B. C. Paul, A. Agarwal, and K. Roy, Low-power design techniques for scaled technologies, Integration, the VLSI Journal, vol.39, issue.2, pp.64-89, 2006.
DOI : 10.1016/j.vlsi.2005.12.001

M. T. Bohr, Nanotechnology goals and challenges for electronic applications, IEEE Transactions On Nanotechnology, vol.1, issue.1, pp.56-62, 2002.
DOI : 10.1109/TNANO.2002.1005426

O. Wada, Femtosecond All-Optical Devices for Ultrafast Communication and Signal Processing, New J. Phys, vol.6, p.183, 2004.
DOI : 10.1201/b13886-3

I. Glesk, All-optical switching using nonlinear subwavelength Mach-Zehnder on silicon, Optics Express, vol.19, issue.15, pp.14031-14039, 2011.
DOI : 10.1364/OE.19.014031

URL : http://strathprints.strath.ac.uk/32429/1/Glesk_OptExp.pdf

W. J. Johnston, J. P. Prineas, and A. L. Smirl, Ultrafast all-optical polarization switching in Bragg-spaced quantum wells at 80K, Journal of Applied Physics, vol.101, issue.4, p.46101, 2007.
DOI : 10.1088/0268-1242/19/4/112

V. R. Almeida, C. A. Barrios, R. R. Panepucci, and M. Lipson, All-optical control of light on a silicon chip, Nature, vol.5116, issue.7012, pp.1081-1084, 2004.
DOI : 10.1109/2944.902184

T. Nozaki, Sub-femtojoule all-optical switching using a photonic-crystal nanocavity, Nature Photonics, vol.16, issue.7, pp.477-483, 2010.
DOI : 10.1038/nphoton.2010.89

T. Mori, Y. Yamayoshi, and H. Kawaguchi, Low-switching-energy and high-repetition-frequency all-optical flip-flop operations of a polarization bistable vertical-cavity surface-emitting laser, Applied Physics Letters, vol.74, issue.10, p.101102, 2006.
DOI : 10.1109/3.108

J. Hwang, A single-molecule optical transistor, Nature, vol.79, issue.7251, pp.76-80, 2009.
DOI : 10.1038/nature08134

D. A. Miller, Are optical transistors the logical next step?, Nature Photonics, vol.230, issue.1, pp.3-5, 2010.
DOI : 10.1038/nphoton.2009.240

D. Giorgi and M. , Control and Ultrafast Dynamics of a Two-Fluid Polariton Switch, Physical Review Letters, vol.91, issue.26, p.266407, 2012.
DOI : 10.1103/PhysRevLett.102.056402

S. Savasta, D. Stefano, O. Girlanda, and R. , Many-Body and Correlation Effects on Parametric Polariton Amplification in Semiconductor Microcavities, Physical Review Letters, vol.25, issue.9, p.96403, 2003.
DOI : 10.1103/RevModPhys.70.145

P. G. Savvidis, Angle-Resonant Stimulated Polariton Amplifier, Physical Review Letters, vol.58, issue.7, pp.1547-1550, 2000.
DOI : 10.1103/PhysRevLett.84.1547

R. Huang, F. Tassone, and Y. Yamamoto, Experimental evidence of stimulated scattering of excitons into microcavity polaritons, Physical Review B, vol.84, issue.12, pp.7854-7857, 2000.
DOI : 10.1103/PhysRevB.61.R7854

C. Ciuti, P. Schwendimann, B. Deveaud, and A. Quattropani, Theory of the angle-resonant polariton amplifier, Physical Review B, vol.59, issue.8, pp.4825-4828, 2000.
DOI : 10.1103/PhysRevB.62.R4825

R. M. Stevenson, Continuous Wave Observation of Massive Polariton Redistribution by Stimulated Scattering in Semiconductor Microcavities, Physical Review Letters, vol.59, issue.17, pp.3680-3683, 2000.
DOI : 10.1103/PhysRevLett.85.3680

M. Saba, High-temperature ultrafast polariton parametric amplification in semiconductor microcavities, Nature, vol.414, issue.6865, pp.731-735, 2001.
DOI : 10.1038/414731a

A. Baas, J. P. Karr, H. Eleuch, and E. Giacobino, Optical bistability in semiconductor microcavities, Physical Review A, vol.59, issue.2, p.23809, 2004.
DOI : 10.1103/PhysRevA.69.023809

URL : https://hal.archives-ouvertes.fr/hal-00012338

A. Tredicucci, Optical bistability of semiconductor microcavities in the strong-coupling regime, Physical Review A, vol.53, issue.4, pp.3493-3498, 1996.
DOI : 10.1103/PhysRevA.54.3493

N. A. Gippius, S. G. Tikhodeev, V. D. Kulakovskii, D. N. Krizhanovskii, and A. Tartakovskii, stimulated scattering, Europhysics Letters (EPL), vol.67, issue.6, pp.997-1003, 2004.
DOI : 10.1209/epl/i2004-10133-6

