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Research from the last decade has successfully used two kinds of thought reports in
order to assess whether the mind is wandering: random thought-probes and spontaneous
reports. However, none of these two methods allows any assessment of the subjective
state of the participant between two reports. In this paper, we present a step by step
elaboration and testing of a continuous index, based on response time variability within
Sustained Attention to Response Tasks (N = 106, for a total of 10 conditions). We first
show that increased response time variability predicts mind wandering. We then compute
a continuous index of response time variability throughout full experiments and show that
the temporal position of a probe relative to the nearest local peak of the continuous index
is predictive of mind wandering. This suggests that our index carries information about the
subjective state of the subject even when he or she is not probed, and opens the way for
on-line tracking of mind wandering. Finally we proceed a step further and infer the internal
attentional states on the basis of the variability of response times. To this end we use the
Hidden Markov Model framework, which allows us to estimate the durations of on-task
and off-task episodes.

Keywords: mind wandering, subjective report, response times variability, Hidden Markov Models, time-course

analysis

INTRODUCTION
Mind wandering refers to the occurrence of task-unrelated and
stimulus-independent thoughts (Stawarczyk et al., 2011). In daily
life, this spontaneous tendency of the mind to drift away from
the here-and-now occurs about 30–50% of the time, with sur-
prisingly few differences regarding the task at hand (Killingsworth
and Gilbert, 2010).

The literature has successfully identified general factors that
modulate the amount of mind wandering, be they context-
dependent or more persistent. However, as Smallwood (2013)
notes, the overall amount of mind wandering may depend on
both the frequency and the duration of episodes. For example,
mindfulness training might lead to shorter episodes of mind wan-
dering through enhanced awareness of their occurrence (Schooler
et al., 2011), whereas global time spent mind wandering might be
reduced in a demanding task due to a reduction of the frequency
of the episodes.

To our knowledge no extant methodology enables us
to disentangle frequency from duration of mind wander-
ing episodes. Up to now, mind wandering has been mainly
accessed through discrete thought sampling: participants are ran-
domly probed about their subjective states. This method only
assesses mind wandering at the moment of the probe, but
that tells us nothing about the time-course of the alternating
states.

As an attempt to overcome this issue, participants could
be asked to estimate the time spent mind wandering. Time
estimation of conscious thoughts have already been reported

(Klinger, 1978; Klinger and Cox, 1987), but lack secondary
measures that would validate their reliability. This is critical, as
one may be wary of any retrospective estimation of the time
spent mind wandering on account of the dangers of complex
introspection (Nisbett and Wilson, 1977; Johansson et al., 2006),
and on account of the conclusive evidence that introspection is
only faithful when retrospection—looking back to what has been
done—and generalization—describing the mechanism instead of
the occurrence—are kept to a minimum (Ericsson and Simon,
1980). Moreover, little is known about time estimation of mental
events (but see Miller et al., 2010). Furthermore, among men-
tal events, mind wandering is most often characterized by a
lack of introspective awareness: participants often find out they
have been mind wandering for some time without any previ-
ous acknowledgment of it (Schooler et al., 2011). It may thus be
difficult for participants to estimate the duration of their mind
wandering episodes when precisely they do not notice that they
were mind wandering.

Similarly, we have no means of assessing participant’s sub-
jective states after a thought-probe. It has been suggested that
spontaneous episodes of mind wandering might cease due to the
interruption by a probe (Schooler et al., 2011), but there is in
fact little evidence to this effect. It is even conceivable that the
episode might start again right after the probe—to “terminate
the thought.” In fact, reactive mind wandering (mind wandering
about the fact that one has been caught mind wandering), has also
been suggested (Cheyne et al., 2009). Hence, after a probe, partic-
ipants could either continue their thought, restart their thought,
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have an other thought, or get back to focus. There is just no
method that would help disentangling the different options.

Spontaneous “self-caught” reports of mind wandering
may constitute an alternative to random thought sampling
(Smallwood and Schooler, 2006). In this method, participant are
requested to spontaneously report episodes of mind wandering
as soon as they notice them. Unlike random thought probes, this
method allows continuous tracking of mind wandering from the
subject’s perspective. However, this tracking crucially depends
on awareness. Further, it can even be argued that monitoring
one’s own mind wandering is a task, and that as such, it is
fallible, precisely because it is liable to mind wandering. Finally
participants may set higher thresholds to spontaneously stop and
report than to respond “yes, I was mind wandering” if probed
(Bastian et al., submitted). Hence, the absence of spontaneous
report of mind wandering is not sufficient to claim that the
participant is not mind wandering: she might not judge her
off-task experience salient enough, she might not be aware of it,
or she might have forgotten to make the report. Therefore, even
the self-catching procedure does not ensure a fully continuous
assessment of the wandering mind.

To summarize, there is currently a deep methodological limit
in the assessment of mind wandering: participants only tell us that
they are mind wandering when we ask them to do so, or when
they are themselves aware of doing so. Therefore, they report
mind wandering at discrete time points that do not allow contin-
uous tracking of their subjective state as they are experiencing it.

A crucial step to overcome this methodological issue may rely
on the elaboration of a continuous index that would covertly
track mind wandering. Behavioral [response time variability
(Cheyne et al., 2009; Seli et al., 2012), increased error rate (McVay
and Kane, 2012), decreased comprehension (Smallwood et al.,
2008b)], electro-physiological [increased heart rate and galvanic
skin response (Smallwood et al., 2007), pupil dilation (Smallwood
et al., 2011)] and neural variables (increased activity in the default
mode and executive networks (Christoff et al., 2009), increased
energy in theta and delta bands and decreased energy in the
alpha and beta bands (Braboszcz and Delorme, 2011), decreased
amplitude of sensory-triggered ERP (Kam et al., 2011) have been
suggested to be such indicators of mind wandering. However,
crucially, all of these studies relied on contrasts between off-task
and on-task periods, time-locked to discrete probes. Studies using
random thought-probes (Christoff et al., 2009; Seli et al., 2012)
opposed the few seconds preceding off-task reports to the few sec-
onds preceding on-task reports. As for studies using spontaneous
reports (Braboszcz and Delorme, 2011; Hasenkamp et al., 2012),
they opposed seconds preceding and seconds following the spon-
taneous report, with the assumption that participants would be
able to refocus immediately after the report.

