
HAL Id: hal-01535949
https://hal.sorbonne-universite.fr/hal-01535949v1

Submitted on 9 Jun 2017

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Information Flow Tracking for Linux Handling
Concurrent System Calls and Shared Memory

Laurent Georget, Mathieu Jaume, Guillaume Piolle, Frédéric Tronel, Valérie
Viet Triem Tong

To cite this version:
Laurent Georget, Mathieu Jaume, Guillaume Piolle, Frédéric Tronel, Valérie Viet Triem Tong. In-
formation Flow Tracking for Linux Handling Concurrent System Calls and Shared Memory. 15th
International Conference on Software Engineering and Formal Methods (SEFM 2017), Sep 2017,
Trento, Italy. pp.1-16, �10.1007/978-3-319-66197-1_1�. �hal-01535949�

https://hal.sorbonne-universite.fr/hal-01535949v1
https://hal.archives-ouvertes.fr


Information Flow Tracking for Linux Handling
Concurrent System Calls and Shared Memory

Laurent Georget1, Mathieu Jaume2, Guillaume Piolle1, Frédéric Tronel1, and
Valérie Viet Triem Tong1

1 EPC CIDRE CentraleSupelec/Inria/CNRS/Université de Rennes 1, Rennes, France
laurent.georget@irisa.fr

2 Sorbonne Universités, UPMC, CNRS, LIP6 UMR 7606, Paris, France

Abstract. Information flow control can be used at the Operating Sys-
tem level to enforce restrictions on the diffusion of security-sensitive data.
In Linux, information flow trackers are often implemented as Linux Se-
curity Modules. They can fail to monitor some indirect flows when flows
occur concurrently and affect the same containers of information. Fur-
thermore, they are not able to monitor the flows due to file mappings
in memory and shared memory between processes. We first present two
attacks to evade state-of-the-art LSM-based trackers. We then describe
an approach, formally proved with Coq [12] to perform information flow
tracking able to cope with concurrency and in-memory flows. We demon-
strate its implementability and usefulness in Rfblare, a race condition-
free version of the flow tracking done by KBlare [4].

Keywords: Information flow tracking; Linux; LSM

1 Introduction

Information Flow Control (IFC) at the Operating System (OS) scale is a security
mechanism preventing leaks or improper manipulation of information stored in
the system. At the OS level, flows are the actions of the processes causing the
copy of data from a container of information to another. Containers are OS-
level abstractions such as processes, files, message queues, network sockets, etc.
The security status of each container is given by a security label, called a taint,
initially set by a security officer. The taint of a container encodes the history of
the flows that have altered its content. Consider the situation presented here:

file ? cp † copy
of file wc -l • /dev/stdout

? ?† ?† ? † •

The process cp copies a file, that the process wc reads to output the number of
lines in it. file is originally tainted with ?, cp with †, wc with •. IFC maintains
the knowledge of past flows in the system through taint propagation. When a
flow occurs, the taint of the destination is updated with the taint of the source,
in order to record the flow in the system. Assuming flows are performed from



left to right in the example, we see that the taint from the file is propagated
to cp and then to the copy and wc, and eventually to /dev/stdout. The focus
of this article is on three IFC systems developed for the generic Linux kernel:
KBlare [4], Laminar [11, 9], and the Android Linux kernel: Weir [8].

The implementations of Laminar, KBlare, and Weir are based on the Linux
Security Modules (LSM) framework. This framework provides (1) extra security
fields in Linux’s internal data structures and (2) a set of callbacks, called LSM
hooks, positioned in the code of system calls. Security mechanisms can register
functions on these hooks to be executed just before security-sensitive operations
are made, to enforce security decisions. The crucial property we expect from
these systems is that they are able to correctly track all flows in the system. If
malware could escape them, the confidentiality and integrity of user data would
no longer be guaranteed.

However, the LSM framework has been conceived primarily for access control,
and not for IFC [14] so it is not obvious that it is also appropriate for this
purpose. In a previous work [3], we have developed an approach to verify that
LSM hooks were available in each system call generating an information flow, so
that an information flow tracker could monitor all of them. This is a necessary
condition to implement a correct information flow tracker. This approach led to
the identification of some shortcomings in the placement of LSM hooks and the
addition of a few hooks. This necessary condition is nevertheless not a sufficient
one. Indeed, detecting each individual direct flow is not equivalent to detecting
all flows. Flows occurring concurrently in the system and involving a common
information container may cause indirect flows (i.e. compositions of individually
detected flows) to be undetected. This is because the sequence 〈detection of the
flow by the tracker (a function registered in a LSM hook) ; actual occurrence of
the flow (another function called later in the same system call)〉 is not atomic,
and thus taint propagation is subject to race conditions.

Information flow trackers also have to cope with the existence of contin-
uous flows, which are started by one system call and stopped by another. A
typical example of these flows is caused by shared memory segments. When a
process shares a memory segment with another one, they can freely communi-
cate through it. No system call is required for a process to read and write its
own memory, and thus, the trackers cannot see these individual flows. Therefore,
they have to make the overapproximation that the flow is occurring “continu-
ously” between the system call setting the shared memory up and the system
call shutting it down. Even if a security mechanism could tolerate missing some
flows, the hassle of handling race conditions is justified by the existence of these
continuous flows, which cannot be monitored otherwise. Comments in the source
code of Blare and Laminar stress the importance of the issue and the lack of
a straightforward solution. In this article, we propose a solution to handle con-
currency between system calls as well as continuous flows. To the best of our
knowledge, our approach is the first to propose a provably correct way to do so.

