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Cortical neurons and, particularly, inhibitory interneurons display a large diversity of
morphological, synaptic, electrophysiological, and molecular properties, as well as diverse
embryonic origins. Various authors have proposed alternative classification schemes that
rely on the concomitant observation of several multimodal features. However, a broad
variability is generally observed even among cells that are grouped into a same class.
Furthermore, the attribution of specific neurons to a single defined class is often difficult,
because individual properties vary in a highly graded fashion, suggestive of continua
of features between types. Going beyond the description of representative traits of
distinct classes, we focus here on the analysis of atypical cells. We introduce a novel
paradigm for neuronal type classification, assuming explicitly the existence of a structured
continuum of diversity. Our approach, grounded on the theory of fuzzy sets, identifies a
small optimal number of model archetypes. At the same time, it quantifies the degree of
similarity between these archetypes and each considered neuron. This allows highlighting
archetypal cells, which bear a clear similarity to a single model archetype, and edge cells,
which manifest a convergence of traits from multiple archetypes.

Keywords: neuronal diversity, interneuron diversity, barrel cortex, petilla terminology, atypical cells, fuzzy sets,

unsupervised clustering

INTRODUCTION
Cortical physiology and function depend on a delicate interplay
between excitatory glutamatergic neurons and diverse inhibitory
GABAergic interneurons in a temporally, spatially and cell-type-
specific manner (Gupta et al., 2000; Somogyi and Klausberger,
2005; Sohal et al., 2009; Cauli and Hamel, 2010; Kätzel et al., 2011;
Gentet, 2012). A pertinent understanding of information pro-
cessing requires thus a thorough description of this neocortical
neuronal diversity.

Historically, inhibitory interneurons have been subdivided
according to a large repertoire of morphological, electro-
physiological, and molecular properties (Ascoli et al., 2008).
More recently, classification schemes based on developmental
criteria largely confirmed and further supported (Butt et al.,
2005; Miyoshi et al., 2007; Batista-Brito and Fishell, 2009;
Vucurovic et al., 2010) previous classifications (McCormick
et al., 1985; Kawaguchi and Kubota, 1993, 1996; Cauli et al.,
1997). This emphasizes the concept that neuronal types can
and must be defined by the convergence of common features
and not solely by a limited set of prescribed properties (Tyner,
1975).

Unsupervised clustering methods have so far established
themselves as the state-of-the-art approach to identify neuronal
types based on the simultaneous consideration of many features
(Tamás et al., 1997; Cauli et al., 2000; Toledo-Rodriguez et al.,

2004; Gallopin et al., 2006; Halabisky et al., 2006; Dumitriu
et al., 2007; Helmstaedter et al., 2009; Karagiannis et al., 2009;
McGarry et al., 2010; Suzuki and Bekkers, 2010; Perrenoud et al.,
2012a,b). Although useful, these classification schemes are ham-
pered by at least two shortcomings. First, a distinctive trait
can be shared by multiple cell types. For instance, parvalbu-
min (PV) expression is common to both some basket cells and
chandelier cells (Kawaguchi and Kubota, 1993; Toledo-Rodriguez
et al., 2004; Woodruff et al., 2010). Second, a feature discrim-
inative for certain neuronal types can be irrelevant and highly
variable for other types. Examples are spike width and input
resistance, respectively, very thin and small for Fast Spiking
(FS)-PV cells, but highly heterogeneous for both Somatostatin-
(SOM) and Vasoactive Intestinal Polypeptide (VIP)-expressing
cells (Kawaguchi and Kubota, 1996; Cauli et al., 2000; Ma et al.,
2006).

Because of these shortcomings, the boundaries between dif-
ferent types are blurred. Yet, despite this, all clustering methods
used so far for neuronal classification inherently exclude the exis-
tence of a graded separation between neuronal classes (Tyner,
1975; Parra et al., 1998). As an alternative, we propose here a
novel approach, based on the theory of Fuzzy Sets (Zadeh, 1965,
2008), in which the absence of a strict dividing line between
neuronal types is actually assumed as an explicit categorizing
hypothesis.
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By applying this approach to a well-characterized multi-
parametric dataset (Karagiannis et al., 2009), we confirm the
identification of four main types of inhibitory neurons (canonic
archetypes). Beyond this, our method provides a way to quan-
tify how individual cells are similar to these archetypes, open-
ing the way to a systematic study of deviations from typical
tendencies. In particular, we unmask atypical cells displaying
properties simultaneously reminiscent of multiple archetypes.
These edge cells might contribute to robustness and flexibil-
ity of performance in neural circuits by enriching, with their
polyvalent phenotypes, the reservoir of available functional
resources.

MATERIALS AND METHODS
THE DATASET
We performed here an alternative analysis of a dataset presented
in Karagiannis et al. (2009). This previous study focused on
typical properties of interneuron classes, while we emphasize
here deviations from these typical aspects. The sample con-
sisted of 200 neurons from slices from juvenile male Wistar
rat somatosensory cortex (postnatal days 19 ± 2, SD, Charles
River, L’Arbresle, France). Overall 43 features were measured for
each neuron, including digitized value of laminar location of
the soma (with non-integer values indicating cells at the bor-
der between different layers, e.g., 1.5 meaning between layers I

and II), 32 electrophysiological features (5 sub-threshold, 4 just-
above threshold, 5 firing, and 18 action potential properties) and
expression of 10 well-established molecular markers of neuronal
diversity (Ascoli et al., 2008). Morphology, reconstructed only for
a limited subset of cells, was not considered in the current analy-
sis. A complete list of the used features is reported in Tables 1–4.
The reader is invited to refer to (Karagiannis et al., 2009) for
all details on feature definitions and on the used experimental
procedures.

FUZZY SETS AND PARTITIONS
In Fuzzy Set Theory (Zadeh, 1965; Jang et al., 1997; Xu
et al., 2008), a data-point i can belong to a fuzzy class α

with different degrees of membership, quantified by a mem-
bership value miα. A membership value miα = 1.0 indicates
that the data-point i displays all the defining attributes of
the class α and therefore fully belongs to it. A membership
value miα = 0.0 indicates that the data-point i does not dis-
play any of the defining attributes of the class α and therefore
it does not belong to it at all. In addition to these “black
and white” cases, and extending ordinary set theory, intermedi-
ate membership values 0 < miα < 1 are admitted (Figure 1A),
corresponding to a continuum of “gray” cases in which the data-
point i displays only some of the defining attributes of class α.
Fuzzy Set Theory thus provides, in the words of its initiator,

Table 1 | Localization and subthreshold features of different archetypes.

Glutamatergic FS-PV Adapting SOM Adapting VIP Adapting NPY UFO

(n = 49) (n = 33) (n = 21) (n = 31) (n = 33) (n = 33)

(1) Digitized laminar location (Layer )

3.4 ± 0.8 3.1 ± 0.8 2.8 ± 0.7 2.7 ± 0.7 2.3 ± 0.6 2.2 ± 0.7

UFO, Adapt. NPY < Adapt. VIP, Adapt. SOM << FS-PV, Glutamatergic

(2) Resting potential (Vm, mV)
−74.3 ± 4.7 −72.7 ± 4.0 −65.0 ± 3.9 −71.0 ± 5.1 −72.2 ± 4.5 −70.8 ± 5.5

Glutamatergic, FS-PV, Adapt. NPY, “UFO,” Adapt. VIP <<< Adapt. SOM

Glutamatergic << UFO; Glutamatergic < Adapt. VIP

(3) Input resistance (Rm, M�)
379 ± 138 204 ± 77 272 ± 76 514 ± 166 314 ± 116 552 ± 266

FS-PV << Adapt. SOM << Glutamatergic << Adapt. VIP, UFO

FS-PV <<< Adapt. NPY <<< Adapt. VIP, “UFO”

(4) Time constant (τm, ms)
36.1 ± 10.2 15.6 ± 6.0 24.2 ± 8.7 24.6 ± 10.0 22.8 ± 8.3 29.0 ± 12.0

FS-PV <<< Adapt. NPY, Adapt. VIP < UFO << Glutamatergic

FS-PV << Adapt. SOM < UFO

(5) Membrane capacitance (Cm, pF)
104.0 ± 32.3 79.1 ± 21.7 91.3 ± 23.4 48.5 ± 14.3 76.8 ± 22.7 56.0 ± 20.3

Adapt. VIP, UFO <<< Adapt. NPY, FS-PV << Glutamatergic

Adapt. VIP, “UFO” <<< Adapt. SOM

(6) Sag index (Sag, %)
19.7 ± 9.2 9.4 ± 5.3 27.6 ± 12.0 8.2 ± 3.7 9.0 ± 4.8 6.4 ± 3.2

UFO < Adapt. VIP, FS-PV <<< Glutamatergic < Adapt. SOM

UFO << Adapt. NPY <<< Glutamatergic < Adapt. SOM

Values are weighted means ± SD; n, number of cells; < significantly smaller with P ≤ 0.05; << significantly smaller with P ≤ 0.01; <<< significantly smaller with

P ≤ 0.001.
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Table 2 | Above threshold features of different archetypes.