While this approach seems a necessary step in the elabora-
tion of an index of mind wandering, we suggest that a global
analysis taking into account the full length of the experiment
is now critical. But how can we extrapolate subjective states
away from discrete moments when subjects report them? Here,
we propose the following strategy: first, we design a candidate
index of mind wandering: this index should both correlate with
subjective states when these are available, and it should be based

on objective measures that are available even when participants
do not report on their subjective states. Next, we compute the
index at every time-point in the experiment and identify regular
patterns (namely peaks and troughs) in its time-course. We then
test whether the temporal position of reports relative to these pat-
terns is predictive of the content of the subjective report. We take
the finding that temporal proximity to peaks of the index is pre-
dictive of mind wandering, above and beyond its absolute value, as
an indication that the index carries information about the subjec-
tive state of the participant throughout the entire duration of the
experiment.

In this paper, we applied this strategy to a re-analysis of data of
three experiments (N = 106) based on the Sustained Attention
to Response Task (Robertson et al., 1997). These data were not
intended at first for this project and will be presented in full details
in Bastian et al. (submitted).

So as to theoretically validate the analyses, we go one step
further and propose a model of the fluctuations of mind wan-
dering in our data. We conceptualize our participants experience
during the experiment as a Markov chain of two attentional
states: on-task and mind wandering. We show that, based on
the assumption that variability of response times is heightened
in the mind wandering state, we can parse the full time series
of response times and reveal episodes of mind wandering. We
show that this latent classification is both internally consistent and
correlates with participants subjective reports.

METHODS
DATA AND DESIGNS
The design of the three experiments (N = 106) is described in
details in Bastian et al. (submitted, Experiments 1–3). All exper-
iments were based on the Sustained Attention to Response Task
(SART), a go/no-go paradigm with rare (<12%) no-go trials. A
digit between 0 and 9 was presented for 500 ms every 2000 ms
on a computer screen and participants were required to press the
space bar as fast and accurately as possible for each digit, but to
withhold their response when the number was “3.”

Experiments 1 (N = 25) and 2 (N = 34) had a within-
participants design (respectively 3 conditions—SART single task,
SART with articulatory suppression, SART with foot tapping—
and 4 conditions—a standard visual SART with reversed speech
or white noise and an auditory SART where numbers were dis-
played through earphones with static or moving random dots
on screen). Experiment 3 had a between-participants design: a
stereotype threat group (N = 15) a no-threat group (N = 17),
and a public speaking threat group (N = 15).

All experiments assessed mind wandering using random
thought-probes. Moreover, Experiment 1 and the second
part of Experiment 3 also required spontaneous reports of
mind wandering as soon as participants were realizing that were
mind wandering.

CONTRASTIVE APPROACH
DATA TRIMMING
We focused on (random) reports of on-task thoughts (Nobs =
1302), and on random (Nobs = 902) and spontaneous (Nobs =
564) reports of mind wandering. In two of the three experiments,
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participants could report that they were experiencing distraction
or that they had task-related interferences, but for the present
analysis, these reports were discarded.

Our analysis was conducted on the eight trials preceding on-
task and off-task thought reports. Thought reports were discarded
if these eight trials were not all correct go trials, for exam-
ple if they contained a no-go trial or an omission (incorrect
go trial). Thought reports were also discarded if the eight tri-
als included the first or the second trial of a block, or were
interspersed with or immediately preceded by another thought-
report (notably when participants where spontaneously reporting
mind wandering many times in a row). Indeed the trials immedi-
ately following thought reports were significantly slower (640 ms,
SD = 189) than those immediately preceding thought reports
[500 ms, SD = 174, F(1, 105) = 241, p < 0.001] or in second posi-
tion after them [490 ms, SD = 170, F(1, 105) = 390, p < 0.001],
making them unsuitable for an analysis based on response times
variability.

A number of 562 on-task thoughts, 384 random reports of
mind wandering and 73 spontaneous reports of mind wandering
survived data trimming.

RESULTS AND DISCUSSION
All data was analyzed using R (R Development Core Team, 2009)
with the lme4 (Bates and Maechler, 2009) package for mixed
models analyses. All regressions are mixed models with partici-
pants, conditions, and experiments as nested random factors, and
we present p-values that are considered significant at the α = 0.05
level.

Contrasting the trials preceding thought reports
First, based on previous evidence that, in the SART, response
time variability is higher in trials before no-go errors than in
trials before successful withholding of the response (Cheyne et al.,

2009), we wanted to assess whether response time variability was
similarly higher preceding mind wandering reports compared to
on-task reports. We computed the Response Time Coefficient of
Variability (RTCV: standard deviation/mean) of the eight trials
preceding each probes. RTCV was higher in the eight trials pre-
ceding mind wandering reports (0.204, SD = 0.108) than in the
trials preceding on-task reports (0.171, SD = 0.082). We tested
this difference in a logistic regression with RTCV as predic-
tor (Nobs = 1019, Nsubj = 106, Ncond = 10, Nexpe = 3).
We found that increasing RTCV significantly predicted reports
of mind wandering (β = 2.65, SE = 0.63, z = 4.20, p < 0.001).
More precise contrasts between on-task reports and random
reports of mind wandering (Nobs = 946, Nsubj = 106, Ncond =
10, Nexpe = 3) and between on-task reports and spontaneous
reports of mind wandering (Nobs = 635, Nsubj = 103, Ncond =
10, Nexpe = 3) showed that RTCV increased both for randomly
probed mind wandering reports and spontaneous reports of
mind wandering (respectively β = 2.60, SE = 0.68, z = 3.82, p <