We propose three contributions in this article, described in Sections 2 to 4.
The paper is organized as follows.



In Section 2, we detail two ways of evading Laminar, KBlare, and Weir by ex-
ploiting a race condition between a read and a write operations and by exploiting
indirect continuous flows between files mapped in memory.

In Section 3, we describe formally the mechanism of taint propagation com-
mon to the three tools as well as the concrete flows of information between
containers. We describe how considering flows as operations spanning over some
time instead of atomic ones allow us to propose a new way of propagating taints
that takes into account all possible flows in the system. We prove two properties
on our result: (1) the overapproximation of flows we compute is sound, no flow
can be missed; (2) the overapproximation is the smallest one in our model, i.e.
any smaller overapproximation would be unsound because there would exist a
way to perform an indirect flow missed by the algorithm. We have proved the
correctness of our algorithm in our model with the Coq proof assistant [12].

In Section 4, we describe Rfblare, a new taint propagation mechanism for
KBlare, implementing our solution from the previous point. We show that it
correctly handles the attacks developed in the first point and encurs little over-
head. This work describes precisely how the LSM framework can be modified
to allow the implementation of correct flow tracking, independently from any
particular semantics for the labels or any flow policy model.

We revise related works in Section 5 and conclude in Section 6. Due to space
limitations, we give in this article an overview of our main results. Our complete
implementation, tests, as well as the proofs of our formal results are available
online on the project’s website: https://blare-ids.org/rfblare.

2 Evading Existing Information Flow Trackers

2.1 Exploiting a race condition to copy a file without its taint

KBlare, Laminar and Weir use the file_permission LSM hook when a process
reads from or writes to a file to perform the taint propagation. There is a risk
of race conditions even on uniprocessor systems because the process is allowed
to sleep and yield the CPU between the time the LSM hook is triggered and the
time the function that actually performs the flow is called. This can be exploited
to copy a file without its taint. Consider this example:

source ? sender † pipe receiver • desti-
nation

?2 ?†3 1 •4

The dashed lines represent the observations of flows by the tracker (made in the
order given by the numbering for the sake of this example) and the plain lines
the actual flows in the system (done from left to right). The content from the
source file is propagated to the destination via processes sender and receiver and
the pipe. Nevertheless, since receiver has started reading from the pipe before
sender has written to it, the taint is not propagated properly.

This attack works reliably and effectively on KBlare as a simple one-liner:
mkfifo pipe; cat < pipe > destination& cat < source > pipe. On Weir,



it is more difficult because processes benefit from a stricter isolation by default.
To perform the attack, we have developed two toy applications. One offers a text
box in which the user can write a message. When clicking on a send button, the
process allocates a new security tag from the Weir tag manager and then copy
this message to a pipe whose name is known by both applications. The other
application has a text area and a receive button. Clicking on the latter copies
the message from the pipe to the text area. We install both applications with
the same user id so that they can share a folder, and we create the pipe inside.
We observe that if the user clicks on send before clicking on receive, the logs
from Weir show that the taint is correctly propagated to the receiver. However,
clicking on receive first triggers the race condition. The apparent result is the
same (the text appears in the receiver ’s text area) but the logs show that the
taint from the sender only reaches the pipe and not the receiver.

On Laminar, this attack is not possible because the developers put the entire
system call in a critical section to prevent race conditions between concurrent
reads and writes. However, this solution is not entirely satisfactory. First of all,
it incurs sacrificing parallelism on very common system calls from the family of
read and write. Reading a file from a high-latency filesystem (e.g. a network-
backed filesystem) might block all other reads and writes for a long time. Sec-
ondly, many existing applications rely on the semantics that reading from an
empty pipe blocks until it is written to. This is not possible if operations cannot
interleave. Laminar does not care about this since it mandates that all pipes are
open in non-blocking mode to avoid a covert channel but KBlare and Weir are
committed not to require any porting of existing applications.

2.2 Making a flow in memory

Ordinarily, to read from and write to a file, a process uses system calls from the
read and write family but this is not the only way. There exists a system call,
mmap, which can make a file (or better said, the pages of cache memory buffering
the file’s content) appear as part of the process’s memory space. When a file
is mapped in its memory, a process can read from it and write to it (provided
that the mapping has the read–write permissions) without system calls, by usual
memory manipulations. Another system call, munmap, unmaps a file. The same
mechanism is used to share memory segments between processes. If two processes
map the same file, usually a temporary anonymous file, in a read–write public
way, they can communicate and collaborate on the same data.