Glutamatergic FS-PV Adapting SOM Adapting VIP Adapting NPY UFO

(n = 49) (n = 33) (n = 21) (n = 31) (n = 33) (n = 33)

(7) Rheobase (Irheo, pA)
35.8 ± 26.2 103.1 ± 46.4 −4.3 ± 30.2 16.3 ± 12.7 53.0 ± 28.5 32.7 ± 22.0

Adapt. SOM <<< Adapt. VIP << “UFO,” Glutamatergic << Adapt. NPY <<< FS-PV

(8) First spike latency

127.1 ± 46.5 370.7 ± 245.4 110.8 ± 88.3 125.2 ± 113.7 218.5 ± 209.9 106.6 ± 112.2

(τ1st, ms) “UFO” < Adapt. SOM < Adapt. VIP, Glutamatergic, Adapt. NPY

Glutamatergic, Adapt. SOM << FS-PV

(9) Just-above threshold
−46.8 ± 74.9 3.3 ± 20.4 −15.6 ± 25.9 −6.9 ± 18.4 −0.4 ± 4.1 −32.6 ± 38.6

adaptation (Adthr, Hz/s) Glutamatergic, “UFO” < Adapt. VIP << Adapt. NPY, FS-PV

Adapt. SOM << Adapt. NPY, FS-PV

(10) Minimal steady state
30.9 ± 53.8 14.9 ± 13.3 13.7 ± 12.3 13.1 ± 10.1 6.1 ± 3.0 31.7 ± 27.1

frequency (Fmin, Hz) Adapt. NPY <<< Adapt. VIP, Adapt. SOM, FS-PV, “UFO”; Adapt. NPY << Glutamatergic

Adapt. VIP, Adapt. SOM < “UFO”

(11) Amplitude
24.3 ± 8.8 1.1 ± 1.2 3.8 ± 4.3 5.2 ± 4.8 10.6 ± 7.4 7.1 ± 5.6

accommodation (Ahump, mV) FS-PV <<< Adapt. VIP, “UFO” < Adapt. NPY <<< Glutamatergic

FS-PV << Adapt. SOM < “UFO”; Adapt. SOM <<< Adapt. NPY

(12) Amplitude of early
153.1 ± 59.4 52.7 ± 24.8 93.9 ± 24.3 110.7 ± 41.3 127.4 ± 37.0 109.8 ± 37.1

adaptation (Asat, Hz) FS-PV <<< Adapt. SOM, “UFO,” Adapt. VIP << Glutamatergic

Adapt. SOM << Adapt. NPY < Glutamatergic

(13) Time constant of early
25.7 ± 11.6 18.4 ± 15.9 37.8 ± 7.8 23.9 ± 8.8 25.8 ± 6.1 27.1 ± 8.8

adaptation (τsat, ms)
FS-PV < Adapt. VIP, Adapt. NPY, Glutamatergic, “UFO” <<< Adapt. SOM

(14) Late adaptation
−9.6 ± 7.3 −27.6 ± 13.1 −20.6 ± 9.2 −35.6 ± 11.3 −21.3 ± 10.0 26.1 ± 14.9

(Adsat, Hz/s) Adapt. VIP < FS-PV, “UFO,” Adapt. NPY, Adapt. SOM <<< Glutamatergic

Adapt. VIP << “UFO”; Adapt. VIP <<< Adapt. NPY, Adapt. SOM

(15) Maximal steady state
29.9 ± 8.3 140.4 ± 30.4 69.1 ± 19.9 87.0 ± 29.2 61.1 ± 13.9 64.3 ± 22.0

frequency (Fmax, Hz) Glutamatergic <<< Adapt. NPY, “UFO” << Adapt. VIP <<< FS-PV

Glutamatergic <<< Adapt. SOM <<< FS-PV

Values are weighted means ± SD; n, number of cells; < significantly smaller with P ≤ 0.05; << significantly smaller with P ≤ 0.01; <<< significantly smaller with

P ≤ 0.001.

“a precise language to describe imprecise similarities” (Zadeh,
2008).

A dataset can be partitioned into c fuzzy classes. In a fuzzy
partition each data-point can belong to multiple classes with
different degrees of membership. Formally, a fuzzy partition
of a dataset with elements i = 1 . . . N into c fuzzy clusters is
uniquely determined by a set of N membership vectors mi with
c components each. The α-th entry miα of the vector mi gives
the membership of the data-point i to the α-th class in the fuzzy
partition. The memberships vectors are normalized in such a way
that

∑c
α=1 miα = 1.

UNSUPERVISED FUZZY CLUSTERING
Each cell i (i = 1 . . . N) is represented as a vector of features f i

with entries f1 where the index � = 1 . . . 43 runs over the con-
sidered features (see rows of Tables 1–4). Each entry corresponds
to the centered and reduced value of the corresponding feature
(Cauli et al., 2000; Karagiannis et al., 2009). An unsupervised
clustering algorithm was used to determine an optimized fuzzy
partition of the dataset. We resorted to the fuzzy c-means algo-
rithm (Dunn, 1973; Jang et al., 1997; Xu et al., 2008), a fuzzy
analog of the crisp k-means algorithm previously used for unsu-
pervised classification of interneurons (Karagiannis et al., 2009).
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Table 3 | Action potentials features of different archetypes.

Glutamatergic FS-PV Adapting SOM Adapting VIP Adapting NPY “UFO”

(n = 49) (n = 33) (n = 21) (n = 31) (n = 33) (n = 33)

(16) First spike amplitude
93.0 ± 7.2 81.9 ± 7.5 94.9 ± 7.6 98.0 ± 6.5 93.4 ± 5.7 91.5 ± 13.0

(A1, mV) FS-PV <<< Glutamatergic, Adapt. NPY, Adapt. SOM << Adapt. VIP

FS-PV << “UFO” < Adapt. VIP

(17) Second spike amplitude
85.2 ± 11.7 79.1 ± 8.0 90.7 ± 7.7 92.7 ± 7.5 90.0 ± 5.7 79.9 ± 9.3

(A2, mV) FS-PV, “UFO” <<< Adapt. NPY, Adapt. SOM, Adapt. VIP

FS-PV, “UFO” < Glutamatergic << Adapt. VIP

(18) First spike duration

1.4 ± 0.2 0.6 ± 0.2 0.9 ± 0.2 0.8 ± 0.2 1.0 ± 0.2 1.0 ± 0.3

(D1, ms) FS-PV <<< Adapt. VIP <<< Adapt. NPY, “UFO” <<< Glutamatergic

Adapt. VIP < Adapt. SOM <<< Glutamatergic

(19) Second spike duration
1.6 ± 0.3 0.6 ± 0.2 1.0 ± 0.2 0.8 ± 0.2 1.1 ± 0.2 1.1 ± 0.3

(D2, ms) FS-PV <<< Adapt. VIP <<< Adapt. NPY, “UFO” <<< Glutamatergic

Adapt. VIP << Adapt. SOM <<< Glutamatergic

(20) Amplitude Reduction

−8.4 ± 9.7 −1.2 ± 6.5 −4.8 ± 3.7 −5.3 ± 4.9 −3.4 ± 2.7 −11.8 ± 9.7

(�(Amp), %)
FS-PV <<< Adapt VIP < “UFO”; FS-PV <<< Glutamatergic

FS-PV << Adapt. NPY <<< “UFO”; Adapt. NPY < Glutamatergic

FS-PV << Adapt. SOM < “UFO”

(21) Duration Increase
10.7 ± 12.0 1.3 ± 5.3 7.4 ± 4.6 2.8 ± 4.3 9.0 ± 7.4 12.9 ± 10.1

(�(Dur), %) FS-PV << Adapt. VIP <<< Adapt. SOM, Adapt. NPY, “UFO”

FS-PV <<< Glutamatergic; Adapt. VIP << Glutamatergic

(22) First spike, first
−6.7 ± 3.7 −23.2 ± 3.1 −11.4 ± 3.8 −14.1 ± 3.8 −13.7 ± 4.4 −13.1 ± 4.6

component AHP (AHPf , mV) FS-PV <<< Adapt. VIP, Adapt. NPY, “UFO,” Adapt. SOM <<< Glutamatergic

(23) First spike, second
−8.0 ± 6.9 −2.1 ± 6.3 −6.5 ± 4.2 −8.6 ± 3.2 −15.3 ± 3.8 −1.9 ± 4.2

component AHP (AHPs, mV) Adapt. NPY <<< Adapt. VIP < Adapt. SOM << FS-PV <<< “UFO”

Adapt. NPY <<< Glutamatergic < FS-PV

(24) Second spike, first
−8.8 ± 4.1 −23.3 ± 3.4 −10.3 ± 6.6 −15.5 ± 4.1 −15.3 ± 4.0 −15.0 ± 5.0

component AHP (AHPf ,2, mV) FS-PV <<< Adapt. NPY << Adapt. SOM < Glutamatergic

FS-PV <<< Adapt. VIP, “UFO” < Adapt. SOM

(25) Second spike, second

−14.7 ± 8.8 −2.1 ± 5.7 −7.5 ± 3.9 −10.7 ± 2.6 −13.2 ± 8.3 −2.8 ± 5.3

component AHP (AHPs,2, mV) Glutamatergic <<< Adapt. VIP <<< “UFO,” FS-PV

Adapt. NPY << Adapt. VIP << Adapt. SOM << “UFO,” FS-PV

(26) First spike, first AHP

14.2 ± 20.7 2.9 ± 1.3 3.2 ± 1.1 2.7 ± 0.7 4.7 ± 1.7 4.2 ± 2.2

component latency (τAHPf, ms)
Adapt. VIP, FS-PV <<< “UFO” <<< Glutamatergic

Adapt. VIP, FS-PV <<< Adapt. NPY << Glutamatergic

FS-PV < Adapt. SOM <<< Adapt. NPY

(27) First spike, second AHP
46.0 ± 42.3 1.1 ± 3.1 27.5 ± 16.8 34.0 ± 17.2 20.1 ± 6.8 5.1 ± 12.1

component latency (τAHPs, ms) FS-PV, “UFO” <<< Adapt. NPY, Adapt. SOM, Adapt. VIP, Glutamatergic

