
HAL Id: hal-01534831
https://hal.sorbonne-universite.fr/hal-01534831

Submitted on 8 Jun 2017

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Distributed under a Creative Commons Attribution 4.0 International License

Specific Targeting of Caspase-9/PP2A Interaction as
Potential New Anti-Cancer Therapy

Issam Arrouss, Fariba Némati, Fernando Roncal, Marie Wislez, Karim
Dorgham, David Vallerand, Nathalie Rabbe, Narjesse Karboul, Françoise

Carlotti, Jerónimo Bravo, et al.

To cite this version:
Issam Arrouss, Fariba Némati, Fernando Roncal, Marie Wislez, Karim Dorgham, et al.. Specific
Targeting of Caspase-9/PP2A Interaction as Potential New Anti-Cancer Therapy. PLoS ONE, 2013,
8 (4), pp.e60816. �10.1371/journal.pone.0060816�. �hal-01534831�

https://hal.sorbonne-universite.fr/hal-01534831
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://hal.archives-ouvertes.fr


Specific Targeting of Caspase-9/PP2A Interaction as
Potential New Anti-Cancer Therapy
Issam Arrouss1", Fariba Nemati2", Fernando Roncal3, Marie Wislez4, Karim Dorgham1, David Vallerand2,

Nathalie Rabbe4, Narjesse Karboul2, Françoise Carlotti5, Jeronimo Bravo6, Dominique Mazier1,

Didier Decaudin2,7*., Angelita Rebollo1*.
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Abstract

Purpose: PP2A is a serine/threonine phosphatase critical to physiological processes, including apoptosis. Cell penetrating
peptides are molecules that can translocate into cells without causing membrane damage. Our goal was to develop cell-
penetrating fusion peptides specifically designed to disrupt the caspase-9/PP2A interaction and evaluate their therapeutic
potential in vitro and in vivo.

Experimental Design: We generated a peptide containing a penetrating sequence associated to the interaction motif
between human caspase-9 and PP2A (DPT-C9h), in order to target their association. Using tumour cell lines, primary human
cells and primary human breast cancer (BC) xenografts, we investigated the capacity of DPT-C9h to provoke apoptosis in
vitro and inhibition of tumour growth (TGI) in vivo. DPT-C9h was intraperitonealy administered at doses from 1 to 25 mg/
kg/day for 5 weeks. Relative Tumour Volume (RTV) was calculated.

Results: We demonstrated that DPT-C9h specifically target caspase-9/PP2A interaction in vitro and in vivo and induced
caspase-9-dependent apoptosis in cancer cell lines. DPT-C9h also induced significant TGI in BC xenografts models. The
mouse-specific peptide DPT-C9 also induced TGI in lung (K-Ras model) and breast cancer (PyMT) models. DPT-C9h has a
specific effect on transformed B cells isolated from chronic lymphocytic leukemia patients without any effect on primary
healthy cells. Finally, neither toxicity nor immunogenic responses were observed.

Conclusion: Using the cell-penetrating peptides blocking caspase-9/PP2A interactions, we have demonstrated that DPT-C9h
had a strong therapeutic effect in vitro and in vivo in mouse models of tumour progression.
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Introduction

Apoptosis is a genetically programmed cell death and its

deregulation is associated, among other pathologies, with cancers.

Several phosphatases have recently become attractive targets for

the treatment of a variety of diseases, including cancers [1,2,3,4].

However, the only clinical drugs targeting a phosphatase are the

immunosuppresssive cyclosporin A and FK506, which inhibit

Serine/Threonine phosphatase 2B (calcineurin) and NFAT

activation [5,6,7,8,9]. But long-term usage of these drugs can

lead to undesirable side effects [10].

The Ser/Thr phosphatases PP1 and PP2A have been implicat-

ed both in the induction of cell death through 1) dephosphory-

lation of Bad [11] and caspase-9 [12] 2) stimulation of cytochrome

c release [13], and 3) dephosphorylation of the retinoblastoma

protein [14,15]. However, these phosphatases mostly control the

phosphorylation level of Bcl-2 and caspase-9, which determines

their functional properties [16,17,18]. Conversely, the inhibition of

PP1[19], PP2A [20], or PP2C [21] triggers cell death, indicating

also a potential anti-apoptotic function of these phosphatases, and

pointing to a complex interplay of phosphatase actions. We have

previously shown an interaction between caspase-9 and PP1a. In

this complex, activated PP1a induces caspase-9 dephosphoryla-

tion, and as a consequence, its activation leading to apoptosis [12].

We have detected in this complex, in addition to PP1aactivity,

another okadaic acid-sensitive enzymatic activity compatible with

a PP2A activity, suggesting a possible interaction between caspase-

9 and PP2A that may be involved in cell death regulation.
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Cell penetrating peptides (CPP) are molecules which can

translocate into cells without causing membrane damage, leading

to their proposed use as vectors for delivering therapeutic cargo

[22]. These peptides can cross the membrane and reach the

cytoplasm and/or the nucleus [23]. Using CPP, we have also

previously reported experimental evidence as proof of principle for

the drug phosphatase technology (DPT), [24,25].