Weir does not handle mappings. Laminar has an interesting comment in
its source code stating: “XXX: Should do something about mmaped files.” [10,
file security/difc.c, l. 944] which suggests that the problem is known to the
developers and considered important enough but is not trivially solvable. KBlare
supports propagating taints between the file and the memory space of the process
when the former is mapped. It also claims to handle shared memory segments
by maintaining a list of attached shared memory segments for each process.
When propagating taints from or to this process, the shared memory segments
participate in the propagation [4]. The implementation is incomplete however



and even the design is somewhat flawed. If processes A and B share memory,
as well as processes B and C, we must consider that processes A and C share
memory, although they do so indirectly. KBlare fails to handle that “transitivity”.

We can reuse the attack from the previous section by replacing the read-
ing by sender from source by a read-only mapping, the writing by receiver to
destination by a read-write mapping and finally, the pipe by a shared memory
segment between receiver and sender. We could not test it on KBlare, Laminar
and Weir directly because of the lack of implementation on these platforms but
a toy implementation of KBlare’s described propagation [4] shows the problem:
depending on the order in which the mappings and the shared memory are set
up, taints are not propagated from source to destination in all cases, although
the content from source is copied to destination.

These two attacks show that the trackers’ observations are inconsistent with
the actual flows altering the containers. A sound tracker needs at least to com-
pute an overapproximation of the actual flows. To solve this problem, we propose
in the following section a formal model of the propagation done by the trackers,
what a perfect propagation would be and a way to compute a correct overap-
proximation of this perfect propagation in practice.

3 A New Algorithm for Taint Propagation

We propose a formal model of information flows between containers as well as a
formal description of taint propagation in order to describe the shortcomings of
current trackers and prove the correctness of our taint propagation.

3.1 Tags, Information Flows and Executions

A container is anything in the system that can carry data (usually originating
from a user). Files, network sockets, pipes are examples of containers. We write
C for the set of containers of information. Contrarily to most approaches, we do
not consider processes or threads as containers of information per se. Instead,
we consider that the memory space of each process is a container (i.e. a flow
from/to a process is a flow from/to its memory). This distinction is useful since
in Linux systems, it is possible to create distinct processes sharing their entire
memory space, and thus the data they store and produce.

To record the origin of the information stored in any container, a tracker
attaches a security label, also called a taint, to all of them. In our model, a taint
is a set of tags. In the example above, we have chosen the set {?, †, •} as tags
whereas actual implementations generally use a predefined range of integers.
Without loss of generality, we consider that each container c ∈ C is initially as-
sociated to a unique tag written tc. Intuitively, a tag represents a primary source
of information in the system. Let T = ]c∈C{tc} be the set of all tags. During
the lifetime of the system, as information gets exchanged between containers,
the tracker’s task is to reflect these changes in the set of tags associated to the
containers. This is the taint propagation.



Definition 1 (Configuration, Taint). A configuration θ : C → ℘(T ) maps
each container to its set of tags. θ(c) = {tc1 , . . . , tcn} is called the taint of c and
indicates that c contains information originating from containers c1, . . . , cn.

We write Θ for the set of configurations and θinit for the initial configuration
such that ∀c ∈ C θinit(c) = {tc}. A configuration is an abstraction of the state of
the containers, it represents an overapproximation of the sources of information
contributing to the current content of a container. This state evolves upon occur-
rence of specific events relative to information flows. An information flow is the
copy of (a portion of) the content of a container, called the source of the flow,
into another, called the destination. We consider that an information flow is not
an atomic operation. Instead, we consider that a flow is successively enabled, ex-
ecuted and disabled. The execution of the flow (i.e. the copy of information) may
happen only after it is enabled, and before it is disabled. It may happen once,
several times, or even not at all. Several different flows from a container c1 to a
container c2 may occur during the lifetime of the system, and may even overlap.
In order to distinguish them, we introduce the set F of flow identifiers (typically,
we choose F = IN so that each flow is uniquely identified by a ever-increasing
counter).

Definition 2 (Event). Let c1, c2 ∈ C and f ∈ F . We define the relation
c1 →f c2 which is to be understood as a flow called f from c1 to c2. An event
e ∈ E is either a pair (f, (c1, c2)) where c1

enable−−−−→f c2 or c1
disable−−−−→f c2, or a pair

(f, (c1, c2)) where c1
exec−−−→f c2. We call the first set O and the second one X .

These relations have the following intuitive meaning:
c1

enable−−−−→f c2 means that the flow named f from c1 to c2 is enabled
c1

exec−−−→f c2 means that the flow named f from c1 to c2 is executed
c1

disable−−−−→f c2 means that the flow named f from c1 to c2 is disabled

In other words, O contains the events enabling and disabling flows whereas X
contains the events corresponding to actual flow executions.