Adapt. NPY <<< Adapt. VIP

(Continued)
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Table 3 | Continued

Glutamatergic FS-PV Adapting SOM Adapting VIP Adapting NPY “UFO”

(n = 49) (n = 33) (n = 21) (n = 31) (n = 33) (n = 33)

(28) Second spike, first AHP

18.9 ± 23.5 2.9 ± 1.3 3.4 ± 1.0 2.8 ± 0.7 7.0 ± 4.4 5.7 ± 4.2

component latency (τAHPf,2, ms)
Adapt. VIP, FS-PV <<< “UFO” <<< Glutamatergic

Adapt. VIP, FS-PV, Adapt. SOM <<< Adapt. NPY << Glutamatergic

FS-PV << Adapt. SOM << “UFO”

(29) Second spike, second AHP

59.3 ± 38.6 1.1 ± 3.1 30.1 ± 16.9 31.4 ± 14.0 16.4 ± 9.6 10.3 ± 18.6

component latency (τAHPs,2, ms)
FS-PV <<< Adapt. NPY <<< Adapt. VIP << Glutamatergic

FS-PV <<< Adapt. SOM <<< Glutamatergic; Adapt. NPY < Adapt. SOM

“UFO” <<< Adapt. VIP, Glutamatergic; “UFO” << Adapt. SOM; “UFO” < Adapt. NPY

(30) First spike ADP (ADP, mV)

1.3 ± 1.8 0.5 ± 1.5 4.7 ± 2.5 7.9 ± 3.4 0.6 ± 0.7 0.3 ± 0.8

“UFO,” FS-PV, Adapt. NPY, Glutamatergic <<< Adapt. SOM, Adapt. VIP

“UFO,” FS-PV << Adapt. NPY; “UFO” << Glutamatergic

(31) Second spike ADP
0.3 ± 0.6 0.5 ± 1.6 3.7 ± 2.1 7.0 ± 2.8 0.2 ± 0.4 0.7 ± 2.0

(ADP2, mV)
Adapt. NPY, Glutamatergic, FS-PV, “UFO” <<< Adapt. SOM <<< Adapt. VIP

(32) First spike ADP latency
5.6 ± 6.1 0.7 ± 1.9 10.4 ± 5.7 9.8 ± 2.7 5.1 ± 3.5 1.5 ± 3.9

(τADP, ms) FS-PV, “UFO” << Adapt. NPY <<< Adapt. VIP, Adapt. SOM;

FS-PV, “UFO” << Glutamatergic

Glutamatergic << Adapt. VIP; Glutamatergic < Adapt. SOM

(33) Second spike ADP latency

3.6 ± 4.2 0.6 ± 1.7 8.5 ± 4.2 9.8 ± 2.1 3.0 ± 3.6 1.8 ± 4.1

(τADP2, ms) FS-PV << Glutamatergic <<< Adapt. SOM, Adapt. VIP

“UFO,” Adapt. NPY <<< Adapt. SOM, Adapt. VIP; FS-PV << Adapt. NPY

Values are weighted means ± SD; n, number of cells; < significantly smaller with P ≤ 0.05; << significantly smaller with P ≤ 0.01; <<< significantly smaller with

P ≤ 0.001.

This algorithm has two adjustable parameters. The first param-
eter is the maximally allowed number of classes, c. Analogously
to k-means, the algorithm attempts to partition the dataset into c
different fuzzy clusters. However, unlike in k-means, some fuzzy
clusters can actually “compenetrate” and finally coalesce, leading
to a fuzzy partition with a smaller effective number of clusters.
We assumed here a quite large potential number of archetypes,
c = 20. The second parameter is the fuzziness parameter μ > 1,
allowing to control the level of fuzziness of the obtained par-
tition. In the limit of μ approaching unit from higher values,
the fuzzy c-means algorithm is equivalent to k-means for k = c.
Larger values of this parameter lead to increasingly fuzzier par-
titions, with individual data-points sharing their membership
between a smaller number of effective fuzzy classes. The fuzzi-
ness parameter was varied in the range 1 < μ < 2 for the analysis
of Figure 2 and set to an optimal value of μ = 1.349 for the rest
of the analyses in Figures 3–6 (see below for criteria guiding the
choice of μ).

The fuzzy c-means algorithm builds a fuzzy partition of the
neuronal dataset through an iterative optimization process. At

a given iteration t, c cluster centroids are given by vectors u(t)
α

(α = 1 . . . c) with components u(t)
α� . Associated membership vec-

tors m(t)
i are computed as:

1

m(t)
iα

=
c∑

λ= 1

(
d(t)

iα

d(t)
iλ

) 2
μ−1

(1)

where d(t)
iλ is the Euclidean distance between the data-point f i and

the centroid u(t)
λ .

These membership vectors are used in turn to compute a new

set of cluster centroids u(t + 1)
α with coordinates:

u(t + 1)
α� =

N∑
i=1

(
m(t)

iα

)μ

fi�

N∑
i = 1

(
m(t)

iα

)μ
(2)

This procedure is designed to minimize a specific cost function
(Dunn, 1973; Jang et al., 1997), namely the sum of the squared
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Table 4 | Occurrence of molecular markers in different archetypes.

Glutamatergic FS-PV Adapting SOM Adapting VIP Adapting NPY “UFO”

(n = 49) (n = 33) (n = 21) (n = 31) (n = 33) (n = 33)

(34) VGluT1
99% 26% 22% 7% 34% 21%

Adapt. VIP, “UFO,” Adapt. SOM, FS-PV, Adapt. NPY <<< Glutamatergic

(35) GAD

3% 100% 100% 100% 100% 100%

Glutamatergic <<< FS-PV, Adapt. SOM, Adapt. VIP, “UFO,” Adapt. NPY

(36) NOS-1
0% 8% 3% 2% 23% 5%

Glutamatergic < Adapt. NPY

(37) CB

42% 58% 77% 8% 4% 6%

Adapt. NPY, “UFO,” Adapt. VIP <<< FS-PV, Adapt. SOM

Adapt. NPY, “UFO” <<< Glutamatergic < Adapt. SOM

Adapt. VIP << Glutamatergic

(38) PV
32% 100% 27% 12% 26% 16%

Adapt. VIP, “UFO,” Adapt. NPY, Adapt. SOM, Glutamatergic <<< FS-PV

(39) CR
2% 2% 19% 22% 11% 24%

Glutamatergic, FS-PV < Adapt. VIP, “UFO”

(40) NPY

2% 29% 63% 14% 83% 24%

Glutamatergic, Adapt. VIP, “UFO,” FS-PV <<< Adapt. NPY

Glutamatergic << “UFO,” FS-PV, Adapt. SOM

Adapt. VIP << Adapt. SOM

(41) VIP
3% 2% 5% 92% 4% 55%

FS-PV, Glutamatergic, Adapt. NPY, Adapt. SOM <<< “UFO” < Adapt. VIP

(42) SOM
2% 6% 88% 0% 0% 9%

Adapt. VIP, Adapt. NPY, Glutamatergic, FS-PV, “UFO” <<< Adapt. SOM

(43) CCK 7% 0% 2% 10% 2% 12%

Values are weighted probabilities of expression; n, number of cells; > significantly larger with P ≤ 0.05; >> significantly larger with P ≤ 0.01; >>> significantly

larger with P ≤ 0.001.

distances of the data-points from the different centroids, weighted
by the relative fuzzy memberships:

J(t) =
N∑

i = 1

c∑
λ= 1

(
m(t)

iλ

)μ ·
(

d(t)
iλ

)2
(3)

In practice, as a first step, we randomly initialized a col-

lection of c cluster centroids u(0)
α in the feature space, by

selecting c arbitrary data-points f i. Initial membership vec-

tors m(0)
i were then computed using Equation (1). Equations

(1) and (2) were then iterated until the positions of the c
centroids converged to a fixed point (with a prescribed tol-
erance) or until a fixed maximal number of iterations was
reached. The final set of centroids was then inspected to identify
potential coalescences and drop redundant centroids. Whenever,

the Euclidean distances between different centroids was smaller
than a tolerance threshold (conventionally set to ε = 0.001),
the associated fuzzy classes were merged, and the member-
ship vectors of data-points correspondingly shrunk to a length
c∗ < c, by adding up memberships of the merged classes. Thus,
given a dataset and a maximum number of allowed clusters c,
the effective number c∗ of clusters in the final fuzzy partition
depended on μ. The larger μ was, the more coalescences occurred
(Figure 2E).

Note that fuzzy c-means, as classic k-means, can converge to
different partitions for different initial conditions. We therefore
used a seeding pre-initialization strategy (see Basu et al., 2002), by
selecting 7 out of 20 initial centroids to match data-points close
to the centroids of the 7 k-means clusters analyzed in Karagiannis
et al. (2009), to obtain fuzzy partitions maximally correlated with
our previous crisp analyses.
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FIGURE 1 | Fuzzy membership to a class. (A) Grayscale representation of
the membership relation x = S in ordinary (left) and fuzzy (right) set
theories. Here, μ is a fuzziness parameter. When μ = 1, membership
relations are crisp as in ordinary set theory, while for μ > 1, membership is
a soft relation. The two possible values of a crisp membership are
represented by white (mS(x) = 0, x does not belong to S) and black
nuances (mS(x) = 1). The graded membership in fuzzy sets
(0 < mS(x) < 1) is represented by a grayscale gradient. (B) Color coded
representation of an atypical cell having memberships with different
archetypes. Its hue corresponds to a triple membership between
archetypes A (Red), B (Green), and C (Blue) archetypes in the RGB color
model.