On these bases, we decided to analyze whether modulation of

the PP2A and caspase-9 interaction might have an impact on the

induction of tumour cell deathing without effecting healthy cells,

and demonstrated DPT-C9h and DPT-C9 corresponding to the

binding sites between human and mouse caspase-9 and PP2A

respectively, have a specific anti-tumour effect.

Materials and Methods

Cells and culture
Human Daudi, Jurkat, and HeLa cell lines were cultured in

RPMI supplemented with 10% of FCS. LKR10 and LKR13 have

been previously described [26] and were cultured in RPMI

supplemented with 10%FCS. Human breast cancer (BC), uveal

melanoma (UM), non small-cell lung cancer, and small-cell lung

cancer cell lines have been isolated from primary human cancer

xenografts [27,28,29]. The three UM cell lines have been directly

obtained from patients’. BC cell lines were cultured in DMEM or

RPMI medium supplemented with 10% to 20% of FCS, except

for HBCx-15, which was supplemented with 10% of horse serum.

UM and lung cancer cell lines were cultured in RPMI

supplemented with 10% or 20% of FCS, respectively. The BC

and UM cell lines were directly isolated from the corresponding

tumor. The Daudi, HeLa and Jurkat cell lines were obtained from

the collection of the Department.

Immunoprecipitation and western blot
The immunoprecipitation and western blot were done as

previously described [12]. The anti caspase-9, and anti-PP2A

antibodies were purchased from Santa Cruz, Cell Signalling,

Sigma or Abcam. The anti-Tim 23 and anti Cyt c were obtained

from Transduction Laboratories.

Peptide synthesis and sequence
Peptides were synthesized as previously described [30].

Detection of apoptosis by Annexin staining
Apoptosis was detected by Annexin V-FITC staining according

to the manufacture’s protocol (BD Bioscience).

Caspase-9 activity
Caspase-9 activity was detected using the Caspase-Glo 9 kit

(Promega) and following the manufacture’s protocol.

Serum enzyme-linked immunosorbent assay (serum
ELISA)

ELISA test was done as previously described [31,32].

Miochondrial membrane potential assay
For detection of changes in the mitochondrial membrane

potential, we used the Cell Meter JC-10 assay kit following the

manufactures’s recommendations.

Cell cycle analysis
A total of 16106 cells were fixed in ethanol 70% for 1 h at 4uC.

Cells were centrifuged and washed with staining buffer (DPBS/2%

FCS). After washing, cells were treated with 50 ml of RNAse

(1 mg/ml stock) and incubated for 30 min at 37uC. Cells were

stained with 5 mg of propodim iodide for 30 min at room

temperature. Cellular DNA content was analyzed by FACS.

Isolation of Mitochondria fraction
A total of 406106 cells were washed with chilled PBS. Cell pellet

was resuspended in 5 volumes of ice-cold buffer A (20 mM Hepes-

KOH, pH 7.5, 10 mM KCl, 1.5 mM MgCl2, 1 mM EDTA,

1 mM EGTA, 1 mM DTT, 0.1 mM PMSF, 250 mM sucrose)

supplemented with protease inhibitors. Cells were disrupted in a

Dounce homogenizer, the nuclei were centrifuged (1000xg,

10 min, 4uC), and the supernatant further centrifuged (10,000xg,

10 min, 4uC), mitochondrial pellet was resuspended in buffer A

and stored at –80uC.

Isolation of cell populations
Fresh blood from healthy donors was collected by the

Etablissement Francais du Sang. Chronic lymphocytic leukemia

(CLL) samples were obtained from the Hematology Service of the

Pitié Salpêtrière hospital. Peripheral blood mononuclear cells

(PBMC) isolated from patients or healthy donors were maintained

in RPMI 1640 supplemented with 10% FCS, 1% non-essential

amino acids, 1% Hepes, 1% sodium pyruvate and 1% glutamine.

B cells were isolated using Dynal negative isolation kit (Invitro-

gene). The purity of the isolated cells reached up to 98%. Human

lymphocytes isolated were stained with anti-hCD19-AP and early

apoptosis events were determined using Annexin-V-FITC.

In vivo models of primary human tumour xenografts
The primary human breast cancer (BC) xenografts were

obtained as previously described [27,28] Mouse breast cancer

tumours were obtained using the transgenic Polyoma Middle-T

Mouse PyMT model [33]. Spontaneously growing mammary

tumours occurring in transgenic mice were xenografted into nude

immunodeficient mice to allow pharmacological assessments, and

maintained from nude mouse to nude mouse serially passages.

Mouse model of primary pulmonary adenocarcinoma
mutated for K-ras

The K-rasLA1 mice were provided by the NCI Mouse Models of

Human Cancers Consortium (MMHCC) (NCI Mouse Reposito-

ry/NIH, Rockville, MD). They carry a latent K-ras allele with two

copies of exon 1: one was the wild-type and the other the G12D

mutant (Tyler Jacks). The latent allele is stochastically activated in

cells through homologous recombination, which results in deletion

of the wild-type copy of exon 1 and the expression of an oncogenic

form of the K-ras gene. Multifocal lung adenocarcinomas develop

spontaneously in 100% of these mice.