We write E ⊆ E+ for the set of executions, defined as non-empty sequences
of events. We write e[i] for the i-th event of an execution e ∈ E, lg(e) the length
of e and e[:n] (resp. e[n:]) the prefix (e[1], . . . , e[n]) of length n of e (resp. the
suffix (e[n], . . . , e[lg(e)]) of length lg(e) − n + 1 of e). Executions in E satisfy
two conditions of causality: a flow is always enabled before being executed or
disabled, and cannot be executed after it is disabled:

∀i e[i] = c1
disable−−−−→f c2 ∨ e[i] = c1

exec−−−→f c2 ⇒(
∃j < i e[j] = c1

enable−−−−→f c2 ∧
(
∀k j < k < i⇒ (e[k] 6= c1

disable−−−−→f c2)
))

(1)

We suppose that only events in O are observable by the tracker and that it
cannot react on events in X . This models the fact that a tracker cannot perform
taint propagation all the time during the execution of a system call but only when
the execution reaches a LSM hook. We write O the set of observable executions,
containing only events inO, andX the set of concrete executions, containing only



events in X . Observable executions are the sequences of events observed by the
tracker whereas concrete executions describe the executions of flows, i.e. how the
content of containers actually changes over time. Given e ∈ E, we write eO ∈ O
(resp. eX ∈ X) the observable execution (resp. the concrete execution) obtained
by removing the unobservable events (resp. the observable events) from e. We
define a compatibility relation between observable and concrete executions.

Definition 3 (Compatibility). An observable execution ω is compatible with
a concrete execution x iff they are projections from an execution in E. Formally,
∀x ∈ X ∀ω ∈ O, we write ω ` x iff ∃e ∈ E (ω = eO ∧ x = eX ).

Example 1. We consider the first attack presented in Section 2 and illustrate it
on the figure below. We abbreviate the name of the containers in the rest of
this article: src is the source, se the sender, p the pipe, r the receiver and d the
destination. The x column represents the concrete execution of flows between the
containers of information. The ω column is the sequence of enabling and disabling
events seen by the tracker. These two executions are compatible because there
exists an execution e which is a linearization of both, respecting the causality
conditions expressed by (1).

p
enable−−−−→f1 r e[1] ω[1] —

src
enable−−−−→f2 se e[2] ω[2] —

src
exec−−−→f2 se e[3] — x[1]

src
disable−−−−→f2 se e[4] ω[3] —

se
enable−−−−→f3 p e[5] ω[4] —

se
exec−−−→f3 p e[6] — x[2]

p
exec−−−→f1 r e[7] — x[3]

p
disable−−−−→f1 r e[8] ω[5] —

se
disable−−−−→f3 p e[9] ω[6] —

r
enable−−−−→f4 d e[10] ω[7] —

r
exec−−−→f4 d e[11] — x[4]

r
disable−−−−→f4 d e[12] ω[8] —

pipe →
receiver

f1 source →
senderf2

sender →
pipe

f3

receiver →
destination

f4

3.2 Flow-based Interpretations of Executions

A tracker is said to be sound if it does not miss any flow. However, a given
observable execution can correspond to several concrete executions, when several
flows are enabled at the same time. Thus, a tracker cannot track flows with an
absolute precision. Thus, a sound tracker can only provide an overapproximation
of the taints considering the flows generated by all the compatible concrete
executions. Actually, in the example, due to the synchronous nature of the pipe,
there is only one possible execution order between the reading and the writing
because reading from the pipe blocks until some content has been written to it.
We chose a pipe because it makes triggering the race condition trivial but we
could replace the pipe by a regular file in the example, in which case the order
of execution would not be constrained.



Ideal Tag Propagation We define a transition relation ↪−→⊆ Θ × X × Θ
describing how the information flows influence the content of containers.3

∀θ, θ′ ∈ Θ ∀c1
exec−−−→f c2 ∈ X θ

c1
exec−−−→f c2

↪−−−−−−−→ θ′ ↔ θ′ = θ[c2 ← θ(c2) ∪ θ(c1)]

For x ∈ X we write θ0
x[:n]
↪−−−→ θn when θ0

x[1]
↪−−→ θ1

x[2]
↪−−→ · · · θn−1

x[n]
↪−−→ θn. This

relation is the way an ideal tracker would propagate tags if it could observe the
execution of the flows themselves instead of the enabling and disabling events.
Table 1a details the tag propagation represented by this relation according to
the concrete execution x from Example 1.

Tag Propagation by LSM-based Trackers Formally, the computation
done by LSM-based trackers such as Laminar, KBlare, and Weir can be described
by a transition relation −⇁⊆ Θ ×O ×Θ defined as follows:

θ
c1

enable−−−−→f c2−−−−−−−−−⇁ θ[c2 ← θ(c2) ∪ θ(c1)] θ
c1

disable−−−−→f c2−−−−−−−−−⇁ θ

Considering again Example 1, Table 1b describes the computation done from ω.
This taint propagation is not sound: it can miss indirect flows. For example, in
the concrete execution x compatible with ω, there is an indirect flow from source
to destination (tsrc = F ∈ θ(d) = {td = N, tr = }, tp = �, tse = �, tsrc = F} in
the computation made by ↪−→), but this is not the case in the computation made
by −⇁.

This model describes straightforwardly “floating labels” systems such as Blare
and Weir, in which a flow automatically updates the label of the destination
container with the label of the source to show the dissemination of the tagged
data. It also describes correctly, although this is less intuitive, the behavior of
systems such as Laminar in which labels must be changed explicitly by the
process. In both cases, the race condition is the same and has the same effect. In
Blare and Weir, the flow occurs but the label of the destination is not updated
accordingly. If this flow is illegal, then the violation of the security policy is not
detected. In Laminar, even if the flow is illegal, which means that the destination
label does not dominate the source one, no alert is raised and it occurs anyway.
In our model, the labels only represent the knowledge the tracking system has
about past flows in the system, and is not tied to any specific policy semantics.