TYPICALITY QUANTIFICATION
We denoted as archetypal classes of diversity (or, briefly,
archetypes) the c∗ fuzzy classes in an optimized fuzzy partition.
Given a set of archetypes and membership vectors for a pre-
scribed fuzziness parameter μ, the main type of a cell i was
the archetype α with the largest membership component miα =
m(1st)

i . Denoting then as m(2nd)
i the second largest component

of mi (associated to a secondary type), we defined the typicality
coefficient of i as

d(i) = m(1st)
i − m(2nd)

i (4)

The typicality coefficient d is bounded in the interval 0 ≤ d ≤ 1.
The sample average d̄ of typicality coefficients and their

dispersion, quantified robustly by the halved mean abso-
lute deviation � = d − d/2 (Sachs, 1984), were quantified
over the entire sample. Based on the observed distribution
of typicality coefficients (Figure 6B), cells were then consid-
ered as archetypal if d > dArchetypal = d̄ + � and as atypical if

d < dAtypical = d̄ − �.
Finally, we denoted as edge cells atypical neurons with a very

small typicality coefficient such that d ≤ �, reflecting very similar
memberships to the main and to another secondary type.

CHARACTERIZATION OF ARCHETYPAL PROPERTIES
Properties of different archetypes (cf. Tables 1–4) were com-
puted as averages over the features of cells with a given
main type, weighted by memberships toward this main type.
Standard deviations were also evaluated using weighted expres-
sions (Taylor, 1997). Defining Iα as the subset of cells having
archetype α as main type, we computed, for each feature �

and each archetype α:

f�(α) =

∑
i ∈ Iα

miαfi�∑
i ∈ Iα

miα
(5)

σ�(α) =

√√√√√√√√√√

(∑
i ∈ Iα

miα

)
· ∑

i ∈ Iα

miα

(
fi� − f�(α)

)2

( ∑
i ∈ Iα

miα

)2

− ∑
i ∈ Iα

m2
iα

(6)

These weighted averages and standard deviations reflected dom-
inantly feature values of archetypal cells and damped the con-
tribution of atypical cells. The typical range of a feature � for
an archetype α was defined accordingly as the interval f�(α) −
σ�(α) ≤ f ≤ f�(α) + σ�(α) and such convention was used to
determine the coloring of table entries in the panel (C) of
Figures 3–5.

Properties were then compared between every pair of
archetypes α and β, by looking for differences between the dis-
tributions of features over the subsamples Iα and Iβ. Significance
of pairwise comparisons was tested using the (two-tailed) Mann–
Whitney U non-parametric test for continuous-valued features
(i.e., lamination and electrophysiological properties) and Fisher’s
exact test for Boolean features (i.e., expression of molecular
markers). All significant comparisons are listed in Tables 1–4.

RELEVANCE OF DIFFERENT PROPERTIES FOR CLASSIFICATION
To analyze the impact of different properties on the quality of the
extracted fuzzy partition of our dataset we compared the cost of
our fuzzy partition (i.e., the value of the cost function J(tend) as
given by Equation (3) evaluated at the final iteration tend of the
clustering algorithm) with the costs of partitions extracted from
partially randomized datasets.

To perform the randomization, the dataset was represented
as a matrix with 43 columns, corresponding to different fea-
tures, and 200 rows, corresponding to different neurons. We built
randomized datasets by permuting randomly and independently
the order of entries within selected columns. Such a random
scrambling does not alter means and standard deviations of the
randomized properties but it does disrupt their correlations with
other features. The randomized datasets were then clustered with
fuzzy c-means, using the same parameters as for the original
dataset. A loss in the quality of the extracted fuzzy partition
was quantified by measuring the increase of the associated cost
function J(tend). The larger the increase in residual cost after ran-
domization of a given subset of properties, the more this property
subset is considered to contribute to the quality of the reference
classification.

To estimate the increase �J of the cost function due to ran-
domization, the mean, and standard deviation of the achieved
cost variation were taken over 1000 independent randomizations
of each considered property subset.

This analysis is analogous to the one introduced in Karagiannis
et al. (2009). In the present study, however, we quantify losses
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FIGURE 2 | Emergence of archetypes. Fuzzy partitions with decreasing μ

values are visualized as membership matrices (A–D, upper panels). Rows
correspond to different fuzzy clusters and columns to individual neurons.
Membership values of single neurons to each class are color coded (right bars).
Schematic representation of the interrelations between archetypes (lower
panels). Colored discs depict different archetypes and their overlaps denote
cells with shared memberships. The Glutamatergic archetype is the first to
emerge (black, A), followed by FS-PV interneurons (Red, B), and Adapting VIP
interneurons (blue, C). Note that the glutamatergic archetype splits into three
sub-groups. Adapting SOM (green) and Adapting NPY (orange) archetypes and
a residual UFO archetype of highly atypical inhibitory interneurons are the last

groups to singularize (D). (E) Effective number of clusters generated by
different fuzziness parameters. The number of archetypes included in the
partition is indicated to the left of the corresponding range of μ. Partitions with
more than eight archetypes can be only retrieved within very narrow ranges of
low μ values (red). The range leading to classification with the largest number
of robust archetypes is marked in green. (F) Metaphoric example illustrating
the impact of fuzziness on the relevance of partitions and numbers of
archetypes. Fuzzy partitions with too few archetypes (large μ, bottom) convey
a too blurred image of the dataset. Conversely, fuzzy partitions with too many
archetypes (small μ, top) are scarcely representative being strongly affected by
outliers. Such issue is graphically represented as impulse noise on the image.

in classification quality by monitoring increases of fuzzy cost
function, rather than decreases of average silhouette (Rousseeuw,
1987). This is due to the fact that standard silhouette analysis
does not take into account the membership profiles of different
cells.

Different features were ranked in order of decreasing �J.
Fuzzy clustering was then performed taking into account only
the top K highest ranked features, to extract reduced classifica-
tions based on a smaller number of relevant properties. The same
c and the same seeding were always used for pre-initialization
at every number of included properties K in order to guarantee
the extraction of comparable fuzzy clusters. The fuzzy clusters
in the reduced fuzzy partitions were mapped to the archetypes
of the reference classification. More specifically, a fuzzy cluster

αreduced in a reduced classification was matched to the archetype
αref in the original classification with the largest mutual overlap.
For each achetype, a classification matching fraction was then
defined as the percentage of cells whose original main type αref

coincided with its main type αreduced in the considered reduced
classification.

RESULTS
EMERGING ARCHETYPES
Following analogous approaches in numerical taxonomy and
ecology (Bezdek, 1974; Equiha, 1990; Salski, 2007), we used
an established unsupervised algorithm (Dunn, 1973) to extract
from our sample—based on the same features considered in
Karagiannis et al. (2009)— a small number of fuzzy clusters, or
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FIGURE 3 | Walking outward from the FS-PV archetype. (A) Tetrahedral
representation linking FS-PV (red), Adapting NPY (orange), and Adapting SOM
archetypes (green). Individual neurons are depicted as dots in the 3D space
of memberships. The X, Y, and Z axes correspond to memberships to the
FS-PV, Adapting NPY, and Adapting SOM archetypes, respectively. Vertical
stems denoting the projection of selected cells on the bidimensional base
plane are introduced as depth clues. (B) Current-clamp recordings of
illustrative transition neurons (cells a to o colored in panel A) in response to
rheobase current and to a 100 pA hyperpolarizing current pulse (black traces,
scale bars 50 mV, 400 ms). Insets: details of the repolarization phase of the

first spike (red traces, scale bars 5 mV, 20 ms). (C) Table summarizing 10
electrophysiological and 3 molecular discriminative properties of transition
cells between the Adapting NPY, the Adapting SOM, and the FS-PV
archetypes. Orange, green, and red backgrounds indicate distinctive values
for the Adapting NPY, the Adapting SOM, or the FS-PV archetype,
respectively. Gradient backgrounds indicate values falling in a range typical for
multiple. Bold colored entries indicate extreme values for an archetypal trend.
Thick contours highlight columns corresponding to archetypal cells. Atypical
cells display a heterogeneous mixture of property values which are not
compatible with a single archetype or which fall in transition ranges.

archetypes. Archetypes—like usual clusters (called “crisp” in the
context of fuzzy set theory)— are characterized by canonic prop-
erties, manifesting common phenotypic trends. In addition, as
detailed in the section “Materials and Methods,” our analysis pro-
vided lists of memberships (Zadeh, 1965; Jang et al., 1997; Xu
et al., 2008), quantifying the similarity of each neuron with dif-
ferent archetypes. Cells were considered as archetypal, if they had
a large membership toward a unique archetype and as atypical,
if they had comparable memberships toward more archetypes
(Figure 1B).

Our clustering algorithm depends on few parameters, most
notably on the fuzziness parameter μ (see Materials and
Methods), the tuning of which affected the number of identified

archetypes. For a sufficiently large fuzziness parameter, all cells
were grouped indistinctly into a unique all-embracing fuzzy class.
Decreasing the fuzziness, Glutamatergic neurons detached then
first at μ = 1.81 and remained the only singularized archetype
down to μ = 1.73 (Figures 2A,E). At this fuzziness level and
down to μ = 1.63 a second class emerged (Figures 2B,E). Its
GABAergic interneurons were PV-positive with electrophysiolog-
ical properties reminiscent of FS interneurons and could be there-
fore identified as an archetype of FS-PV neurons (McCormick
et al., 1985; Kawaguchi and Kubota, 1993).