Therapeutic assays
For therapeutic experimental assays in subcutaneous trans-

planted xenografts (primary human tumours and PyMT tumours),

5- to 8-week old Swiss nu/nu female mice received a subcutaneous

graft of tumour fragments with a volume of approximately

15 mm3 as previously described [29].

For therapeutic experimental assays in K-rasLA1 mice, 16-week

old mice were randomized between control (n = 17) or treatment

group (n = 16) for 4 weeks. Mice were weighed once a week. At the

end of treatment, autopsy was performed for placebo or treatment

groups and lung tumours were counted. Results are expressed as

tumour number/mouse, mean 6 SEM.

Caspase-9/PP2A Interaction as a Therapeutic Target
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Tumour volume was calculated by measuring two perpendic-

ular diameters with calipers. Each tumor volume (v) was calculated

according to the following formulae: V = axb2/2, where a and b

are the largest and the smallest perpendicular tumour diameters.

Relative tumour volume (RTV) was calculated from the following

formula: RTV = (Vx/V1), where Vx is the tumour volume on day

X and V1 is the tumour volume at initiation of the therapy (day

1).Growth curves were obtained by plotting the mean volume of

RTV on Y axis against time (X axis, expressed as days after

starting of treatment), Antitumor activity was evaluated according

to tumour growth-inhibition (TGI), calculated according to the

following formulae: percent GI = 100-(RTVt/RTVc)6100, where

RTVt is the medium RTV of treated mice and RTVc is the

median RTV of controls, both at a given time point when the anti-

tumour effect was optimal.

DPT-C9h and DPT-C9 peptides diluted in water/glucose (1 to

25 mg/kg) were given by intraperitoneally route 5 to 7 days per

week, according to the models and the therapeutic schedules.

Bioluminescence assays
HBCx-12A cell line was established from the HBCx-12A

xenograft and maintained in RPMI, supplemented with 20% fetal

calf serum and penicillin/streptomycin. Cells were transduced

with the lentiviral supernatant containing luciferase [19] and Ds-

Red and a total of 1.96106 cells expressing Ds-RED-Luc were

implanted subcutaneously into nude mice. Growth tumour was

measuring by caliper and by optical imaging.

Bioluminescence imaging was performed with the IVIS imaging

system (IVIS100, Caliper Life Sciences, USA). Anesthetized mice

were injected i.p with luciferin at 150 mg/kg. Imaging acquisition

time was from 1 s to 1 min, depending on the bioluminescence

signal. Analysis was performed using software Living Image V.

2.50 (Caliper Life Sciences).

Statistical tests
For in vivo experiments’ analyses, statistical significance of

differences observed between individual RTVs corresponding to

the group of treated mice and the control group, in which 9–10

mice per group have been included, were calculated by a paired

Student’s t test [29]. For K-rasL1 mice model, we use the Mann

Whithney test.

Peptides sequence
DPT-Sh1: VKKKKIKREIKI

C9: YIETLDGILEQWARSEDL

C9h: YVETLDDIFEQWAHSEDL

DPT-C9h: VKKKKIKREIKI YVETLDDIFEQWAHSEDL

DPC-C9: VKKKKIKREIKI YIETLDGILEQWARSEDL

DPT-C9h Mut: VKKKKIKREIKI YVETLDDIFEQAAH-

SEDL

All the peptides were solubilised on sterile water.

The experimental protocol and animal housing were in

accordance with institutional guidelines as proposed by the French

Ethics Committee (Agreement B75-05-18, France). No consent

was needed for this study. All surgery was performed under total

zylazine/ketamine anesthesia and all efforts were made to

minimize suffering.

All patients had previously given their informed consent for

experimental research on residual tumour tissue available after

histophatologic and cytogenetic analyses. The CLL samples are

tumoral residues and the patients given their informed consent.

This research was not conducted outside of our country. The ethic

committees approve this procedure.

The funders had no role in study design, data collection and

analysis, decision to publish or preparation of the manuscript.

Results

DPT-C9h peptide blocks the caspase-9/PP2Ac interaction
in breast cancer cell lines

We have previously determined the binding site of human and

mouse caspase-9 to PP2A (Patent PCT-EP2010/054134, web site:

espacenet.com or worlwide.espacenet.com, for peptide sequence,

see Materials and Methods) and associated this interaction motif to

a cell permeable shuttle [24,25]. In order to target the caspase-9/

PP2Ac interaction, we decided to use the patented peptide

containing the previously published penetrating sequence associ-

ated to the site of interaction of mouse (DPT-C9) or human (DPT-

C9h) caspase-9. As controls, we generated the shuttle DPT-sh1

alone, the peptides C9 and C9h, which did not contain the shuttle

and the peptide DPT-C9h mut, with a mutation in the caspase-9/

PP2A binding sequence and that does not bind PP2A (data not

shown).