Computation of the Smallest Correct Overapproximation Given an
observable execution ω, we define Enabledω ⊆ C×C as the set of flows that have
been enabled during ω and not disabled (yet) at the end of ω. Enabled∗ω stands
for the reflexive and transitive closure of relation Enabledω.

(c1, c2) ∈ Enabledω ⇔ ∃i ω[i] = c1
enable−−−−→f c2 ∧ ∀j > i ω[j] 6= c1

disable−−−−→f c2

An overapproximation, written Flowsω ⊆ C × C, of flows that can be generated
by some concrete execution compatible with a given observable execution ω ∈ O

3 f [x← a] is the function such that f [x← a](y) =

{
a if x = y

f(y) otherwise.



can be computed as follows.4

Flowsω =

{
Enabled∗ω if lg(ω) = 1
Flowsω[:k] � Enabled

∗
ω if lg(ω) = k + 1

For example, if the flow (A,B) has happened in the past, and the flow (B,C) gets
enabled, then the composition (A,C) is a new flow in the system. This would not
be the case if the flow (B,C) were anterior to (A,B). Considering Example 1,
Table 1c illustrates how Flowsω is computed. As we can see, Flowsω is not
necessarily a transitive relation. Proposition 1 below ensures the soundness of
the tag propagation mechanism, as illustrated in Table 1d. Proposition 2 ensures
that it is impossible to compute a better overapproximation in our model.

Proposition 1 (Soundness). Flows generated by a concrete execution com-
patible with an observable execution ω belong to Flowsω.

∀e ∈ E ∀θ ∈ Θ θinit
eX
↪−→ θ ⇒ ∀c ∈ C θ(c) ⊆

⋃
(c′,c)∈FlowseO

θinit(c
′)

Proof (Sketch). By induction on lg(e). It suffices to show that if a concrete
execution exists, then, by the causality conditions, there necessarily exists a se-
quence of observable events that have enabled the flows executed in the concrete
execution. Flowsω contains these flows by construction.

Proposition 2 (Smallest overapproximation / Completeness ). All flows
in Flowsω are generated by at least one concrete execution compatible with the
observable execution ω.
∀ω ∈ O ∀c, c′ ∈ C
(c, c′) ∈ Flowsω ⇒ ∃x ∈ X

(
ω ` x ∧ ∀θ ∈ Θ θinit

x
↪−→ θ ⇒ θinit(c) ⊆ θ(c′)

)
Proof (Sketch). By induction on lg(ω). Suppose that (c, c′) ∈ Flowsω[:n] is the
flow (c = c1, c2), (c2, c3), . . . , (cm−1, cm = c′). Then by definition, there exists
i ≤ m such that (c1, ci) ∈ Flowsω[:n−1] and (ci, cm) ∈ Enabled∗ω[:n]. By the
induction hypothesis, there exists x ` ω[:n − 1] which propagates tags from c1
to ci. Concatenating x with the executions of the flows (ci, ci+1), . . . , (cm−1, cm)
(which are enabled and not disabled yet in ω[:n]) in this order yields a concrete
execution x′ ` ω[:n] propagating tags from c = c1 to cm = c′ via ci.

4 Implementation and Experiments

We have implemented our taint propagation algorithm as Rfblare, the race-free
KBlare, into the version 4.7 of the vanilla Linux kernel. We have not contributed
to the policy enforcement part of KBlare and do not discuss it here. Rfblare
covers the flows listed in Table 2. Consistently with the formal description of
our algorithm, we use one LSM hook as an enabling event and another one as a
4 Given two relations R1 ⊆ E × F and R2 ⊆ F ×G, the relation R1 � R2 ⊆ E ×G is
defined by (x, y) ∈ R1 �R2 iff there exists z ∈ F such that (x, z) ∈ R1 and (z, y) ∈ R2.



Table 1. Flow-based Interpretations of Executions. For the sake of legibility, we note:
tsrc = F, tse = �, tp = �, tr = }, td = N

(a) Computation of θinit
x[:n]
↪−−−→ θ (Ideal propagation)

n x[n] θ(src) θ(se) θ(p) θ(r) θ(d)

1 src
exec−−→f1 se F �,F � } N

2 se
exec−−→f2 p F �,F �,�,F } N

3 p
exec−−→f3 r F �,F �,�,F },�,�,F N

4 r
exec−−→f4 d F �,F �,�,F },�,�,F N,},�,�,F

(b) Computation of θinit
ω[:n]−−−⇁ θ (LSM-based trackers)

n ω[n] θ(src) θ(se) θ(p) θ(r) θ(d)

1 p
enable−−−−→f1 r F � � },� N

2 src
enable−−−−→f2 se F �,F � },� N

4 se
enable−−−−→f3 p F �,F �,�,F },� N

7 r
enable−−−−→f4 d F �,F �,�,F },� N,},�

(c) Enabledω[:n], Enabled∗ω[:n] and Flowsω[:n]

n Enabledω[:n] Enabled∗ω[:n] Flowsω[:n]

0 (src, src), (se, se), (p, p),
(r, r), (d, d)

(src, src), (se, se), (p, p), (r, r), (d, d)

1 (p, r) (src, src), (se, se), (p, p),
(r, r), (d, d), (p, r)

(src, src), (se, se), (p, p), (r, r), (d, d),
(p, r)

. . .