0.001 and β = 3.39, SE = 1.07, z = 3.16, p < 0.01). Moreover,
the contrast between random and spontaneous reports of mind
wandering (Nobs = 457, Nsubj = 95, Ncond = 10, Nexpe = 3)
was not significantly predicted by the RTCV of the eight preced-
ing trials (p > 0.9). Table 1 shows that these effects already exist
for the four trials preceding the reports and are robust regard-
less of whether we look at the 5, 6 or 7 trials preceding thought
reports.

Second, as the literature has shown specific patterns of
response times before errors and mind wandering reports
(Smallwood et al., 2008a; Smallwood, 2011; McVay and Kane,
2012), we tested whether the increased variability we found before
mind wandering could be accounted for by either linear or
quadratic trends. To do so, we normalized response times by con-
dition and by participant using z-scores. Previous studies have
used Principal Component Analyses (Smallwood et al., 2008a;

Table 1 | Contrasting the 4–8 trials preceding mind wandering and on-task reports.

4 5 6 7 8

On vs. Off

Nobs = (on/off)

2017 (1082/935) 1761 (946/815) 1494 (813/681) 1247 (692/555) 1019 (562/457)

RTCV 1.44 (3.85)*** 1.05 (2.73)** 1.85 (3.79)*** 1.91 (3.81)*** 2.65 (4.20)***

Linear trend 0.21 (1.90) 0.05 (0.32) 0.38 (1.88) 0.72 (2.80)** 0.62 (1.89)

Quadr. trend −0.04 ( − 0.80) 0.04 (0.37) −0.13 ( − 0.98) −0.08 ( − 0.44) 0.10 (0.41)

On vs. Random Off 1815 (1082/733) 1594 (946/648) 1362 (813/549) 1146 (692/454) 946 (562/384)

RTCV 1.22 (3.12)** 0.94 (2.43)* 1.72 (3.40)*** 1.81 (3.47)*** 2.60 (3.82)***

Linear trend −0.01 ( − 0.04) −0.17 ( − 1.08) 0.07 (0.30) 0.29 (1.02) 0.24 (0.66)

On vs. Spont. Off 1284 (1082/202) 1113 (946/167) 945 (813/132) 793 (692/101) 635 (562/73)

RTCV 2.01 (3.62)*** 1.10 (1.93) 1.74 (2.30)* 2.12 (2.93)** 3.39 (3.16)**

Linear trend 1.01 (4.86)*** 0.98 (3.57)*** 1.73 (4.32)*** 3.07 (5.35)*** 2.49 (3.76)***

Rand. Off vs. Spont. Off 935 (733/202) 815 (648/167) 681 (549/132) 555 (454/101) 457 (384/73)

RTCV 0.82 (1.41) 0.17 (0.27) 0.40 (0.58) 0.08 (0.10) 0.09 (0.09)

Linear trend 0.93 (4.27)*** 1.07 (3.67)*** 1.42 (3.41)*** 1.71 (3.62)*** 1.75 (2.58)**

*p < 0.05; **p < 0.01; ***p < 0.001.
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Smallwood, 2011; McVay and Kane, 2012), so as identify pat-
terns of response times that were related to mind wandering.
Here, we computed the mean of the first differences of the eight
trials before a probe [mean of (RTn − RTn − 1) where 8 < n <

2] and the mean of the second differences mean of [(RTn −
RTn − 1) − (RTn − 1 − RTn − 2)] where 8 < n < 3), which allowed
us to test in a principled way whether linear (first differences) or
quadratic trends (second differences) predicted mind wandering
reports. In a logistic regression with both the first and second
differences as predictors, we found that the second difference
was not a significant predictor (p > 0.6), but that the first dif-
ference marginally predicted mind wandering reports (β = 0.62,
SE = 0.33, z = 1.89, p = 0.059), to the effect that participants
tended to slow down before a report of mind wandering.

If anything, this tendency goes against the literature that
has shown a linear decrease in response times preceding mind
wandering episodes (Smallwood et al., 2008a). However, these
previous results were obtained with random thought-probes, and
not with a conjunction of random and spontaneous reports.
To further evaluate this surprising tendency, we separately con-
trasted random mind wandering reports with on-task reports
in a logistic regression with the first difference as predictor,
and found no significant effect (p > 0.5). As opposed to that,
when we separately contrasted on-task reports and spontaneous
reports of mind wandering, we found that the first difference
was highly predictive of mind wandering (β = 2.49, SE = 0.66,
z = 3.76, p < 0.001): participants slowed down before a spon-
taneous report of mind wandering. To test whether this decel-
eration was specific to imminent spontaneous report, we also
contrasted spontaneous with random reports of mind wander-
ing in a logistic regression with the first difference as predictor.
We found indeed that a linear deceleration was highly pre-
dictive of spontaneous compared to random reports of mind
wandering (β = 1.75, SE = 0.68, z = 2.58, p < 0.01). Table 1
shows the robustness of this analysis from the 4 trials preceding
thought reports.

Thus, a linear decrease of response times seems spe-
cific to impending spontaneous reports of mind wandering.
Interestingly, this linear trend is partly dissociated from the gen-
eral variability of response times as captured by the RTCV. Indeed,
in a logistic regression with both RTCV and first difference as
predictors, and on-task vs. spontaneous report as outcomes, we
found both main effects of linear deceleration (β = 2.22, SE =
0.62, z = 3.55, p < 0.001) and of the RTCV (β = 3.29, SE =
1.12, z = 2.93, p < 0.01). The increase in RTCV preceding spon-
taneous reports is, therefore not totally captured by the linear
deceleration.