At the fuzziness value of μ = 1.49 and down to μ = 1.37, a
new GABAergic archetype differentiated (Figures 2C,E). It was
mainly constituted by VIP-positive interneurons with an adapting
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FIGURE 4 | Walking between Adapting GABAergic archetypes.

(A) Tetrahedral representation linking Adapting VIP (blue), Adapting SOM
(green), and Adapting NPY (orange) archetypes. Individual neurons are
depicted as dots in the 3D space of memberships. The X, Y, and Z axes
correspond to memberships to the Adapting VIP, Adapting NPY, and
Adapting SOM archetypes, respectively. Vertical stems denoting the
projection of selected cells on the bidimensional base plane are
introduced as depth clues. (B) Current-clamp recordings of illustrative
transition neurons (cells g to r colored in panel A) in response to
rheobase current and to a 100 pA hyperpolarizing current pulse (black
traces, scale bars 50 mV, 400 ms). Insets: details of the repolarization

phase of the first spike (red traces, scale bars 5 mV, 20 ms). (C) Table
summarizing 8 electrophysiological and 3 molecular discriminative
properties of transitions cells between the Adapting VIP, the Adapting
SOM, and the Adapting NPY archetypes. Blue, green, and orange
backgrounds indicate distinctive values for the Adapting VIP, the Adapting
SOM, or the Adapting NPY archetype, respectively. Gradient backgrounds
indicate values falling in a range typical for multiple. Bold colored entries
indicate extreme values for an archetypal trend. Thick contours highlight
columns corresponding to archetypal cells. Atypical cells display a
heterogeneous mixture of property values which are not compatible with
a single archetype or which fall in transition ranges.

firing pattern (Kawaguchi and Kubota, 1996; Cauli et al., 1997,
2000) and thus corresponded to the Adapting VIP archetype.
Furthermore, within this same range of μ, the Glutamatergic type
started differentiating into further subtypes.

In the range of 1.37 ≥ μ ≥ 1.21 two further archetypes
of mostly SOM- or Neuropeptide Y (NPY)-positive interneu-
rons progressively emerged (Figures 2D,E). The GABAergic

archetypes found in that range (Figure 2E) reproduced to a good
extent the GABAergic classes obtained with the two independent
crisp clustering algorithms we previously used in Karagiannis
et al. (2009), confirming their reliability. In the obtained soft hier-
archy of fuzzy archetypes, a fuzzy class encompassing all neurons
with a yet uncharacterized main type was found at any μ and was
denoted as the class of “Unidentified Firing Objects” (UFOs).
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FIGURE 5 | Visiting the UFOs. (A) Tridimensional representation joining
three heterogeneous UFOs. Adapting VIP (blue), Adapting NPY (orange), and
UFOs (pink) archetypes. Individual neurons are depicted as dots in a 3D
space of memberships. The X, Y, and Z axes correspond to memberships to
the Adapting VIP, Adapting NPY, and UFOs archetypes, respectively. Vertical
stems denoting the projection of selected cells on the bidimensional base
plane are introduced as depth clues. (B) Current-clamp recordings of
illustrative transition neurons (cells s to u colored in panel A) in response to

rheobase current and to a 100 pA hyperpolarizing current pulse (black traces,
scale bars 50 mV, 400 ms). Insets: details of the repolarization phase of the
first spike (red traces, scale bars 5 mV, 20 ms). (C) Table summarizing 17
electrophysiological and 5 molecular properties reminiscent of FS-PV (Red),
Adapting VIP (blue), Adapting SOM (Green), or Adapting NPY (orange)
archetypes in three different UFOs. Colored backgrounds indicate values
falling in ranges typical for an archetype. Gradient backgrounds indicate
values falling in a range typical for multiple archetypes.

Finally, classifications with a larger number of archetypes
could not be robustly extracted from our dataset, since these par-
titions were valid only for very narrow ranges of μ (Figures 2E,F).
In the rest of this study, we focus on the specific classification
obtained for μ = 1.349, leading to four GABAergic archetypes,
together with one (out of three merged) Glutamatergic archetype
and a residual UFO class (Figures 2D,E).

Weighting features by their archetype memberships limits the
confounding contribution of atypical cells, so our fuzzy method
allowed for a better quantitative characterization of the typical
features of these archetypes (summarized in Tables 1–4).

THREE GLUTAMATERGIC SUBCLASSES
The whole population of Glutamatergic neurons was distinctly
characterized by relatively deeply located somata, hyperpolar-
ized resting membrane potentials, and slow time constants due
to large membrane capacitances (Table 1). Their action poten-
tials were of long duration with slowly developing afterhyper-
polarization (AHP) of small amplitude (Table 3). When strongly
depolarized these neurons fired action potentials with a marked
amplitude accommodation, a pronounced frequency adapta-
tion, and were unable to sustain high firing rates (Table 2).

As previously described for glutamatergic neurons (Kubota
et al., 1994; Andjelic et al., 2009), they expressed vGluT1
and only infrequently interneuronal markers, except for CB
(Table 4). Although these neurons were the first to singular-
ize, they subsequently split up into three subclasses at μ val-
ues required for the emergence of Adapting VIP, SOM, and
NPY archetypes (Figures 2C–E). These classes of glutamater-
gic neurons only differed by the laminar location of their
soma and by electrophysiological properties, as reported in
Table 5.

Briefly, class A glutamatergic neurons whose somata were
deeply located (Table 5) displayed a pronounced voltage sag at
hyperpolarized potentials (Table 5). They distinctly differed from
the other glutamatergic neurons by a first action potential exhibit-
ing a very slowly developing and deep secondary AHP. Compared
with other glutamatergic neurons the duration of their spikes was
fairly constant (Table 5).

Class B glutamatergic neurons were the most superficial group
of glutamatergic neurons and exhibited modest voltage sag when
hyperpolarized (Table 5). The profile of their spike amplitude
accommodation was of small amplitude for a glutamatergic neu-
ron (Table 5). Their action potentials were of long duration and

Frontiers in Neural Circuits www.frontiersin.org February 2013 | Volume 7 | Article 13 | 11

http://www.frontiersin.org/Neural_Circuits
http://www.frontiersin.org
http://www.frontiersin.org/Neural_Circuits/archive


Battaglia et al. Frontiers of neuronal types

FIGURE 6 | Archetype segregations. (A) Pairwise comparisons of archetype
segregations. Two-dimensional projections of memberships of neurons
belonging to the Glutamatergic (black), FS-PV (red), Adapting SOM (green),
Adapting VIP (blue), Adapting NPY (orange), and UFO (magenta) archetypes.
Dashed lines represent identical memberships and gray zones the mean
absolute deviation of typicality. Neurons falling within the gray zone
correspond to “edge cells.” Note the absence of “edge cells” between,

Glutamatergic, FS-PV, and Adapting VIP neurons. (B) Overall distribution of
typicality coefficients. The right and left peaks correspond to archetypal and
atypical cells, respectively. The grayed background denotes the range of
typicalities associated to edge cells. In the stacked histogram, sections with
different colors indicate cells with different main type. Archetypal and atypical
cells are unequally distributed across archetypes. The bimodal distribution
indicates that archetypes tend to separate, but only imperfectly.

their first component AHP was slowly developing and of relatively
large amplitude (Table 5).

Similarly to class A glutamatergic neurons, class C glutamater-
gic neurons had deeply located somata and a very pronounced
voltage sag (Table 5). In contrast to the other glutamatergic
neurons, none of them were able to fire below a minimal fre-
quency and displayed strong adaptation when depolarized just
above threshold (Table 5), two firing features reminiscent of a
bursting phenotype (Hodgkin, 1948). Their first, but not their
second action potential displayed a monophasic repolarization.
The duration and the amplitude of their second action poten-
tial were respectively longer and smaller than those of their first
spike. Also consistent with a bursting phenotype they displayed
a very pronounced amplitude accommodation when strongly
depolarized. Altogether these features indicate that class C glu-
tamatergic neurons correspond to intrinsically bursting neurons
(McCormick et al., 1985; Connors and Gutnick, 1990).

From the different properties available for all neurons in the
dataset, it was not possible to associate other distinctive prop-
erties to these classes of glutamatergic neurons. They included
molecular (Table 5) and basic morphological somatic features

(data not shown). The absence of relevant markers for these
neurons is attributable to the low occurrence of interneuron
markers in glutamatergic neurons (Andjelic et al., 2009). In addi-
tion, the difficulty to correlate unambiguously the morphology
of spiny granular and supragranular neurons with a firing pat-
tern (McCormick et al., 1985; Connors and Gutnick, 1990; Staiger
et al., 2004) further supports the idea that the three classes of
glutamatergic neurons do not differ by their somatic features.
Nevertheless, it is possible that these neurons exhibit distinctive
patterns of dendritic and/or axonal arborizations, as it has been
observed for bursting and non-bursting Layer V pyramidal cells
(Chagnac-Amitai et al., 1990; Christophe et al., 2005). Since such
properties are not available in our dataset, glutamatergic neurons
will be considered as a single unified archetype in the rest of this
study.

FOUR GABAergic ARCHETYPES
Archetypal FS-PV interneurons had a very low input resistance,
a very fast membrane time constant, and displayed the lowest
electrical excitability (Tables 1 and 3, see also cell a in Figure 3
as an illustrative example). Their spikes were short with fast
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Table 5 | Significant comparisons between glutamatergic subtypes.