7 (r, d) (src, src), (se, se), (p, p),
(r, r), (d, d), (r, d)

(src, src), (se, se), (p, p), (r, r), (d, d),
(p, r), (p, d), (src, se), (src, p), (src, r),

(src, d), (se, p), (se, r), (se, d)

(d) Computation of
⋃

(c1,c2)∈Flowsω[:n]

θinit(c1) (Rfblare’s Overapproximation)

n ω[n] θ(src) θ(se) θ(p) θ(r) θ(d)

1 p
enable−−−−→f1 r F � � },� N

2 src
enable−−−−→f2 se F �,F � },� N

3 src
disable−−−−→f2 se F �,F � },� N

4 se
enable−−−−→f3 p F �,F �,�,F },�,�,F N

5 p
disable−−−−→f1 r F �,F �,�,F },�,�,F N

6 se
disable−−−−→f3 p F �,F �,�,F },�,�,F N

7 r
enable−−−−→f4 d F �,F �,�,F },�,�,F N,},�,�,F

8 r
disable−−−−→f4 d F �,F �,�,F },�,�,F N,},�,�,F



disabling event for each flow. We have leveraged the expertise from our previous
work on LSM [3] to map our model onto the LSM framework. Some flows cannot
possibly enter in a race condition with others and require no disabling hook. For
example, the execve system call is used to run a new program, causing a flow
from the executable file to the memory of the process. However, this flow cannot
race with any flow to the file, because it is forbidden both to write into a file
being executed and to execute a file being written to. In the case of fork, no
race condition occurs with the new process since it has not started yet, and race
conditions with the parent process are irrelevant since the mm_dup_security
hook is actually called after the copy of the parent process’s memory is finished
(i.e. after the flow has taken place). mq_timedsend and msgsnd are in the same
situation. When a message is to be sent to a message queue, it is first copied to a
buffer in the kernel, then checked by the LSM module before it can be registered
to the queue. This order of actions prevents the calling process from tampering
with the message being checked. Since the kernel already avoids the data race
condition on the message, using our algorithm would be redundant.

We have added two LSM hooks as disabling events: syscall_before_return
for discrete flows and ptrace_unlink for process_vm_readv (discrete flow) and
ptrace (continuous flow). ptrace lets one process attach to another and monitor
its execution. It is used by debuggers. We consider it a continuous flow because
it opens many ways for the tracer process to exchange data with the tracee, in
overt or covert ways. We have placed the syscall_before_return hook before
the normal return of the system calls generating the flows. The case of mmap and
mprotect is special. We need not track the unmapping of files because the ker-
nel already does so. More precisely, for any file, we can query the kernel for the
list of processes’ memory spaces it is mapped into, and for any memory space,
we can similarly know which files are mapped into. Therefore, when computing
the taint propagation for a flow to a file or a memory space, we use this knowl-
edge maintained by the kernel to take into account the continuous flow caused
by the mapping. We still need the enabling hooks nonetheless to perform the
taint propagation between the file and the memory space as soon as the file is
mapped. If the mapping is read-only, the flow is from the file to the memory
space, otherwise, it is bidirectional. mprotect can be used to change a read-only
mapping to a read-write one, so we need to monitor it.

We have tested the attacks presented in Section 2. In the case of the Stealthily
Copying a File, the sequence of events is of course still the same but Rfblare
reacts correctly to it. The flow from the pipe to the receiver is enabled when the
receiver goes through the file_permission hook. The flow remains enabled as the
process is blocked for the pipe to be written to. On the sender side, the flow from
the source file to the sender is enabled (the source’s tags are propagated to the
sender), and then disabled immediately after. Then, when the sender process
writes to the pipe, the flow from the sender to the pipe is enabled and the tags
from the sender (which includes tags from the source file) are propagated to the
pipe. Since the flow from the pipe to the receiver is still enabled, the tags are
also propagated to the receiver. Finally, when the receiver restarts, the actual



Table 2. Flows monitored by Rfblare

System call family Flow Enabling event Disabling event

Discrete flows

read File→memory file_permissiona before_returnb

write Memory→file file_permissiona before_returnb

recv Socket→memory socket_recvmsga before_returnb

send Memory→socket socket_sendmsga before_returnb

process_vm_readv Memory→memory ptrace_access_checka ptrace_unlinkb

migrate_pages Memory→memory task_movememorya before_returnb

move_pages Memory→memory task_movememorya before_returnb

msgrcv Message queue →
memory

mq_store_msga before_returnb

msgsnd Memory →
message queue

msg_msg_alloc_securitya —c

mq_timedreceive Message queue →
memory

mq_store_msga before_returnb

mq_timedsend Memory →
message queue

msg_msg_alloc_securitya —c

clone/fork Memory→memory mm_dup_securityb —c

execve File→memory bprm_set_creds/
bprm_committing_credsa

—c

kill Memory→memory task_killa before_returnb

Continuous flows

mmap File↔memory mmap_filea —d

mprotect File↔memory file_mprotecta —d

ptrace Memory↔memory ptrace_access_checka ptrace_unlinkb

ptrace Memory↔memory ptrace_tracemea ptrace_unlinkb

a LSM hook already present in the LSM framework.
b LSM hook added by us.
c No LSM hook needed because this operation cannot race with any other.
d No LSM hook needed because we query the kernel for the active mappings.