To summarize, we first found that high response time variabil-
ity in the eight trials preceding a thought report was predictive
of mind wandering compared to on-task thought. This phe-
nomenon was observed regardless of the method (random or
spontaneous reports) used to assess mind wandering. Second, we
found that the eight trials preceding spontaneous reports of mind
wandering presented a specific pattern of linear deceleration com-
pared to thought reports collected via random thought-probes,
regardless of their content (on-task or mind wandering). Hence,
although the linear slowing down of response times may be

related to consciousness of an episode of mind wandering, it
does not appear to be a ubiquitous index of mind wandering.
On the contrary, RTCV predicted mind wandering regardless of
the method used to assess it. Therefore, RTCV seems a suitable
candidate for a continuous index of mind wandering.

Contrasting the trials preceding and following thought reports
Next, we wanted to assess the potential effect of interruptions
(spontaneous reports of mind wandering or random external
probes) on the RTCV of immediately following trials. As the
very first trial after an interruption is significantly slower than
the other trials (see Data Trimming), we excluded it and com-
puted the RTCV on the second to fifth trial after an interruption.
In order to avoid a null effect exclusively due to excessive data-
trimming, we selected reports preceded by four or followed by five
correct no-go trials, that were not interspersed with or preceded
by an other thought report nor included the first two trials of a
block. After trimming, 2508 thought reports were included, 1286
(on-task: 746, off-task: 540) of which had both their 4 preced-
ing trials and their 5 following trials as correct go trials. We then
ran a logistic regression contrasting mind wandering and on-task
reports, with RTCV and the position of the trials (before vs. after)
as predictors. We added the thought report identity as random
variable to the other random variables (participant, condition
and experiment) since some differences are paired. We found a
main effect of RTCV, indicating that higher RTCV was predictive
of mind wandering (β = 3.85, SE = 1.08, z = 3.55, p < 0.001),
no main effect of position (before/after, p > 0.2), and crucially
no interaction (p > 0.8, see Figure 1). This shows that trials after
a report of mind wandering are still more variable than trials
after an on-task report, which may be indicative that the internal
state of participants is not drastically modified by the interrup-
tion. Of course we cannot conclude from this null result that
participants do not refocus after a report of mind wandering, as

FIGURE 1 | RTCV (Response time coefficient of variability) as a

function of whether participants are on-task or mind wandering

(“off-task”), for both the trials preceding and following a report. Error
bars are standard errors of the mean.
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we do not have secondary assessment of subjective states after
each probe. Perhaps surprisingly, however, this null result indi-
cates that, in our tasks, no-go trials and probes are unobtrusive,
so that variability of response times can be used as a continuous
index of mind wandering.

GLOBAL ANALYSIS
METHODS, RESULTS AND DISCUSSION
Now, we set out to use the RTCV as a continuous index of vari-
ability in participants response times. To do so, we removed the
first two trials of each experimental block and the first trial after
an interruption (random probe or spontaneous report) from the
series of correct go responses. On this series, we computed the
RTCV within running windows of eight trials, time-stamped to
occurrence of the last trial in the window. We then smoothed
this index using locally weighted polynomials (LOESS, Cleveland,
1979), to allow interpolations at the moment of reports1, yielding
a Continuous Variability Index (CVI) that we shall study here-
after. We illustrate the time course of the CVI on Figure 2, for an
arbitrary participant.

First, we checked whether the interpolated values of the CVI
at the moment of the probes could predict their content. Note
that this analysis does not strictly replicate the contrastive analyses
presented above, as the dataset here is not trimmed. Notably, run-
ning windows on which the computation of the index is done can
span across correct no-go trials, incorrect go trials (omissions)
and interruptions. We then ran a logistic regression with the con-
tent of the report as outcome (on-task: 1302, mind wandering:
1466) with the CVI at the moment of the report as predictor
(Nsuj = 106, Nconditions = 10, Nexpe = 3). We found that
CVI significantly predicted the content of the report, with higher

FIGURE 2 | Distribution of the Continuous Variability Index (CVI) across

the experimental session of an arbitrary participant (time in minutes).

Vertical lines represent the CVI value (in RTCV units) at the moment of the
report, horizontal lines represent temporal distance from the report to the
closest peak in the CVI. We predict that On-task reports (blue) have a lower
CVI (shorter vertical lines), and a higher temporal distance to their closest
peak (longer horizontal lines) than Off-task reports (red).

1To ensure robustness of the results, we tested a wide range of smoothing
parameters. The results presented bellow use a smoothing kernel of 1 min 30 s,
but the pattern of results is identical across a wide range of kernels.

values being predictive of mind wandering (β = 2.30, SE = 0.42,
z = 5.55, p < 0.001).

This result extends the contrastive approach used so far, but
does not modify its logic. Now we reasoned that if the CVI does
reflect the time-course of subjective states, its critical moments,
namely its local extrema (troughs and peaks), might correspond
to different probabilities of being in a mind wandering state. More
precisely, we predicted that local peaks of CVI might correspond
to increased likelihood of an occurrence of a mind wandering
episodes. Hence, the temporally closer to peaks, the more likely
to report mind wandering. To test this hypothesis, we measured
the temporal distance of thought reports to the closest peak in
the CVI. We ran a logistic regression with the content of the
report as outcome and temporal distance as predictor. We found
that temporal distance significantly predicted the content of the
report, with lower values (closer to peaks) being predictive of
mind wandering (β = −0.43, SE = 0.17, z = −2.61, p < 0.01).