We were first interested in confirming that the specific target of

DPT-C9h peptide was the complex caspase-9/PP2A. To that end,

we analyzed whether the human peptide DPT-C9h wasable to

target the in vivo and in vitro caspase-9/PP2A interaction. For in vivo

competition, lysates from control untreated or DPT-C9h-treated

HBCx-12A cells were immunoprecipitated with anti-caspase-9

antibody and the presence of the caspase-9/PP2A complex was

analyzed by western blot. Figure 1A shows that the amount of

complex detected in DPT-C9h-treated cells was strongly reduced

compared to non-treated control cells. For the in vitro competition

assay, lysates from HBCx-8 cells were immunoprecipitated with an

anti-caspase-9 antibody and the interaction with PP2A competed

with the DPT-C9h peptide (Fig 1A). PP2Ac was detected in

control caspase-9 immunoprecipitates, while it was almost

undetectable after competition with 1.5 mM of DPT-C9h peptide.

In both, (in vitro and in vivo competitions), caspase-9/PP2A complex

was not altered by the shuttle DPT-Sh1 (Figure 1B). This strongly

suggests that the DPT-C9h peptide specifically targets the

interaction between human caspase-9 and PP2Ac.

The penetrating peptides DPT-C9 and DPT-C9h induce
species-specific apoptosis

We analyzed the ability of the two penetrating peptides DPT-

C9h and DPT-C9, as well as the negative control peptides C9,

C9h and DPT-Sh1 to induce apoptosis. As shown in Figure 2A,

DPT-C9h induced apoptosis, as detected by Annexin-V staining in

human Daudi, Jurkat, and HeLa cell lines upon 20 h of treatment,

whereas the C9 and C9h peptides without shuttle and the shuttle

alone, did not induce apoptosis in human cell lines. Similarly, the

DPT-C9h peptide did not have any apoptotic effect on the mouse

lung cancer cell lines LKR10 and LKR13, while the peptide DPT-

C9, specific for mouse caspase-9, induced apoptosis in both cell

lines upon 24 h of treatment (Fig 2B). Moreover, we did not

observe any apoptotic effect upon treatment of cell lines with the

shuttle (Fig 2B). The basal level of apoptosis in non-treated control

cells is also shown. These results strongly support species’

specificity for both DPT-C9 and DPT-C9h peptides.

Using the human breast, uveal melanoma, non-small cell lung

and small-cell lung cancer cell lines obtained from primary human

xenograft models, we tested the apoptotic effect of both DPT-C9h

and C9h peptides. Apoptosis was also analyzed in commercial

breast cancer cell lines. In all cell lines analyzed, DPT-C9h

induced apoptosis, ranging from 20 to 75% upon 24 h of culture

(Fig 2C) while no effect was observed after C9h treatment of breast

Caspase-9/PP2A Interaction as a Therapeutic Target
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cancer cell lines (Fig 2D). The apoptosis of the control non-treated

cells ranged from 3 to 8%. Supplementary addition of DPT-C9h

peptide 27h after the initial treatment strongly increased the level

of apoptosis (data not shown). Figure 2E shows two representative

apoptosis histogramme plots of two cell lines isolated from the

human breast cancer xenograft HBCx-3 and HBCx-12A models

treated 24 h with or without (control) DPT-C9h peptide. Taken

together, these results show a strong in vitro anti-tumoral effect of

the DPT-C9h peptide in various human cell lines.

Inhibition of caspase activity blocks apoptotic effect of
DPT-C9h

Given that initiator caspase-9 is an important mediator of

apoptosis, we analyzed the ability of DPT-C9h to activate caspase-

9 in the human breast cancer cell line HBCx5. Cells were

incubated with the peptide and caspase-9 activity was estimated at

different times. We have observed an increase of caspase-9 activity

in DPT-C9h treated cell line (Fig 3A). Similar results were

obtained using cell lines of uveal melanoma and non small cell

lung cancer (data not shown). Moreover, using the caspase

inhibitor Z-VAD, we observed a decrease in caspase-9 activity.

To determine whether activated caspase-9 is involved in the

apoptotic action of DPT-C9h, we analyzed the effect of the

caspases inhibitor Z-VAD on cell apoptosis detected by annexin-

V-FITC binding. As shown in Fig 3B, the caspase inhibitor

markedly reduces apoptosis induced by the peptide. Treatment of

the cells with the shuttle or the inhibitor alone does not induce

apoptosis (Fig 3B).

DPT-C9h induces mitochondrial membrane
depolarization and cytochrome c release without
affecting cell cycle.