Table 3. Linux compilation micro-benchmark results. Times are given as an average
over thirty runs, with the 95% confidence interval. Ratios are the fraction of each
system time over the reference system time and the 0-tags system time, respectively.

number of tags user time (s) system time (s) and ratios elapsed time (s)

(reference) 1180 ±10.8 82.95 ±0.75 1.000 0.981 170.8 ±1.7
0 1174 ± 8.4 84.56 ±0.46 1.019 1.000 170.1 ±1.3
400 1175 ±10.3 84.66 ±0.55 1.021 1.001 170.8 ±1.5
800 1175 ±10.6 84.82 ±0.57 1.022 1.003 170.1 ±1.5
1200 1173 ±10.2 84.90 ±0.58 1.023 1.004 170.9 ±1.5
1600 1169 ±10.2 86.43 ±1.43 1.042 1.022 171.3 ±1.8
2000 1168 ± 9.5 86.92 ±1.58 1.048 1.027 170.6 ±1.8



reading is performed, the flow from the pipe to the receiver is disabled and the
read system call finishes. The receiver then writes to the destination file, and thus
propagates its taint to it. The content of the destination file is correctly reflected
by its taint, despite the flows involving the pipe having occurred in the reverse
order with respect to the corresponding passages through the file_permission
hook. For the second attack with memory-mapped files and shared memories,
we have used a similar setup. The sender and the receiver map respectively the
source and destination file, and the pipe is replaced by a shared memory segment.
We observe again the correct behavior: whichever mapping is done last (either
one of the file, or the shared memory), the tags of the source file are propagated
to all containers linked by the enabled continuous flows.

Measuring the overhead caused by Rfblare is critical to ensure its practicality.
Our testcase is a compilation of the Linux kernel, version 4.7, on a machine with
Rfblare. We place a unique tag on a varying number of source files to study the
impact of the number of tags to propagate on the performance on the kernel. We
believe compilation to be an appropriate benchmark because it is reproducible
reliably and involves numerous flows to and from files as well as the spawning
of numerous processes. Furthermore, it is relatively easy to verify the correct
propagation because we put a unique tag on each source file and we can check
by other means what files are supposed to participate to the compilation of
each intermediary and final output of the compiler. Our results are presented in
Table 3. We measure the time taken by the compilation depending on the number
of tagged source files. As a reference, we have taken the time on a similar system
without Rfblare. Tests are run thirty times each, on a virtual machine with
16Gb of RAM, and 8x3.2Ghz CPUs. The user time is the cumulated time spent
by all threads outside the kernel. Logically, it shows no significant variation.
The system time is the cumulated time spent in the kernel doing system calls,
including taint propagation. Overall, on the Rfblare-equipped system, there is
an increase of about 2 to 5% of the system time. This is small, especially if
we consider the wall clock time spent during the compilation (column “elapsed
time”) which shows no significant variation.

5 Related Work

IFC has been an active topic of research and prototyping for a long time. It can
be applied in programming languages or at the OS level, we only discuss the
latter case here. Along with the various implementations, formal descriptions
have been proposed, following the seminal work of Denning [2]. Denning showed
that information flow policies could be described as lattices of security labels.
This works helped reasoning about the respective expressiveness and objectives
of the different kinds of policies. However, Denning only describes access control
policies. The difference between access control and information flow control is
explicited by Jaume et al. [5]: IFC bases its security decisions based on the history
of flows in the system (maintained with taint propagation) whereas access control
does not maintain this knowledge. The practical consequence is that thanks to



this knowledge, IFC allows more policies while maintaining the guarantee that
no illegal flow can occur. For example, it is possible to let a process read a secret
file or communicate with an unauthorized process, but not both. Access control
can either allow both (which is a security hazard) or deny both (which is overly
restrictive). However, despite the extensive literature on the models of labels
(for example: [13, 15]) and on the properties enforceable with IFC, like non-
interference [6], there is little formal work on taint propagation itself. However,
implementing IFC in Linux systems raises practical difficulties, mainly due to
concurrency and arcane corner cases in both the design and the implementation
of the Linux kernel. Flume [7] is an IFC system implemented as an execution
monitor in userspace, able to track the flows done by an individual process. It
uses a LSM module to propagate taints to and from files. This is different from
our solution, implemented entirely in-kernel which tracks flows in the entire
system. Flowx [1] is a LSM module enforcing non-interference in an entire Linux
system. Its implementation covers all IPCs present in Linux systems, including
shared memory. However, it does not perform IFC according to our definition
but rather access control since it does not maintain a knowledge of the flows
in the system. Instead, it dynamically instantiates copies of existing containers
of information with appropriate labels of security, each time an illegal access
is asked for. We have already discussed the case of KBlare [4], Laminar [11]
and Weir [8], which have a similar design. The main differences are the target
(Android for Weir, all Linux systems for Laminar and KBlare), the model of
label (inherited from Flume [7] for Laminar and Weir, radically different for
KBlare) and the use of floating labels (KBlare and Weir) versus explicit changes
(Laminar). They claim to cover a different range of overt and covert channels of
information, Laminar putting a special focus on covert channels while KBlare
disregarding them completely.