However, on average, by construction, local peaks have higher
CVI values than troughs. Thus, the effect of temporal distance
just presented may be simply an obfuscated replication of the
effect of the CVI value. To control for that, we ran a logistic
regression on the content of the report with the interaction
between CVI at the time of the probe and the temporal distance
to the closest peak as predictor. We crucially found that this inter-
action was negative and highly significant (β = 3.37, SE = 0.54,
z = 6.21, p < 0.001). When the temporal distance was null (the
probe was on the peak), the CVI was not a significant predictor
of mental content (p > 0.5), but became so as the probe is
farther from the peak. Conversely, when the CVI was null, the
temporal distance to the closest peak predicted mental content
(β = −1.17, SE = 0.29, z = −4.03, p < 0.001). However, the
negative interaction indicates that this temporal effect decreased
with increasing CVI. To summarize, both effects were in oppo-
sition: the predictive power of temporal distance decreased with
increasing CVI, and the predictive power of CVI decreased with
increasing closeness to a peak.

Our results build on and extends previous findings: errors are
typically preceded by higher response time variability (Cheyne
et al., 2009), and higher rate of mind wandering correlate with
higher RTCV at the participant level (Hu et al., 2012). Indeed, we
show that the prediction of mind wandering through values of
RTCV is local (preceding the reports), robust and valid through-
out the experiment: we found that all the trials of a given SART
experiment contain information about mind wandering since the
temporal distance to a peaks of variability was indeed a significant
predictor of mind wandering. Furthermore, that local fluctua-
tions in variability should be predictive of mind wandering opens
the way for on-line detection of mind wandering.

HIDDEN MARKOV MODEL OF MIND WANDERING
FLUCTUATIONS
METHODS
The reasoning behind the CVI can be followed-up. We found
that mind wandering is characterized by increased response
times variability. If we hypothesize that participants are at each
time point in one of two distinct states, on-task (OT) or mind
wandering (MW), the previous findings suggest that when in
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each of these states, participants will produce responses according
to distinct response generation processes. Based on the previ-
ous observations and assumptions, we model the alternation of
on-task and mind wandering states. We assume further that OT
and MW states have transition probabilities to themselves and
the other state, yielding a Markov chain (Figure 3). The notion
of a Markov chain is the formal, quantitative counterpart to the
intuition that on-task and mind wandering states are organized
in runs, so that if at one time point the participant is in one of the
two states, it is more probable that he or she should be in the same
state at the next time point. The transition probabilities give us a
precise estimate of the volatility of each state. Observe two critical
points: first, these volatilities are independent from each other, so
that for instance OT might be stable (the probability to transition
to MW is low), while MW might be more volatile (probability
to transition from MW to OT is high). Second, the notion of a
Markov chain of attentional states is based on a discretization of
time in successive steps. Of course, this is a crude simplification,
but it does correspond to the logic of our experiments, which are
organized in discrete trials.

Now, we do not observe directly this Markov chain, but only
the response times. However, the preceding sections suggest that
in MW, participants generate more variable response times than
in OT. Thus, if we can make plausible assumptions about the two
distinct response generation processes, we could try to infer the
underlying Markov states. This is precisely the logic of Hidden
Markov Models (HMMs): to an unobserved Markov chain of two
internal states corresponds at each trial an observed output (the
response time), which is emitted according to two different prob-
ability laws—that here differ according to their variability (see
Figures 4A,B).

Thus, one critical step in this model is to characterize the vari-
ability of response times. On a descriptive level (Luce, 1986),
response times are distributed according to skewed normal laws,
meaning that to a bulk of responses that are roughly normally
distributed must be added a long “right” tail of slow responses.
These properties are nicely captured with the exponentially mod-
ified gaussian distribution (ex-gaussian), which is the sum of
a gaussian distribution and of an exponential distribution. The
parameters of an ex-gaussian are standardly known as the mean
(μ) and variance (σ) of the gaussian component, and the rate of
its exponential component (τ, which yields the weight of the right
hand tail). With this in mind, it is clear that what appears in the
CVI as an increase of variability can come from two changes in

FIGURE 3 | Markov Chain of attentional states. Illustrative time series of
on-task (OT) and mind wandering (MW) states, with two pairs of
complementary probability transitions to stay (ex. Pot/ot : stay focused) in
the same state or transition (ex. Pot/mw = 1 − Pot/ot : start mind wandering)
to the other.

the ex-gaussian: First, the variance of the gaussian component (σ)
could increase, spreading response times around the peak of the
distribution. Second, the exponential rate parameter of the dis-
tribution (τ) could increase, adding slow response times (see red
frames in Figure 4).

Thus, if we are correct in assuming that variability is diagnos-
tic of mind wandering, we can conceive of each response time
at each trial as a sample from one of two ex-gaussian distribu-
tions that differ in their variance or rate parameters. We observe
the response times and would like to infer the underlying states
that generated them. In a sense, what we are looking for is a
partitioning of the trials in latent classes with respect to the distri-
butions of observed response times (see Vandekerckhove et al.,
2008 for an example of latent class analysis based on response
times). Here, crucially, this partitioning is further constrained
by the assumption that the underlying states are organized as a
Markov chain.