In order to characterize DPT-C9h-induced apoptosis, we

investigated the involvement of the mitochondria. In a fluores-

cence-based assay, the exposure of HBCx-5 cells to peptide

induced a marked decrease of the mitochondrial membrane

potential (Fig 3C). To confirm the role of mitochondria in DPT-

C9h-induced apoptosis, we analyzed whether DPT-C9h treatment

Figure 1. DPT-C9h competes in in vitro and in vivo caspase-9/PP2Ac interaction. A) In vivo competition of caspase-9/PP2Ainteraction. The
HBCx-12A breast cancer cell line was cultured for 24 h in the presence or the absence (control) of DPT-C9h (100 mM); cells were lysed and cytoplasmic
extracts immunoprecipitated with anti-caspase-9 antibody and immunoblotted with anti-PP2Ac and anti-caspase-9 antibodies. In vitro competition of
the caspase-9/PP2A interaction. Cytoplasmic lysates from HBCx-12A cells were immunoprecipitated with anti-caspase-9 antibody; the caspase-9/
PP2Ac interaction was competed in vitro with 1.5 mM of DPT-C9h peptide for 30 min at room temperature; immunoprecipitates were washed and
immunoblotted with anti-PP2Ac and anti-caspase-9, the latter as internal control of protein loading. B) The HBCx-12A cell line was cultured in the
presence or the absence (control) of the shuttle DPT-Sh1 (100 mM) for 24 h and the in vitro and in vivo competition of caspase-9/PP2A interaction was
analyzed as above.
doi:10.1371/journal.pone.0060816.g001
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induced cytochrome c release. Using mitochondrial proteins from

control non-treated or peptide-treated cells, we observed the

release of cytochrome c from the mitochondria in DPT-C9h

treated cells while in non-treated control cells, cytochrome c is

retained in the mitochondrial fraction (Fig 3D). The ratio of

cytochrome c/Tim 23 is used as internal control for normalization

and quantification of the amount of liberated Cyt c. These results

confirm the mitochondrial implication in DPT-C9h-induced

apoptosis.

Finally, we analyzed whether DPT-C9h peptide could interfere

in the cell cycle sequence. Cells were non-treated (control) or

treated with different doses of peptide for different periods of times

and cell cycle distribution was analyzed (Fig 3E). Using in vitro sub-

apoptotic dose of peptide, we showed that DPT-C9h did not

Figure 2. DPT-C9h induces apoptosis in human cell lines. A) Daudi, Jurkat, and HeLa cell lines were cultured in the presence of DPT-C9h, DPT-
Sh1, C9h, or C9 peptides for 20 h at 100 mM and apoptosis was estimated by Annexin-V staining. B) Mouse lung cancer cell lines LKR10 and LKR13
were cultured in the presence of DPT-C9h, DPT-C9, or DPT-Sh1 at 100 mM. After 24 h of incubation, apoptosis was estimated by Annexin staining. The
basal level of apoptosis of control non-treated cells is shown. P values are also shown (*,0.05; **,0.001; ***,0.0001). C) Breast, uveal melanoma and
lung cancer cell lines isolated from primary human xenografs were cultured in the presence or absence of DPT-C9h peptide (100 mM) for 24h and
apoptosis was estimated by Annexin V-FITC. Basal level of apoptosis without peptide addition is shown (grey colour) p values are shown. D). Breast
cancer cell lines derived from the primary human xenografts, were incubated with C9h in culture medium at 150 mM and apoptosis induction was
estimated at different times. E) Breast cancer cell lines isolated from primary human xenografts BCx-3 and Bcx-12 were cultured in the presence or
absence (control) of the peptide DPT-C9h for 24 h and apoptosis was estimated.
doi:10.1371/journal.pone.0060816.g002
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Figure 3. Effect of DPT-C9h on caspase-9 activation, mitochondrial membrane depolarization, cytochrome c release and cell cycle.
A) HBCx-3 cells were cultured for 3 or 6 h with medium (control), 100 mM of DPT-C9h or 10 mM of the caspase inhibitor Z-VAD (pre incubation of 1h)
and 100 mM of DPT-C9h. Caspase-9 activity was estimated using a luminogenic substrate. Results are represented relative to control non-treated cells
as arbitrary units. P values are shown. B) HBCx-3 cells were cultured for 24 h with medium (control), DPT-Sh1 (100 mM), DPT-C9h (100 mM) or Z-VAD
(10 mM, pre incubation of 1h) and DPT-C9h (100 mM). Apoptosis was estimated by Annexin-V-FITC binding. C) HBCx-3 cells were treated for different
periods of time with DPT-C9h (100 mM) and then incubated for 30 min at 37uC protected from the light with the fluorescent probe JC-10. Green and
red fluorescence were measured. Data are represented relative to the control non-treated cells. P values are shown. D) HBCx-12A and HBCx-3 cell
lines were treated for 24 h with 100 mM of DPT-C9 h. Mitochondrial fraction was separated from whole cell lysates and immunoblotted for
cytochrome c. The WB was also hybridized with the mitochondrial marker Tim23 as internal control of protein loading. E) HBCx-3 cells were non-
treated (control) or treated with 10 or 25 mM of DPT-C9h for 24 or 48 h and the cell cycle was analyzed by FACS.
doi:10.1371/journal.pone.0060816.g003
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induce accumulation of tumour cells in any phase of the cell cycle,

whatever concentration used and time analyzed (Fig 3E).

DPT-C9h has effect on tumoural cells, but not on healthy
cells.