Glutamatergic class A Glutamatergic class B Glutamatergic class C

(n = 25) (n = 12) (n = 9)

(1) Digitized laminar location (Layer )
3.7 ± 0.6 2.5 ± 0.8 4.0 ± 0.2

Class B << Classes A, C

(4) Time constant (τm, ms)
33.4 ± 8.1 42.6 ± 11.7 34.2 ± 9.2

Class A < Class B

(6) Sag index (Sag, %)
21.5 ± 7.5 11.3 ± 7.7 25.8 ± 7.6

Class B << Classes A, C

(9) Just-above threshold adaptation (Adthr, Hz/s)
−18 ± 35 −4.7 ± 3.0 −163 ± 76

Class C <<< Classes A, B

(10) Minimal steady state frequency (Fmin, Hz)
14 ± 18 7.9 ± 2.8 77 ± 15

Classes A, B <<< Class C

(11) Amplitude accommodation (Ahump, mV)
25.2 ± 6.2 15.6 ± 6.9 33.2 ± 8.0

Class B << Class A < Class C

(13) Time constant of early adaptation (τsat, ms)
23.6 ± 4.8 20.1 ± 3.5 38 ± 18

Classes A, B <<< Class C

(14) Late adaptation (Adsat, Hz/s)
−9.7 ± 6.6 −14.5 ± 8.4 −3.7 ± 3.8

Classes A,B << Class C

(15) Maximal steady state frequency (Fmax, Hz)
30.5 ± 8.6 32.6 ± 6.8 23.2 ± 6.4

Class C << Class B

(17) Second spike amplitude (A2, mV)
90.4 ± 7.8 89.1 ± 9.3 69.5 ± 5.2

Class C <<< Classes A, B

(18) First spike duration (D1, ms)
1.40 ± 0.17 1.60 ± 0.18 1.41 ± 0.17

Class A <<< Class B

(20) Amplitude Reduction (�(Amp), %)
−3.7 ± 2.0 −2.9 ± 1.9 −24.8 ± 3.9

Classes A,B <<< Class C

(21) Duration Increase (�(Dur), %)
3.4 ± 2.8 8.3 ± 4.1 31.3 ± 9.9

Class A << Class B <<< Class C

(22) First spike, first component AHP (AHPf , mV)
−5.5 ± 2.6 −10.1 ± 4.5 −5.4 ± 2.5

Class B < Classes A, C

(23) First spike, second component AHP (AHPs , mV)
−13.6 ± 2.8 −3.5 ± 6.0 0.0 ± 0.0

Class A << Classes B, C

(24) Second spike, first component AHP (AHPf ,2, mV)
−6.9 ± 2.6 −13.6 ± 4.2 −7.4 ± 2.8

Class B < Classes A, C

(25) Second spike, second component AHP (AHPs,2, mV)
−18.2 ± 2.2 −0.7 ± 3.7 −23.0 ± 2.0

Class C <<< Class A <<< Class B

(Continued)
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Table 5 | Continued

Glutamatergic class A Glutamatergic class B Glutamatergic class C

(n = 25) (n = 12) (n = 9)

(26) First spike, first AHP component latency (τAHPf, ms)
5.3 ± 1.5 42.6 ± 25.5 4.5 ± 0.6

Classes A,C <<< Class B

(27) First spike, second AHP component latency (τAHPs, ms)
78.2 ± 23.7 18.8 ± 33.7 0.0 ± 0.0

Classes B,C <<< Class A

(28) Second spike, first AHP component latency (τAHPf,2, ms)
6.1 ± 1.6 57.5 ± 15.1 7.7 ± 1.7

Class A < Class C <<< Class B

(29) Second spike, second AHP component latency (τAHPs,2, ms)
73.3 ± 17.0 2.2 ± 12.5 95.3 ± 23.1

Class B <<< Class A < Class C

(30) first spike ADP (ADP, mV)
2.5 ± 1.8 0.1 ± 0.3 0.0 ± 0.0

Classes B,C <<< Class A

(31) Second spike ADP (ADP2, mV)
0.4 ± 0.5 0.01 ± 0.07 0.3 ± 0.5

Class B < Classes A, C

(32) First spike ADP latency (τADP, ms)
10.5 ± 4.3 0.6 ± 2.5 0.0 ± 0.0

Classes B,C <<< Class A

(33) Second spike ADP latency (τADP2, ms)
4.6 ± 3.9 0.2 ± 1.4 5.1 ± 5.3

Class B < Classes A, C

Values are weighted means ± SD; n, number of cells; < significantly smaller with P ≤ 0.05; << significantly smaller with P ≤ 0.01; <<< significantly smaller with

P ≤ 0.001.

and deep monophasic AHP (Table 3) and they were able to sus-
tain very high firing frequencies (Table 2). They expressed the
GABA synthesizing enzymes GAD65 and/or 67, (GADs) and PV,
frequently Calbindin (CB) and, to a lesser extent, NPY (Table 4).

Archetypal Adapting VIP interneurons, whose emergence fol-
lowed that of FS-PV interneurons (Figure 2D), displayed a high
resistance and a very small membrane capacitance (Table 1, see
also cell g in Figure 4). Their spike waveform was complex with a
fast AHP, followed by a marked afterdepolarization (ADP) and
a secondary AHP (Table 3). At high stimulation, they showed
a fast early adaptation followed by a marked late adaptation
(Table 2). They expressed GADs and VIP and, relatively fre-
quently, Calretinin (CR) (Table 4).

Archetypal Adapting SOM interneurons displayed a marked
voltage sag in response to hyperpolarization (Table 1, see also
cell k in Figures 3, 4). They were the most excitable neuronal
archetype with a depolarized resting potential and a low rheobase
(Table 2). Similarly to Adapting VIP interneurons their complex
spike waveform was characterized by a prominent ADP (Table 3).
At strong stimulation intensities, they very slowly adapted their
firing frequency (Table 2). They expressed GADs and SOM and,
often, CB and NPY (Table 4) (Kawaguchi and Kubota, 1996; Cauli
et al., 2000; Karagiannis et al., 2009).

Archetypal Adapting NPY interneurons were weakly excitable,
although less than the FS-PV archetype (Table 2, see also cell o in

Figures 3, 4), and characterized by the virtual absence of adapta-
tion near threshold (Table 2). They fired rather wide spikes with
a very low minimal firing frequency (Table 3). Repolarization
behavior consisted in a biphasic AHP with a slow first component
and virtually no ADP (Table 3). They expressed GADs, often NPY
and, relatively frequently, the neuronal isoform of nitric oxide
synthase (NOS-1) (Table 4).

WALKS THROUGH DIVERSITY
Neurons can be represented as points in a high-dimensional space
with coordinates given by their archetype memberships mα. For
the purpose of visualization, positions of individual cells were
plotted in different 3-dimensional projections of the full mem-
bership space (Figures 3–5). Such geometric views allowed fol-
lowing cell sequences with properties gradually varying between
archetypes. Archetypal cells had, by definition, a single dominant
membership and were thus located nearby an apex. Conversely,
atypical cells were lying in the tetrahedral volume defined by three
different apices.

FS-PV neurons were the first archetype of interneurons to
emerge when decreasing the fuzziness parameter (Figure 2).
We first describe a sequence linking these neurons with other
archetypes. Since no marked shared membership between the
FS-PV and Adapting VIP archetypes could be found (as visible
from Figures 2 and 6A), we only considered linking sequences
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with the Adapting SOM and NPY archetypes (Figure 3A). A
closed loop linking cells of the Adapting VIP, SOM, and NPY
archetypes was examined in another sequence (Figure 4A).

The electrophysiological behaviors of interneurons sitting on
these paths of membership space are depicted in Figures 3, 4B
and their selected features are reported in tables of Figures 3,
4C. The background color of table entries encodes different
ranges of feature values, which are typical for different archetypes
(Tables 1–4). Accordingly columns in Figures 3, 4C correspond-
ing to the features of cells a (mFS−PV = 97%), g (mAdVIP =
94%), k (mAdSOM = 79%), and o (mAdNPY = 83%), archetypal
for FS-PV, Adapting VIP, SOM, and NPY archetypes respec-
tively are dominated by a single color. Archetypal cells could also
exhibit extreme distinctive values of certain hallmark features. For
instance, cell g had a very small voltage sag and cell o a very low
excitability. Conversely and indicative of transition phenotypes
(Figures 3, 4C), the features of cells progressively diverging from
one archetype and converging to another, gradually lose the color
code of their starting archetype to adopt the color code of the
target one.

ATYPICAL CELLS RELATED WITH THE FS-PV ARCHETYPE
Figure 3 highlights transition cells on sequences linking the FS-
PV to the Adapting SOM and Adapting NPY archetypes, of which
neurons a, k, and o are representative examples.

Cell c is an example of a transition between FS-PV (mFS−PV =
29%) and Adapting SOM (mAdSOM = 21%) archetypes (Table 6).
This neuron displayed a relatively small resistance, a high fir-
ing rate with narrow spikes and PV expression characteristic

of FS-PV cells. Unusual for FS-PV cells, it exhibited an action
potential waveform with a fast and deep AHP followed by a small
ADP. Also reminiscent of its secondary Adapting SOM member-
ship, it had a slow time constant and a prominent voltage sag in
response to hyperpolarizing currents. Neuron b had also tran-
sition phenotypes between the FS-PV and the Adapting SOM
archetypes.