D. M. Whittaker, Numerical modelling of the microcavity OPO, physica status solidi (c), vol.2, issue.2, pp.733-737, 2005.
DOI : 10.1002/pssc.200460300

N. A. Gippius, Polarization Multistability of Cavity Polaritons, Physical Review Letters, vol.64, issue.23, p.236401, 2007.
DOI : 10.1103/PhysRevA.62.011801

D. Bajoni, Optical Bistability in a GaAs-Based Polariton Diode, Physical Review Letters, vol.101, issue.26, p.266402, 2008.
DOI : 10.1063/1.1994954

T. K. Para?¨sopara?¨so, M. Wouters, Y. Léger, F. Morier-genoud, and B. Deveaud-plédran, Multistability of a coherent spin ensemble in a semiconductor microcavity, Nature Materials, vol.3, issue.8, pp.655-660, 2010.
DOI : 10.1038/nmat2787

A. Amo, Exciton?polariton spin switches, Nature Photonics, vol.93, issue.6, pp.361-366, 2010.
DOI : 10.1038/nphoton.2010.79

J. Kasprzak, Bose???Einstein condensation of exciton polaritons, Nature, vol.214, issue.185, pp.409-414, 2006.
DOI : 10.1038/nature05131

R. Balili, V. Hartwell, D. Snoke, L. Pfeiffer, and K. West, Bose-Einstein Condensation of Microcavity Polaritons in a Trap, Science, vol.316, issue.5827, pp.1007-1010, 2007.
DOI : 10.1126/science.1140990

A. Amo, Collective fluid dynamics of a polariton condensate in a semiconductor microcavity, Nature, vol.202, issue.7227, pp.291-295, 2009.
DOI : 10.1038/nature07640

A. Amo, Superfluidity of polaritons in semiconductor microcavities, Nature Physics, vol.58, issue.11, pp.805-810, 2009.
DOI : 10.1038/nphys1364

D. Sanvitto, Persistent currents and quantized vortices in a polariton superfluid, Nature Physics, vol.70, issue.7, pp.527-533, 2010.
DOI : 10.1088/0268-1242/18/10/301

A. Amo, Polariton Superfluids Reveal Quantum Hydrodynamic Solitons, Science, vol.100, issue.11, pp.1167-1170, 2011.
DOI : 10.1103/PhysRevLett.100.110404

URL : http://arxiv.org/abs/1101.2530

D. Sanvitto, All-optical control of the quantum flow of a polariton condensate, Nature Photonics, vol.5, issue.10, pp.610-614, 2011.
DOI : 10.1103/PhysRevB.82.081301

S. Christopoulos, Room-Temperature Polariton Lasing in Semiconductor Microcavities, Physical Review Letters, vol.82, issue.12, p.126405, 2007.
DOI : 10.1103/PhysRevB.65.235312

T. C. Liew, A. V. Kavokin, and I. A. Shelykh, Optical Circuits Based on Polariton Neurons in Semiconductor Microcavities, Physical Review Letters, vol.101, issue.1, p.16402, 2008.
DOI : 10.1063/1.2831005

I. A. Shelykh, G. Pavlovic, D. D. Solnyshkov, and G. Malpuech, Proposal for a Mesoscopic Optical Berry-Phase Interferometer, Physical Review Letters, vol.102, issue.4, p.46407, 2009.
DOI : 10.1103/PhysRevA.30.1982

URL : http://arxiv.org/abs/0807.3721

T. C. Liew, Exciton-polariton integrated circuits, Physical Review B, vol.82, issue.3, p.33302, 2010.
DOI : 10.1103/PhysRevLett.98.126405

E. Wertz, Spontaneous formation and optical manipulation of extended polariton condensates, Nature Physics, vol.77, issue.11, pp.860-864, 2010.
DOI : 10.1103/PhysRevB.80.045301

URL : https://hal.archives-ouvertes.fr/hal-01229232

R. Johne, I. A. Shelykh, D. D. Solnyshkov, and G. Malpuech, Polaritonic analogue of Datta and Das spin transistor, Physical Review B, vol.81, issue.12, p.125327, 2010.
DOI : 10.1103/PhysRevB.75.075323

E. Cancellieri, F. M. Marchetti, M. H. Szyman´skaszyman´ska, D. Sanvitto, and C. Tejedor, Frictionless Flow in a Binary Polariton Superfluid, Physical Review Letters, vol.108, issue.6, p.65301, 2012.
DOI : 10.1103/PhysRevA.70.013608

T. Gao, Polariton condensate transistor switch, Physical Review B, vol.85, issue.23, p.235102, 2012.
DOI : 10.1103/PhysRevB.82.033302

URL : http://arxiv.org/abs/1205.4634