Chronic lymphocytic leukaemia (CLL) is characterized by

accumulation of monoclonal B cells CD5+ in hematopoietic

organs, which reflects a defect in apoptosis. In order to evaluate

the apoptotic effect of DPT-C9h peptide in primary healthy and

tumour cells of similar origin, we used peripheral blood

mononuclear cells (PBMC) from healthy donors and chronic

lymphocytic leukaemia patients (CLL). PBMC from healthy

donors or CLL patients were treated for 3h with DPT-C9h

peptide, washed, resuspended in complete medium without

peptide for 6h and then analyzed for apoptosis. Fig 4A shows

that DPT-C9h has an apoptotic effect on B cells from CLL

patients but not on B cells from healthy donors relative to control

non treated cells. DPT-C9h has no effect on T, NK and

monocytes from healthy donors or CLL patients. The shuttle

DPT-Sh1 or C9h peptides alone had no effect (data not shown).

Finally, a similar pro-apoptotic effect of DPT-C9h peptide was

observed when B cells were isolated from bone marrow of CLL

patients (Fig 4B). This result strongly suggests that only tumour B

cells are affected by DPT-C9h treatment without any effect on

cells from healthy donors, underscoring the specific tumoural

effect of DPT-C9h.

Lack of immunogenic activity and in vivo toxicity of DPT-
C9h and DPT-C9 peptides

Given that our final interest is to prove an anti-tumour effect of

DPT-C9h on human cancers, we decided to analyze the in vivo

immunogenic activity of the peptide. Nude immunodeficient T-cell

mice were treated five days per week during 6 weeks by

intraperitoneal injections of DPT-C9h. Sera were collected at

different times and the production of antibodies directed against

DPT-C9h or DPT-Sh1 was analyzed. Using ELISA test, we did

not detect any in the antibodies against DPT-C9h or DPT-Sh1

throughout the kinetic analyzed at two different doses of peptide

(Fig 5A). Similarly, the antibody response was also analyzed using

immunocompetent mice, again showing lack of antibody produc-

tion neither against DPT-C9h nor DPT-Sh1 peptides (Fig 5B).

This result strongly suggests that the DPT-C9h peptide is

immunogenic even after prolonged in vivo administration in

immunocompetent or immunodefficient mouse models.

Before in vivo therapeutic assessment, the toxicity of DPT-C9h

was evaluated in mice bearing HBCx-8 and HBCx-12A tumours

after various schedules of administration, i.e. intraperitoneal

injections at 1, 5, or 25, mg/kg once daily, or 10 mg/kg twice

daily, for 4 to 5 weeks. Whatever the dose, we did not observed

any side effects in all treated mice, as well as a complete weight

stability of the treated mice (Fig 5C). In addition, no death was

observed throughout the experiment. Finally, to confirm the

absence of toxicity of the mouse specific peptide, we evaluated

tolerability of the DPT-C9 peptide administered at 5 mg/kg once

daily in the transgenic Polyoma Middle-T Mice PyMT (Fig 5C). In

all experiments, no side effects, including weight loss were

observed.

DPT-C9h and DPT-C9 induce in vivo inhibition tumour
growth in lung and breast cancer models

To first confirm the in vivo induction of species-specific

apoptosis, we evaluated the efficacy of the DPT-C9 peptide in

the K-rasLA1 adenocarcinoma mouse model and in transgenic

Polyoma Middle-T Mice (PyMT). Administered intraperitoneally at

a dose of 5 mg/kg for 5 days/7 for 4 weeks, DTC-C9 induced a

significant decrease in lung tumour burden as the number of

tumours per mouse was 24.662.8 (mean6SEM) in the placebo

group compared to 15.461.9 in the treated group (p = 0.01) (Fig

6A). Figure 6B shows the histological analysis of lung tissue of

control and DPT-C9h-treated representative mice. Moreover,

Nude mice bearing xenografted mouse PyMT breast tumours were

treated intraperitoneally with the mouse-specific DPT-C9 peptide

at a daily dose of 5 mg/kg. Despite a very fast spontaneously

tumor growth, DPT-C9 induced a significant TGI of 46%

(p,0.03) (Fig 6C). The relative tumour volume (RTV) was

calculated as described in detail in Materials and Methods.

We further analyzed the potential anti-tumour effect of the

peptide DPT-C9h using human breast cancer models. Using

human breast cancer xenografts, we first treated mice bearing the

triple negative breast cancer model HBCx-12A [27]. DPT-C9h

was intraperitoneally administered at 1, 5, or 25 mg/kg, once

daily for 5 weeks. At the end of the treatment, we observed that

DPT-C9h induced significant tumour growth inhibition (TGI) of

50% (p,0.04), 37% (p,0.11), and 48% (p,0.04) according to

previously defined doses and, compared to control mice treated

with the formulating vehicle alone (Fig 6D). As negative control,

DPT-sh1 or DPT-C9h mut were administered to mice bearing

HBCx-12A at 1.5 mg/Kg and 5 mg/kg respectively, without any

inhibition of tumour growth in vivo (Fig 6E). This result strongly

suggests that the inhibition observed is due to competition by the

binding motif since the shuttle alone or a mutated binding

sequence did not have any effect. In order to validate antitumoral

efficiency of DPT-C9h through optical imaging, we used the

HBCx-12A cell line, derived from the HBCx-12A xenograft,

infected by Ds-Red-Luc+ lentivirus to generate the xenograft

model. DPT-C9h was administered at a dosage of 5 mg/kg daily

for 4 weeks. Using optical imaging, we showed that DPT-C9h

inhibited tumor growth of HBCx-12A cell line compared to

control non-treated group that receive only the formulating vehicle

(Fig 6F), as previously observed (Fig 6D). We conclude that the

breast xenograft model obtained directly from the tumour or the

breast xenograft generated from the cell line HBCx-12A respond

equally to DPT-C9h treatment.