Cell e illustrates a transition between Adapting NPY
(mAdNPY = 38%) and FS-PV (mFS−PV = 22%) archetypes
(Table 6). Its maximal firing frequency at high stimulation
intensities was moderate and it expressed NPY, consistent with
its main type. Reminiscent of its secondary type it exhibited
a small resistance, a low electrical excitability, fired narrow
spikes and expressed PV. Most other features assumed values
in ranges compliant with both the Adapting NPY and the
FS-PV archetypes except for its complex repolarization phase
displaying an uncommon small ADP. Similarly, neuron d had
transition phenotypes between the FS-PV and the Adapting NPY
archetypes.

Finally, cell f illustrates a neuron sharing multiple mem-
berships between Adapting SOM (mAdSOM = 31%), FS-PV, and
Adapting NPY (mFS−PV = mAdNPY = 20%) archetypes (Table 6).
It had mostly intermediate properties but displayed a depolarized
resting potential and voltage sag characteristic of Adapting SOM
neurons, a short time constant, and deep monophasic repolar-
ization reminiscent of its FS-PV membership. However, its AHP
latency was rather long for a FS-PV neuron and was closer to that
of Adapting NPY cells. Notably, it expressed the three distinctive
molecular markers, PV, SOM, and NPY of its parent archetypes.

Table 6 | Membership values of cells in the sequences of Figures 2, 3, and 4.

Cell Glutama-tergic FS-PV Adapt. SOM Adapt. VIP Adapt. NPY UFO Comments

a 0.00 0.97 0.00 0.00 0.01 0.01 Archetypal (FS-PV)

b 0.05 0.39 0.16 0.13 0.14 0.12 Atypical (FS-PV)

c 0.05 0.29 0.21 0.14 0.13 0.17 Edge cell (FS-PV—Adapting SOM)

d 0.05 0.40 0.15 0.07 0.21 0.12 Atypical cell (FS-PV)

e 0.08 0.22 0.12 0.07 0.38 0.13 Atypical cell (Adapting NPY)

f 0.10 0.20 0.31 0.05 0.20 0.13 Edge cell (Ad. SOM—FS-PV—Ad. NPY)

g 0.01 0.00 0.02 0.94 0.02 0.01 Archetypal (Adapting VIP)

h 0.04 0.02 0.23 0.49 0.09 0.13 Atypical (Adapting VIP)

i 0.06 0.02 0.40 0.26 0.11 0.15 Edge cell (Adapt. SOM—Adapt. VIP)

j 0.04 0.03 0.48 0.18 0.14 0.12 Atypical (Adapting SOM)

k 0.05 0.01 0.79 0.06 0.05 0.04 Archetypal (Adapting SOM)

l 0.01 0.03 0.07 0.49 0.24 0.16 Atypical (Adapting VIP)

m 0.06 0.05 0.14 0.34 0.22 0.19 Edge cell (Adapt. VIP—Adapt. NPY)

n 0.13 0.02 0.09 0.28 0.34 0.14 Edge cell (Adapt. NPY—Adapt. VIP)

o 0.01 0.01 0.04 0.01 0.83 0.10 Archetypal (Adapting NPY)

p 0.08 0.04 0.22 0.10 0.42 0.14 Atypical (Adapting NPY)

q 0.04 0.09 0.24 0.13 0.35 0.14 Edge cell (Adapt. NPY—Adapt. SOM)

r 0.10 0.13 0.33 0.09 0.22 0.13 Edge cell (Adapt. SOM—Adapt. NPY)

s 0.06 0.15 0.04 0.23 0.15 0.38 “UFO” main type (Burst. VIP)

t 0.20 0.05 0.15 0.07 0.16 0.37 “UFO” main type

u 0.04 0.09 0.06 0.06 0.34 0.41 “UFO” main type

Memberships evaluated at μ = 1.349, rounded at two decimals (note that, due to rounding, membership sums can deviate slightly from unit).
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ATYPICAL CELLS RELATED WITH THE ADAPTING VIP ARCHETYPE
Figure 4 depicts another loop sequence linking the Adapting VIP,
SOM, and NPY archetypes, of which neurons g, k, and o are
representative examples.

Cell i is an illustrative example of a transition between
Adapting VIP (mAdVIP = 26%) and Adapting SOM archetypes
(mAdSOM = 40%, Table 6). Consistent with its Adapting SOM
main type, it was fairly depolarized at rest, displayed a marked
voltage sag, and slowly adapted at saturating frequencies (τsat =
34.0 ms, see Table 2). Indicative of its secondary membership, its
membrane capacitance was rather small and it did not express
SOM but VIP. Cells h and j had also mixed Adapting VIP and
SOM traits.

Neuron m depicts a transition cell between Adapting
VIP (mAdVIP = 34%) and Adapting NPY (mAdNPY = 22%)
archetypes (Table 6). Reminiscent of its main type, it displayed
a noticeable ADP, followed by a second component of AHP. It
was also able to discharge at a large firing frequency (Fmax =
120.9 Hz, cf. Table 2). Compatible with its secondary, but not
with its main type, it exhibited a small resistance, a large rheobase
and a long first spike latency (t1st = 478.4 ms, see Table 2). Cells l
and n had also transition phenotypes between the Adapting VIP
and NPY archetypes.

ATYPICAL CELLS BETWEEN THE ADAPTING SOM AND NPY
ARCHETYPES
In addition to the atypical cells with noticeable Adapting SOM or
NPY memberships already described in the previous two sections
and related as well with the FS-PV or Adapting VIP archetypes,
Figure 4 shows other atypical cells lying between the Adapting
SOM and NPY archetypes.

As an example, cell q had Adapting NPY main type (mAdNPY =
35%) and a second important Adapting SOM membership
(mAdSOM = 24%, Table 6). Consistent with its main type it
was weakly excitable and expressed NPY. It displayed a com-
plex spike waveform with uncommon features such as a slow
ADP, suggestive of an Adapting SOM phenotype, combined
with a marked and fast second component of AHP, character-
istic of Adapting NPY cells. In agreement with its secondary
but, intriguingly, not with its main type (Tables 1–4), cell q
had an intermediate minimal firing frequency and expressed
CB. Cells p and r also exhibited mixed Adapting NPY and
SOM traits.

OTHER ATYPICAL CELLS
Finally, some highly atypical cells displayed heterogeneous phe-
notypes that could not be simply described as transitional
between defined archetypes. All these cells had a large mem-
bership toward the residual UFO class. Neurons s, t, and u are
illustrative example UFOs illustrated in Figure 5.

Despite being GABAergic, Cell t (mUFO = 37%) displayed
anomalous features, e.g., broad spikes and an inability to
discharge at high firing rates, which are reminiscent of the
Glutamatergic archetype (mGlut = 20%, Table 6). It shared as
well properties with the FS-PV (small spike amplitude), the
Adapting SOM (depolarized resting membrane potential and
intermediate first AHP amplitude), and the Adapting NPY

archetypes (slow first AHP component) and it had a membrane
resistance extreme even for the Adapting VIP archetype.

Few cells with UFO main type (n = 18 out of 33) displayed-
marked bursting phenotype, defined by the inability to fire
below a minimal frequency (Hodgkin, 1948) and characterized by
strong near-threshold adaptation and spike amplitude reduction
at the onset of firing. This hinted at the potential emergence of
a further Bursting VIP archetype (Karagiannis et al., 2009) out
of the heterogeneous and yet indistinct collection of cells con-
stituting the UFO class. Cell s represents here a characteristic
example of this tendency (Figure 5) and was indeed classified as
belonging to the Bursting VIP type in the previous crisp analysis
(Karagiannis et al., 2009).

GRADED AND STRUCTURED SEPARATIONS BETWEEN ARCHETYPES
These partial lists of atypical cells suggest that, with the excep-
tion of Glutamatergic, FS-PV, and Adapting VIP archetypes
(Figure 2), a neat separation between archetypes may be lack-
ing. Figure 6A allows visualizing in a systematic way, through a
series of 2-dimensional cross-sections, how neurons were scat-
tered in the membership space. The two axes of every triangular
panel in Figure 6A correspond to memberships toward a differ-
ent pair of archetypes for each panel. The black dashed diagonal
line corresponds to equal membership toward the two considered
archetypes and it is surrounded by a shaded gray region cor-
responding to the halved mean absolute deviation. Cells falling
within this region had therefore almost identical memberships to
the two archetypes and were lying precisely at the geometric fron-
tier between them. Consequently, we denoted them as edge cells
(see Materials and Methods for definition).

There were no Glutamatergic cells at the edge with well-
defined archetypes (i.e., any archetype apart from the UFO class),
corresponding to a complete separation of the Glutamatergic
archetype from all the other GABAergic archetypes. The separa-
tion between the FS-PV and the Adapting VIP archetypes, which
were the first two clusters of GABAergic neurons emerging with
decreasing value of μ (Figures 2B,C,E), was also very distinct and
there was no edge cell between them.

Edge cells were found however at the fringe of other Adapting
Archetypes. Considering Adapting SOM neurons, there were
edge cells between the Adapting SOM and the FS-PV archetypes
(n = 3) and between the Adapting SOM and the Adapting VIP
archetypes (n = 5). Regarding Adapting NPY neurons, there were
edge cells between the Adapting NPY and the FS-PV archetypes
(n = 2) and between the Adapting NPY and the Adapting
VIP archetypes (n = 4). There was also a conspicuous overlap
between the two Adapting SOM and NPY archetypes themselves
(n = 8 edge cells). Finally, every archetype had cells at the edge
with the UFO class, but these cells could not easily be described
as transitional, since there is no clear phenotype associated to the
UFO class.

