proposed framework with other coalitional
games.

FIGURE 8. Throughput Cumulative Distribution Function for all MUEs of
the system: Comparison of the centralized approach,the shapley value,
the owen value and the proposed framework.

to 0.45 for the other models, in the low density case the
median throughput is equal to 0.85 for our model and approx-
imatively 0.75 for the three other frameworks. We also want
to demonstrate that the users participating in a cooperative
game that are part of a union have an advantage bargaining
as a union than they do acting as singletons. Therefore,
in Figures 10 and 11, we isolate the users within unions and
analyze their performance in contrast to that which would be
achieved if the same users participated in the game indepen-
dently. It is essential to show again that the proposed frame-
work allows us to protect the harmed MUEs while rewarding
the hosting SBSs who participate actively in the interference
mitigation. As depicted in these figures, both types of players
show better performances at all levels, although SUEs show
a slightly lower performances in high throughput. This is
explained by the fact that the other models strongly penalize
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FIGURE 9. Throughput Cumulative Distribution Function for all SUEs of
the system: Comparison of the centralized approach,the shapley value,
the owen value and the proposed framework.

FIGURE 10. Throughput Cumulative Distribution Function for SBSs inside
a union only: Comparison of the centralized approach, the Shapley value,
the Owen value and the proposed framework.

the MUEs in the higher throughput as they have more bar-
gaining power, and can therefore allow SBSs to negotiate a
larger profit.

E. IMPACT OF INTERFERENCE DEGREE
AND USER DEMANDS
Here, we assess how the allocated resources are affected by
demand volume and the interference degree of the network.
Figure 12 investigates the impact of the interference degree
on the performances of the proposed model. The interference
degree corresponds to the cardinality of the interference set.
In this case, we are evaluating the gain of payoff using the
traditiona hybrid access model as a basis. We can see that
the proposedmodel consistently outperforms the other frame-
works, reaching up to 300% of gain in very high interference
levels. This improvement is justified by the use of the unions

FIGURE 11. Throughput Cumulative Distribution Function for MUEs inside
a union only: Comparison of the centralized approach, the Shapley value,
the Owen value and the proposed framework.

FIGURE 12. Average gain of the payoff as a function of the interference
degree with the hybrid access as basis of comparison (δ = 0.8).

because in very dense interference sets the cardinality of
the unions is taken into account and the user can obtain an
adequate reward. This is added to the solidarity value applied
in the canonical games, which protects the weak players
that generally suffer from unfair payoff distribution in high
interference degrees in the other models.

Figure 13 shows the performances in terms of user
demands. Clearly, our model performs better at all lev-
els of demand, although the gain is less important at high
user demands. Note that the centralized approach achieves
slightly better performances in the highest level of demand.
This can be interpreted as an opportunity, since from a
network-management standpoint, the users should be dis-
couraged from requesting high demands. In Figure 14, we
summarize the two types of games that can occur under
the proposed cooperative model. We compute the number of
games that take place at each iteration. Note that an iteration
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FIGURE 13. Average gain of the payoff as a function of the level of
demand with the hybrid access as basis of comparison (δ = 0.8).

FIGURE 14. Number of canonical games and CS games played at each
iteration of the system for two levels of interferences.

occurs whenever the topology of the network or the demand
expressed by the users change significantly, and results on
the participation in the resource allocation game of every
player in the network. We have run the simulations for two
levels of interference (required SINR) and noticed that the
number of canonical games is not affected by the level of
interference. In fact, as the deployment of small-cells is very
dense, the number of canonical games that occur is slightly
affected by the interference level. We notice that this number
decreases with the growth of MUEs population. Naturally,
as the number of MUEs in the system increases, they are
more likely to connect to nearby SBSs and to participate in
CS games instead.

F. PERFORMANCE ANALYSIS OF THE PROPOSED
WEIGHTED SOLIDARITY VALUE
In Figure 15, we present the results of the proposed weighted
solidarity value. Recall that this value has been proposed in

FIGURE 15. Throughput Cumulative Distribution Function for the users of
a system participating to a canonical game when the satiation axiom is
violated: Comparison of the proposed weighted solidarity value (with
the computed weights in algorithm 1) and the Solidarity value.

order to alleviate the problem of satiation violation of the
solidarity value. For the sake of analysis, we isolated for
each interference set In the users belonging to the subset J
(players obtaining more than what they claimed with the sol-
idarity value) from the other players of the same interference
set. We isolate the games in which the satiation rule has been
violated and compare the performance of our model with
the traditional solidarity value. The expected result is that no
player obtainsmore that it claims, accordingly the normalized
throughput should not exceed 1. In Figure 15-c, we notice that
the satiation violation for the solidarity value as the average
normalized throughput reaches up to 270 %. This naturally
affects the others players of the game because this excess of
resources is not redistributed among players. We also notice
from this figure, that in our proposed model all the users with
excess of payoff in the solidarity value have now obtained the
maximum of their demands and the excess is redistributed to
the other members of the system. This is further shown in
Figures 15-a and 15-b, where the players belonging toN \J
benefit from this scheme since they reach a higher throughput
on the different degrees of interference and demand.

G. PERFORMANCE EVALUATION IN TERMS OF FAIRNESS
Finally, in Table 2, we present the results of the fairness
evaluation for each scheme presented in the previous results.

TABLE 2. Mean fairness index.
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The Jain’s fairness index is defined as [37]:

Fairness = (
N∑
i=1

(xi/(di))2/(N
N∑
i=1

(xi/(di)2) (13)

where xi indicates the allocated resources to user i. We can
notice that our proposed model gives the highest fairness,
thanks to the combination of two game-theoretic approaches
adapted to each situation. First, the proposed framework gives
the right to play to every user of the network such that
no user is penalized by a representing entity in the game
(i.e a prioritized SBS). It also allows to protect the weak
players according to the equal average gains in the pro-
posed Weighted Solidarity value. Finally, the priority given
to unions ensures that bigger profits are allocated to groups
composed of multiple users instead of being monopolized by
singletons, hence achieving a higher fairness among users.

VI. CONCLUSION
In this paper, we have proposed a novel framework of cross-
tier cooperation among SBSs and MUEs that offers a sig-
nificant improvement in performance for users from both
tiers. This framework also provides more fairness to the
game through an adaptive and solider game theoretic model.
It allows the public users to connect to nearby SBSs and
thereby offload the traffic of the macrocells, while reward-
ing this desired cross-tier collaboration. Weak players in
the system whose demand is lesser are protected under this
model. It also permits every single public user to participate
in the resource allocation game and not being penalized
when SBSs are prioritized. Compared to several alternative
solutions and access modes, we showed that our proposed
approach achieves better performance in terms of throughput
and fairness for both types of users (MUEs and SUEs). Future
work will extend the proposed model to a QoS and mobility-
aware framework. The model could also be enhanced by
adding an admission control policy allowing to block users
who fail to obtain the minimum requirements in the proposed
framework, and redistribute the retrieved resources among
the accepted users. Different levels of power transmission,
as well as various traffic classes and priorities could also be
investigated.
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