Similarly, DPT-C9h was tested in the HBCx-3 xenograft model.

DPT-C9h induced an optimal and significant TGI in the luminal

B breast cancer HBCx-3 model (85%; p,0.02) (Fig 6G).

Interestingly, in this luminal breast cancer model, DPT-C9h

induced 12 complete remissions in the 39 treated mice (31%)

(p,0.01), in which 5 were prolonged after 2 months. Finally, to

evaluate responses to DPT-C9h or DPT-C9 peptides according to

individual mouse variability, and show peptides efficacy using

waterfall plot representation, we decided to consider each mouse

as one tumour-bearing entity. In each in vivo experiment, an

individual response was defined for each treated mouse from the

following formula: 12(Vt/Vc), where Vt is the volume of the

treated mouse and Vc the median volume of the corresponding

control group at a time corresponding to the end of treatment.

When considering positive ratio (resistant tumours) and negative

ratio (sensitive tumours), we observed that 72% (41%+31%) of all

198 DPT-C9h/DPT-C9-treated mice had a negative ratio. From

the 72%, 31% had a ratio lower than 50% and 41% a ratio higher

than 50%, respectively (Fig 6H), showing that both peptides have a

high anti-tumour effect in xenografted breast cancer models.

Taken together, our results show that breast cancer models, triple

negative, luminal, lung K-Ras mutated and PyMT respond to

DPT-C9h or DPT-9 treatment showing considerable tumour

growth inhibition.
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Discussion

In this report, we have demonstrated the interaction between

caspase-9 and the serine/threonine phosphatase PP2A. We have

generated a new cell penetrating peptide that specifically binds to

PP2Ac (DPT-C9h or DPT-C9), targets caspase-9/PP2Ac interac-

tion, leading to caspase-9 activation, mitochondrial membrane

permeabilization, cytochrome c release and apoptosis in a variety

of human and mouse cancer cell lines. In addition, the peptide

specifically induces apoptosis in tumour cells, without effect on

healthy primary cells. DPT-C9 and DPT-C9h also inhibit tumour

growth in mouse or primary human breast cancer models. Finally,

this peptide was not immunogenic and not toxic in nude mice

implying that it multiple doses can be administrated without

nullifying antibodies being generated.