6 Conclusion

Information flow trackers are powerful tools to maintain a history of how data is
disseminated and used in an operating system. This knowledge is necessary to en-
force strong information flow policies or analyze malware activity. In Linux, most
trackers are implemented using the Linux Security Modules framework, which
provides hooks trackers can use to monitor the system calls making information
flow. However, being able to monitor individual flows is not a guarantee of being
able to correctly trace them all. We have shown that information flows gener-
ated by concurrent system calls can cause trackers to miss indirect information
flows because of race conditions. To handle this issue, we have modeled informa-
tion trackers as being able to monitor not the execution of flows themselves, but
rather the events that enable and disable the flow. With this model as a basis, we
have designed and proved an algorithm to compute the smallest overapproxima-
tion of the flow tracking in a given execution, considering all sequences of flow ex-
ecutions compatible with the events observable in this execution. The solution we
propose has the very practical consequence that it makes possible to track contin-



uous flows, including continuous flows caused by memory mappings and shared
memory segments, which were not fully handled before. We have implemented
our approach in Rfblare, available at https://blare-ids.org/rfblare.

References
1. Cristiá, M., Mata, P.E.: Runtime enforcement of noninterference by duplicating

processes and their memories. In: Workshop de Seguridad Informática WSEGI.
vol. 2009 (2009)

2. Denning, D.E.: A Lattice Model of Secure Information Flow. Communications of
the ACM 19(5), 236–243 (May 1976)

3. Georget, L., Jaume, M., Piolle, G., Tronel, F., Viet Triem Tong, V.: Verifying the
Reliability of Operating System-Level Information Flow Control Systems in Linux.
In: FormaliSE: FMEWorkshop on Formal Methods in Software Engineering. IEEE,
Buenos Aires, Argentina (May 2017)

4. Hauser, C.: Détection d’intrusion dans les systèmes distribués par propagation de
teinte au niveau noyau. Ph.D. thesis, University of Rennes 1, France (Jun 2013)

5. Jaume, M., Andriatsimandefitra, R., Viet Triem Tong, V., Mé, L.: Secure states
versus Secure executions: From access control to flow control. In: International
Conference on Information Systems Security. Springer (Dec 2013)

6. Krohn, M., Tromer, E.: Noninterference for a Practical DIFC-Based Operating
System. In: IEEE Symposium on Security and Privacy. pp. 61–76. IEEE Computer
Society, Washington, DC, USA (2009)

7. Krohn, M., Yip, A., Brodsky, M., Cliffer, N., Kaashoek, M.F., Kohler, E., Mor-
ris, R.: Information flow control for standard OS abstractions. In: ACM SIGOPS
symposium on Operating systems principles. pp. 321–334. ACM, Stevenson, WA,
USA (Oct 2007)

8. Nadkarni, A., Andow, B., Enck, W., Jha, S.: Practical DIFC Enforcement on An-
droid. In: 25th USENIX Security Symposium (USENIX Security 16). pp. 1119–
1136. USENIX Association, Austin, TX (Aug 2016)

9. Porter, D.E., Bond, M.D., Roy, I., Mckinley, K.S., Witchel, E.: Practical Fine-
Grained Information Flow Control Using Laminar. ACM Transactions on Pro-
gramming Languages and Systems 37(1), 1–51 (Nov 2014)

10. Roy, I., Porter, D.: Laminar (Aug 2014), https://sourceforge.net/p/jikesrvm/
research-archive/26

11. Roy, I., Porter, D.E., Bond, M.D., McKinley, K.S., Witchel, E.: Laminar: Practical
Fine-grained Decentralized Information Flow Control. In: Proceedings of the 30th
ACM SIGPLAN Conference on Programming Language Design and Implementa-
tion. pp. 63–74. ACM, Dublin, Ireland (Jun 2009)

12. The Coq Development Team: The Coq Proof Assistant Reference Manual. Tech.
rep., Inria (Dec 2016)

13. VanDeBogart, S., Efstathopoulos, P., Kohler, E., Krohn, M., Frey, C., Ziegler, D.,
Kaashoek, F., Morris, R., Mazières, D.: Labels and Event Processes in the Asbestos
Operating System. ACM Transactions on Computer Systems 25(4) (Dec 2007)

14. Wright, C., Cowan, C., Smalley, S., Morris, J., Kroah-Hartman, G.: Linux Security
Modules: General Security Support for the Linux Kernel. In: USENIX Security
Symposium. pp. 17–31. USENIX Association, San Francisco, CA, USA (2002)

15. Zimmermann, J., Mé, L., Bidan, C.: Experimenting with a Policy-Based HIDS
Based on an Information Flow Control Model. In: Proceedings of the Annual Com-
puter Security Applications Conference (ACSAC) (Dec 2003)