As a first foray into this kind of analysis of response time
series, we tried the simplest and most straightforward models:
we assumed that the two emission probability distributions were
ex-gaussians with the same mean, and only differed in either the
variance of their gaussian component or in the rate of their expo-
nential component. This yielded six free parameters: the tran-
sition probabilities of the underlying unobserved Markov chain
(PMW → OT and POT → MW), the three parameters of the base
(which we arbitrarily chose as OT) ex-gaussian distribution (μ, σ,
τ), and the critical difference parameter d that was added either to
the variance or the rate of the base distribution, and thus yielded
the higher variability MW emission law. If we succeed in so doing,
for each trial, the model should yield the posterior probability
that the participant should be in OT or MW. In order to account

FIGURE 4 | Six-Parameters Models accounting for increased variability

during mind wandering. Pot/mw : transition probability to start mind
wandering when on-task, Pmw/ot : transition probability to come back on
task when mind wandering, μ: mean of the distribution, σ: variance of the
distribution, τ: skewness of the distribution. The critical parameter is d,
“difference parameter,” applied either to σ (“variance model”) if variance
increases during mind wandering, or to τ (“exponential model”) if
skewness increases during mind wandering. (A) Variance Model (B)

Exponential Model.
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for the fact that trials are not equally distributed in time, and so as
to remain within the markovian paradigm, we discretized time in
steps of 2 s (equal to the offset of two successive correct go trials).
Therefore, most trials would be one Markov transition from each
other, but trials farther apart in time (because of correct no go tri-
als, incorrect go trials, or thought probe interruptions) would be
separated by a sequence of more than one Markov transitions. We
estimated such models for one experiment with 47 participants
(Experiment 3 in Bastian et al., submitted).

Our goal was threefold: first, it should yield an independent,
principled and confirmatory evidence that variability in response
times crucially distinguishes MW from OT states. Second it might
help us tease apart the components of variability described and
observed in the previous sections: we systematically contrasted
a model where the only source of increased variability for the
MW state comes from the variance of the gaussian component
(hereafter “variance model”) with a model where the increase in
variability comes from the rate of the exponential component
(“exponential model,” see Figure 4). Finally, and most impor-
tantly, we should get an estimate of the volatility of each of
the states, through the estimates of the transition probabilities
PMW → OT and POT → MW.

Such models are intractable analytically, but can be imple-
mented as graphical bayesian models (see Lee and Wagenmakers,
in press, for an introduction to bayesian graphical models in
cognitive science), and can be estimated using Markov Chain
Monte-Carlo methods (MCMC). To do so, we used the JAGS
software (Plummer, 2003) and the rjags package for R. We used
uniform priors for all six parameters. We ran two separate models
(variance and exponential) for each of the 47 participants, using
four MCMC chains of 30000 samples each, with a thinning of 2,
and after a burn-in period of 2000 samples.

RESULTS AND DISCUSSION
First, we compared the variance and the exponential models using
the Deviance Information Criterion (DIC) for each model, for
each participant: we computed the difference of DIC for the expo-
nential and variance models, knowing that lower DIC indicates
better convergence. The mean DIC difference across participants
was −90.2, favoring the exponential model and this difference was
significant as shown by a paired Wilcoxon signed rank test (V =
247, p < 0.001). In other words, the “exponential model” pro-
vides a better fit to the data than the “variance model.” Therefore,
hereafter we focus on the exponential model2.

Visual inspection of the sample chains and Gelman diagnostic
(Gelman and Rubin, 1992) showed that convergence was attained,
therefore it makes sense to interpret the posterior distributions of
the parameters. First, as a sanity check, we compared the mean
posterior μ and σ with observed participants’ mean and vari-
ance of response times. The correlations were highly significant
[β = 1.2, t(45) = 19.44, p < 10−15, R2 = 0.89 for the μs/means
correlation and β = 0.93, t(45) = 4.7 p < 10−4, R2 = 0.32 for

2Furthermore, none of the properties reported below for the exponential
model were found significant with the variance model. Thus the variance
model also lacked internal consistency. As a consequence it did not correlate
with subjective reports of participants.

the σs/variance correlation]. Note that the intercept was signif-
icant and positive only for the correlation of σs and variances
[41.4, t(45) = 4.6, p < 10−4], which is to be expected because
in the model, the exponential parameter adds a further contri-
bution to the observed variance—thus the empirical variance
over-estimates the variance component of an ex-gaussian model.
These facts suggest that the models did converge on the basic
properties of individual response times. Next, we investigated the
exponential rate τ and the critical difference parameter d. For all
participants the model was able to estimate a positive d, with a
mean of 0.51, and a base τ for the OT state of 0.02. This suggests
that the model partitioned the trials in two classes: a class of less
variable, quasi-normally distributed response times, and a class of
highly variable, heavily skewed response times (see Figure 5A for
the overall posterior distribution of d).

Now we come to the crucial hidden Markov chain transition
probabilities, that we obtained for each participant. The grand
mean across all participants of the mean estimates were, respec-
tively 0.11 and 0.18 for POT → MW and PMW → OT. Critically, this
difference was significant as revealed by a paired Wilcoxon test
(V = 246, p < 0.001, see Figure 5B for a plot of the overall pos-
terior distributions of PMW→OT and POT → MW). Two remarks are
in order here. First, these transition probabilities are well below
0.5, meaning that neighboring trials are more likely to belong
to the same state than to the opposite state, in agreement with
the intuition that mind wandering and on-task states come in
stretches longer than our time step of 2 s. Second, and most inter-
estingly, the fact that POT → MW is lower than PMW → OT shows
that OT is more stable than MW. From this we can estimate the
predicted duration of the episodes: in the OT state, if the proba-
bility of a transition is 0.11, it means that a transition will occur
on average every 1/0.11 = 9.09 steps, that is, every 18.2 s, because
of the 2 s time step we used. Similarly, the predicted duration of
MW episodes will be (1/0.18) ∗ 2 = 11.1 s.