Cell penetrating peptides have been evaluated for their ability to

transport diverse cargos into cells, tissues, and organs. Few

laboratories have targeted protein-protein interactions involved in

anti-apoptotic signalling, including (i) the peptide shepherdin

mimicking a small domain of the survivin protein that interacts

with Hsp90 [34] (ii) peptides blocking PP1/GADD34 complex

[35,36], (iii) peptide inhibiting MUC1 interaction with EGFR

[30], (iv) peptides with a sequence derived from elastine having the

capacity to block invasion, migration and metastasis in ovarian

tumours [37], (v) helix-stabilized cyclic peptides binding to

estrogen receptor a and inhibiting ERa/coactivator interactions

[38] and (vi) peptide (Tat) with a pro-apoptotic erbB2 sequence

[39]. Similarly, several CPP are under clinical development, such

as peptides targeting protein kinase c, Hsp20, and c-Jun-N-

terminal kinase [40,41,42]. The promising results obtained in

these studies indicate that CPP have an important role in the

Figure 4. Apoptotic effect of DPT-C9h peptide on primary and tumour cells. A) Peripheral blood mononuclear cells (PBMC) from healthy
donors or CLL patients were cultured in the presence of DPT-C9h (150 mM) for 3 h, then washed, transferred to complete medium and apoptosis was
estimated 6h later. Selection of B cells was done by anti-CD19 antibody before Annexin V-FITC staining. Non-treated cells were used as control.
B) Cells isolated from bone marrow of CLL patients and healthy donors were treated as in A and analyzed for apoptosis. P values are shown.
doi:10.1371/journal.pone.0060816.g004
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Figure 5. In vivo antibody responses and toxicity induced by DPT-C9h. A) Serum antibodies taken from nude mice treated for different
periods of time were detected by ELISA at two different concentrations of DPT-C9h peptide (10 and 50 mM). B) Serum antibodies from wild type mice
treated for different periods for time were tested by ELISA against DPT-C9h and DPT-Sh1 (50 mM). C) DPT-C9h was intraperitoneally administered in
mice bearing tumors HBCx-12A at 1, 5, or 25 mg/kg once daily for 5 weeks; the median weight of mice for each experimental group is represented at
different times. A total of 10 mice were included per group. Similarly, DPT-C9h was intraperitoneally administered in mice bearing tumours HBCx-8 at
10 mg/kg twice daily for 4 weeks. DPT-C9 was IP administrated at mice model PyMT model at dose of 5 mg/kg. The median weight of mice for each
experimental group is represented at different times. Ten mice were included per group.
doi:10.1371/journal.pone.0060816.g005
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Figure 6. In vivo therapeutic efficacy of DPT-C9 and DPT-C9h. A) The peptide DPT-C9 was administrated IP at 5 mg/kg once daily, 5 days a
week for 4 weeks in the K-Ras LA1 adenocarcinoma mouse model, showing a significant decrease in lung tumour burden compared to control
formulating vehicle-treated mice (p = 0.01). B) Histological analysis of lung tumours of control treated only with the formulating vehicle and DPT-C9 -
treated mice. C) DPT-C9 was administrated IP as for the K-RasLA1 model in mice bearing xenografted mouse PyMT breast tumours, with a significant
TGI of 46% after 11 days of treatment compared to control mice treated with the formulating vehicle. D) DPT-C9h was administered IP at 1, 5, or
25 mg/kg once daily for 5 weeks in mice bearing HBCx-12A tumours (triple negative model). Ten mice were included per group and the control
group was treated with the formulating vehicle. E) DPT-sh1 and DPT-C9hM was administered IP at 1.5 mg/kg and 5 mg/Kg respectively, once daily
for 5 weeks in mice bearing HBCx-12A tumours generated from the HBCx-12A cell line. Ten mice were included per group. F) DPT-C9h was
administered IP at 5 mg/kg in mice bearing HBCx-12A cell line previously infected with a Ds-Red-Luc+ lentivirus. Bioluminescence imaging was
shown in two mice (out ten), one receiving control vehicle (right mouse) and the other treated by DPT-C9h (left mouse). G) DPT-C9h was
administrated IP at 5 mg/kg in mice bearing HBCx-3 (luminal model) once daily for five weeks. Ten mice were included per group. H) Relative
variation of all treated tumours. In all in vivo experiments, mice of the control groups received 0.2 ml of the drug-formulating vehicle with the same
schedule as the treated animals. Growth curves were obtained by plotting mean RTV against time. When RTV of all treated mice were considered
from positive ration (resistant tumours) to negative ratio (sensitive tumours), we observed that 72% of all 198-treated mice have negative ratio,
showing that peptide treatment has a high in vivo anti-tumour effect in BC xenografted models.
doi:10.1371/journal.pone.0060816.g006
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development of novel therapeutics. Moreover, an attractive feature

of CPP is that they can specifically target a protein-protein

interaction without affecting the rest of signalling pathways in

which these proteins might be involved. In this report, we

demonstrated that DPT-C9h targets the interaction between

PP2A and caspase-9, without apparently affecting the rest of

cellular PP2A, whose modulation might possibly induce toxicity.

It is known that PP2A is an important regulator of signalling

pathways involved in oncogenesis, acting as a tumour suppressor

complex. Recent work suggests that a specific PP2A complex

regulates the activity of specific substrates, many of which are

involved in cellular transformation [43,44]. In breast cancers,

PP2A has been reported to be involved in progression through

various important signalling pathways; indeed, it has been

reported that Her-2 receptor induced PP2A phosphorylation

[45] that PP2A induced ERa dephosphorylation [46] and ERa
mRNA instability [47], and that PP2A induced Akt dephosphor-

ylation [48,49,50]. Moreover, it has been shown that interaction

between PP2A and cofilin-1, a factor involved in actin polymer-

isation, increased cell motility and metastases. It is interesting to

notice that while human and mouse PP2A share 98% identity,

human and mouse caspase-9 share 72% of identity. There are four

amino acids that differ between the binding motif, suggesting that

these amino acids may be responsible for the species specificity and

one could speculate that this sequence might be an interaction

domain.

Given that human and mouse PP2A share an identity of 98%, it

is intriguing to explain how human and mouse caspase-9 recognize

differentially this protein. One hypothesis could be the presence of

other proteins associated to the complex caspase-9/PP2A, which

may regulate the access of the peptide to the protein-protein

interface. Alternatively, different post-translational modifications

between both species, such as phosphorylation or methylation,

may result in the observed specificity.

In the same direction, and given that we have found similar

amounts of complex caspase-9/PP2A in healthy and tumour cells

(data not shown), it is exciting to understand how the peptide

specifically recognizes tumour and no healthy cells. Our prelim-

inary results show that there is a differential association of other

partners to the complex caspase-9/PP2A between healthy and

tumour cells which may explain this selective behaviour. All these

data, combined to the specific targeting of caspase-9/PP2A

interaction and the development of cell penetrating peptides as

targeted therapies, support our innovative potential anti-tumour

therapeutic approach. This penetrating peptide offers a promising

approach specifically targeting tumour cells. In addition, selective

activation of a signalling pathway leading to apoptosis of only

tumour cells is the challenge in the development of new anti-

cancer molecules.
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