We can now come to the posterior estimates of the underly-
ing Markov states. Recall that for each participant and for each
trial, the model computes the posterior probability that the par-
ticular response time comes from one or the other (MW or
OT) ex-gaussian distribution. We illustrate the time course of
these underlying hidden states on Figure 6A, for an arbitrary
participant. As is visible on the plot, and as was already clear from

FIGURE 5 | (A) Overall posterior distribution of the parameter d in the
exponential model, pooled across all 47 participants (60000 samples per
participant). Note that the prior was uniform over [0, 2]. (B) Overall posterior
distribution of the two transition probabilities in the exponential model. The
prior was uniform over [0, 1] (60000 samples per participant).
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FIGURE 6 | (A) Posterior distribution of hidden state across the
experimental session of an arbitrary participant (time in minutes). (B)

Posterior distribution of the hidden states across all participants and trials.
This distribution seems bimodal, meaning that the model categorically
distinguishes between the two hidden states.

the posteriors of PMW → OT and POT → MW, the model distin-
guishes runs of OT and MW states. This was confirmed by the fact
that the overall (across all participants) distribution of posterior
probabilities for the hidden states was bimodal (see Figure 6B):
this means that for a clear majority of trials, the model unambigu-
ously assigns each trial to one or the other latent class. It is thus
now possible to test whether the states identified by the model
correspond to subjective states as experienced by participants. To
this end, we applied the same logic as in the previous descriptive
sections: first we contrasted the value of the state at the moment
of a thought probe when the report is “on-task” to its value when
the report is “off-task.” Again, remember that states are only esti-
mated at the moment of correct go trials. Therefore, we needed to
interpolate its value at the moment of the probes, which we did
by using LOESS smoothing (Cleveland, 1979). Then, we coded
OT states as 1 and MW as 2, and computed the median values
for each participant separately for mind wandering and on-task
reports. This median value was higher (1.44 as opposed to 1.38)
when participants reported “off-task,” and this difference was sig-
nificant according to a two-tailed paired Wilcoxon signed rank
test (V = 54, p < 0.05). This result replicates, in a principled way,
the results of the “global analysis” section, where we found that
the CVI at the moment of “mind wandering” reports was higher
than at the moment of an “on-task” report. In other words, MW
states, as identified by the model, correspond to mind wandering
in the subjective reports of participants. Thus, not only does the
model have internal consistency, in that it succeeds in partitioning
trials in two latent classes of differing variability, it also parallels
subjective reports of participants.

GENERAL DISCUSSION
In this paper, we showed that in a very simple cognitive task, vari-
ability of response times is intimately linked to mind wandering.

Our paper has both practical and theoretical implications. On
the practical side, we contribute to the elaboration and test of a
continuous and covert index of mind wandering, that could be
used on-line. On the theoretical side, through our model of the
fluctuations of variability, we contribute first to the parsing of
the components of variability that reflect mind wandering, and
second to the distinction of frequency and duration of mind wan-
dering episodes. We will now review the main results we obtained
and their implications. We first found that, in the few trials pre-
ceding a report, the Response Time Coefficient of Variability
(SD/Mean) was highly predictive of the nature of the subsequent
thought report. This direct evidence of a relation between RTCV
and mind wandering is consistent with previous suggestions on
the basis of retrospective reports of mind wandering (Cheyne
et al., 2009). Moreover, RTCV was equally predictive of both
random and spontaneous reports of mind wandering.

However, we did find a specific pattern of response times
before spontaneous reports: our participants systematically
slowed down before such reports. Further research is needed to
determine the causes of this deceleration. We suggest that it might
be due to (a) a dual task cost coming from an upcoming infre-
quent response; (b) the progressive rise to consciousness of an
unconscious mind wandering episode; (c) the start of an episode
of conscious mind wandering. Further research is also needed to
determine whether this deceleration is the cause of the sponta-
neous report, as would be the case if for example participants used
this information as their decision variable to stop and report their
subjective state.

Note that this deceleration before spontaneous reports was
the only linear or quadratic trend that we identified as a predic-
tor of mind wandering. McVay and Kane (2012) found that an
acceleration (cf. also Smallwood et al., 2008a) predicted a sub-
sequent error, but this trend was not predictive of a subsequent
report of mind wandering, contrary to what Smallwood and col-
leagues found (Smallwood et al., 2008a; Smallwood, 2011). The
apparent opposition of our results to previous findings is intrigu-
ing. Notice, however, that we simply tested the presence of linear
or quadratic trends, whereas the descriptive nature of Principal
Components Analysis (PCA), the methodology employed notably
by Smallwood and colleagues, may help detect more complex
patterns. In fact, the PCA factor that is mainly associated with
mind wandering (“Factor 2,” in Smallwood et al., 2008a, see their
Figure 1) could not easily be described as either simply an “accel-
eration,” a “deceleration,” or any linear combination of linear
and quadratic trends of response times. It seems rather a fluc-
tuation, ending with a deceleration in the three last trials. Thus,
it may be that we traded sensitivity for simplicity. As the results
obtained by means of PCA and ours are thus not incompatible,
further research is clearly needed in order to check whether both
generalize to other contexts and tasks.

Next, we found that the CVI, a continuous version of RTCV,
was a robust and local predictor of mind wandering: regardless
of whether a participant had just gone through a peak of CVI, or
was about to reach one, she or he was more likely to report mind
wandering as the report (random or spontaneous) was closer to
the peak. One may find it surprising that the effect of closeness
to a peak of CVI does not depend on whether it is a past peak
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or whether it is yet to come. It may even seem to run counter
to basic principles of metaphysics, as future events are generally
not considered as having causal effects back in time (but see Bem,
2011). However, first, in our view, maxima of variability are only
points in time when episodes of mind wandering are most likely
to occur. Thus, mind wandering could have started before vari-
ability in response times reaches its maximum. Second, rhythmic
fluctuations have been shown in human vigilance, with periods
ranging from 10 s (Fox and Raichle, 2007) to 5 or 30 min (Conte
et al., 1995) and even 60–110 min (Okawa et al., 1984). As a
consequence, the future of human vigilance seems predictable,
and participants need not to be aware of these fluctuations to be
anticipating them.

Now, in fact, it is unclear whether participants are in any
sense aware of the variability in their response times that we
uncovered, and thus whether it has any causal role in their intro-
spection. Perhaps peaks of CVI have a subjective counterpart,
hence establishing a graded relation between CVI and mind wan-
dering. High CVI could for example be associated with highly
vivid mind wandering, or episodes that would be very likely to
reach meta-awareness. However, these are open questions and we
do not know whether, in particular, participants use the variabil-
ity of their response times as a decision variable to spontaneously
stop the experiment and report mind wandering. Nevertheless,
our results show that continuous tracking of response times vari-
ability should be a very simple yet efficient way to detect mind
wandering as it unfolds in an experiment. Most importantly,
our demonstration that local maxima of response time vari-
ability are good indicators of mind wandering shows that the
CVI could be used on-line: we do not need to know the grand
average of variability in order to decide when it is “high” or
“low”: proximity to local maxima is sufficient. Of course, since we
showed that future peaks (which would be inaccessible on-line)
are also indicative of mind wandering, on-line detection would
not be perfect. Yet, our results open the way for the detection
of mind wandering in the very first minutes of an experiment,
just by tracking the fluctuations in response times variability.
We acknowledge that the negative interaction between CVI value
and temporal proximity to peaks should be taken into account
in an on-line detector of mind wandering: when the absolute
variability is “low,” one should rely more on the temporal dis-
tance to a peak, but one should neglect the latter when absolute
variability is high.

With this in mind, we vindicate a third method for mind
wandering studies, in addition to the random probe and the
spontaneous reports techniques. Our results show that it is now
possible to trigger probes at moments when mind wandering
probability is high. This detection technique would share prop-
erties with extant techniques: it would be external (as random
thought-probes), but it would be unlimited (as spontaneous
reports). With detection, one could test hypotheses about mind
wandering micro-dynamics with more precision. These dynam-
ics may concern the very occurrence of mind wandering, but also
occurrence of its awareness or perception of external stimuli, or
perception of time during mind wandering. It would also be crit-
ical to study, how mind wandering reacts to systematic detection,
with a view to perhaps modify awareness of ones’ thoughts or

fluctuations in attention. We thus believe that the development of
such a method might contribute to the application of mind wan-
dering studies to educational, applied and clinical psychology—as
it might help limit the consequence of attentional lapses in indus-
trial settings and offer new avenues for rehabilitation of some
attention deficits.

On the theoretical side, we modeled the time series of response
times for each participant as a HMM, where the critical variable
that distinguishes the hidden states is the variability in the emis-
sion law. Of course, intertrial dependencies and sequential effects
have been studied for a long time (see for instance Schvaneveldt
and Chase, 1969; Gratton et al., 1992), but to our knowledge, our
model is the first to extend the logic of intertrial dependence to
full time series in psychological experiments (but see Craigmile
et al., 2010; see also Killeen, 2013 for the suggestion of applying
HMMs within trials). We thus moved from the logic where each
trial in an experiment is considered as independent, reflecting
only the processing triggered by the experimental condition, to a
logic where we adopt a historical perspective to each experimental
run. The model reveals substantive information about response
times in general and their relationship with mind wandering.

First, the most surprising discovery is perhaps the fact that
the “variance model” provides a far worse fit to the data than
the “exponential model.” This suggests that, in our experiments,
response time distribution is a mixture of two underlying distri-
butions, a quasi-normal one and a heavily skewed one which,
as we seem to see here, corresponds to periods of mind wan-
dering. This nicely fits previous suggestions (McVay and Kane,
2012) that mind wandering is associated with “slow start” tri-
als, during which participants produce abnormally slow responses
due to being absent-minded. This also echoes to the finding that
ADHD teenagers, who report more mind wandering than control
subjects (Shaw and Giambra, 1993), also present more skewed
(higher τ) response times distributions than control subjects
(Leth-Steensen et al., 2000).

The second important element is more directly related to mind
wandering studies. We were indeed able to reproduce in a prin-
cipled way the association of high variability of response times
with subjective reports of mind wandering. This yield a highly
interesting perspective on the asymmetry between the two tran-
sition probabilities and the associated runs length in the Markov
chain of inner states. Remember that we found that OT was more
stable than MW, and that as a consequence OT runs were on
average longer (18.2 s) than MW runs (11.1 s). This mean dura-
tion of mind wandering episodes echoes to previous suggestions
based on subjective estimations (Klinger, 1978) and on slow fluc-
tuations in the activation of the default mode network (Fox and
Raichle, 2007; Vanhaudenhuyse et al., 2011). However, if our
modeling and reasoning are correct, this might the first princi-
pled “objective” estimate of the duration and frequency of mind
wandering episodes as psychological states. Further researches are
needed to test whether specific experimental variables or subjec-
tive conditions would separately impact each of the two transition
probabilities, leading to various combinations of durations and
frequencies for each of the two states.

In conclusion, we acknowledge that all our results are based
on the same SART task. Further research is clearly needed to see
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whether this pattern is specific to this task or whether it general-
izes to others. Our entire data set is constituted of simple response
times, with very limited cognitive processing. The strong relation
between response times variability might disappear when more
complex cognitive processes are involved during response gener-
ation. One may in particular think that, if the variability due to
cognitive processing is intrinsically high, it might easily mask dif-
ferences in variability due to attentional states. In other words, the
variability of response times might not be a diagnostic feature of
mind wandering with more complex tasks. If this were the case,
one should try to determine whether this is due to the fact that, in

more complex situations, the component of variability that orig-
inates in mind wandering is more difficult to track, or whether it
is simply absent.
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