To achieve an accurate and synthetic description of cell dis-
tribution in a high-dimensional space, we quantified for each
cell its distance from the boundary between its main and sec-
ondary archetypes by computing its typicality coefficient d. As
defined in the Materials and Methods, cells with typicalities larger
or smaller than specific thresholds, related to the halved mean
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absolute deviation of the typicality distribution, were considered
respectively as archetypal or atypical. The chosen thresholds cap-
tured well the bimodal structure of the sample distribution of d
at μ = 1.349, in which peaks associated to strictly archetypal and
atypical cells were clearly visible, as shown in Figure 6B.

According to the used criteria, 40% of the cells (n = 80 of
200) resulted as archetypal and 42% (n = 83 out of 200) as atypi-
cal. However, the distribution of archetypal and atypical cells was
not homogeneous across different archetypes. The Glutamatergic,
the FS-PV and, to a lesser extent, the Adapting VIP archetypes,
were well-detached from the other archetypes, as indicated by
their large average typicality coefficients and fractions of strictly
archetypal cells (Figure 6). Other GABAergic archetypes dis-
played larger strictly atypical fractions. UFOs were an exceptional
case, since none of them were archetypal (see Figure 6B and
Table 6).

We note that the actual distribution of typicality coeffi-
cients depended on the chosen value of the fuzziness parameter.
However, since the relative degrees of typicality of different cells
were very well-preserved over a wide range of parameters, the
fractions of cells labeled as atypical or archetypal were robustly
conserved (not shown).

THE RELEVANCE OF DIFFERENT FEATURES FOR CLASSIFICATION
The archetypes and the typicality spectrum observed in our sam-
ple reflected the existence of structured correlations between the
values of different features in different cells. A first natural ques-
tion is therefore establishing which of the measured features are
the most decisive for the determination of the extracted fuzzy par-
tition. A second question is whether it would be possible to use
fewer features and, yet, obtain an equivalent classification.

Generalizing an approach we previously introduced
(Karagiannis et al., 2009), we assessed the relevance for
classification of different properties or groups of properties by
means of partial randomization analyses. The values of a subset
of properties were “scrambled” by permuting them randomly
between different cells. Such a manipulation preserved by
construction the sample average and standard deviation of the
scrambled features, but destroyed their correlation with other
features. Scrambling properties of higher significance to the
observed fuzzy partition will lead to a lower classification quality.
We quantified such variations in quality of fuzzy clustering by
comparing the cost function of the extracted fuzzy partitions (see
Materials and Methods) before and after randomization.

The increase in classification cost determined by randomiza-
tion of individual features varied in the 2–4% range. Properties
are ranked in Table 7 in descending order of cost increase after
individual randomization. GAD expression (feature 35, Table 4),
discriminating excitatory and inhibitory neurons, was the prop-
erty associated to the largest cost increase. It was, followed by the
maximum steady state frequency Fmax (feature 15, Table 3), dis-
tinctly high for FS-PV neurons and very low for Glutamatergic
neurons (Table 2). Note that the first two archetypes to emerge
when decreasing the fuzziness μ were the Glutamatergic and the
FS-PV archetypes.

We next sought to determine whether it was possible to
reproduce the reference classification with a parsimonious list

Table 7 | Relevance of properties for the classification of our sample.

Rank Feature �J (%)

#1 (35) GAD 4.80 ± 0.60

#2 (15) Maximal steady state frequency 4.46 ± 0.70

#3 (22) First spike, first component AHP 4.45 ± 0.75

#4 (18) First spike duration 4.41 ± 0.72

#5 (19) Second spike duration 4.41 ± 0.65

#6 (11) Amplitude accommodation 4.21 ± 0.68

#7 (24) Second spike, first component AHP 4.01 ± 0.76

#8 (27) First spike, second AHP component latency 3.96 ± 0.70

#9 (32) First spike ADP latency 3.69 ± 0.70

#10 (31) Second spike ADP 3.65 ± 0.81

#11 (34) VGluT1 3.63 ± 0.77

#12 (29) Second spike, second AHP component latency 3.59 ± 0.74

#13 (30) first spike ADP 3.55 ± 0.80

#14 (4) Time constant 3.54 ± 0.78

#15 (14) Late adaptation 3.46 ± 0.76

#16 (41) VIP 3.44 ± 0.76

#17 (38) PV 3.37 ± 0.82

#18 (33) Second spike ADP latency 3.35 ± 0.86

#19 (21) Duration Increase 3.35 ± 0.67

#20 (23) First spike, second component AHP 3.33 ± 0.72

#21 (12) Amplitude of early adaptation 3.33 ± 0.84

#22 (7) Rheobase 3.31 ± 0.75

#23 (16) First spike amplitude 3.27 ± 0.80

#24 (25) Second spike, second component AHP 3.20 ± 0.82

#25 (5) Membrane capacitance 3.19 ± 0.78

#26 (17) Second spike amplitude 3.18 ± 0.71

#27 (20) Amplitude reduction 3.16 ± 0.66

#28 (3) Input Resistance 3.10 ± 0.85

#29 (26) First spike, first component AHP latency 3.07 ± 0.65

#30 (40) NPY 3.06 ± 0.79

#31 (9) Just-above threshold adaptation 3.06 ± 0.63

#32 (6) Sag index 3.03 ± 0.76

#33 (8) First spike latency 2.94 ± 0.76

#34 (28) Second spike, first component AHP latency 2.89 ± 0.98

#35 (42) SOM 2.88 ± 0.76

#36 (2) Resting Potential 2.85 ± 0.80

#37 (1) Digitized laminar location 2.85 ± 0.70

#38 (10) Minimal steady state frequency 2.76 ± 0.69

#39 (43) CCK 2.73 ± 0.83

#40 (13) Time constant of early adaptation 2.69 ±0.75

#41 (39) CR 2.69 ± 0.95

#42 (37) CB 2.58 ± 0.78

#43 (36) NOS1 2.45 ± 0.91

Increase of the residual cost of the fuzzy partition estimated via single-property

randomization. Mean values and sample standard deviations are taken over 1000

independent randomizations.

of features (Figure 7). We, thus, generated different classifica-
tions, starting with the most relevant property (i.e., the expression
of GAD according to the ranking in Table 7) and then gradu-
ally adding new properties in decreasing order of relevance (see
Materials and Methods). We found that while certain archetypes
could be well-discriminated by a small number of top-ranked
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FIGURE 7 | Relevance of features for classification. Matching between
classifications based on a reduced number of top-ranked properties with
the reference classification based on all the 43 features (see Table 7 for
relevance ranking of the different properties). Classification matching is
analyzed separately for every well-defined archetype and is measured by
the fraction of cells with a given main type, matching in both the reference,
and a reduced classification. Matching classification fraction for all
archetypes confounded is also shown for comparison. Note the order of
correctly classified archetypes corresponding to the historically
characterized neuronal types.

features, the correct discrimination of other archetypes required
the consideration of a much larger number of properties. About
half of the neurons with Glutamatergic or FS-PV main type could
be identified by considering only the top three-ranked properties,
i.e., GAD expression, maximum steady state frequency Fmax and
first AHP component of the first spike AHPf (feature 22, Table 3).
Considering also the duration D1 of the first and D2 of the second
spikes (features 18–19, Table 3), allowed the correct classification
of over half of the neurons with Adapting VIP main type and
raised the fraction of correctly identified FS-PV neurons to over
70%. At least nine features were required for the identification of
more than half of the cells with Adapting SOM main type, and
at least 13 features for the identification of more than half of the
cells with Adapting NPY main type. Correct identification of over
90% of all cells in the dataset was only possible by considering at
least 35 features, the 30th and the 35th of which being respectively
the molecular markers NPY and SOM.

Interestingly, this observed order of correctly classified
archetypes is similar to the order of emergence of archetypes
obtained by decreasing the fuzziness parameter (Figure 2) as well
as with their historical identification (Mountcastle et al., 1969;
McCormick et al., 1985; Kawaguchi and Kubota, 1993, 1996;
Karagiannis et al., 2009).

It should be however noted that the results of these property
relevance analyses are strongly dependent on the fine structure
of our sample. Furthermore, the effects of randomizing more
than one property simultaneously cannot be predicted trivially

by the knowledge of the effects of randomization of individual
properties. For instance, individual randomization of SOM and
NPY expression have a small overall impact on classification, but
their joint randomization can strongly affect the correct detec-
tion of Adapting SOM and NPY archetypes (not shown). More
systematic analyses over multiple independent samples would
thus be required to make general statements on the impact on
classification of different properties or property groups.

DISCUSSION
A STRUCTURED CONTINUUM
Neuronal features varied in a remarkably graded way. However,
this landscape of diversity was far from being a continuum
without structure, since definite trends and trend changes were
evident along archetype transitions (Figures 3–4).

Our approach allowed describing this structured continuum
of phenotypes, by mediating between contrasting philosophies of
neuronal classification (Tyner, 1975; Parra et al., 1998). On the
one hand, we avoided the provocative view of the existence of
a separate class for each cell (Parra et al., 1998). On the other
hand, we could preserve information about the observed phe-
notypic diversity, which subdivisions into sharply distinct classes
(Markram et al., 2004; Burkhalter, 2008) would have curtailed.

Unlike possibly more powerful but unavoidably more abstract
dimensionality reduction techniques (Bishop, 2006; Hinton and
Salakhutdinov, 2006), fuzzy memberships had a straight biolog-
ical relevance, representing directly and compactly the similarity
between single cells and canonic template archetypes. Because of
an intuitive spatial representation of sample diversity, the analysis
of memberships allowed thus the systematic detection of atypical
and archetypal cells within a dataset already too large to be parsed
without neuroinformatic assistance.

THE “RIGHT” NUMBER OF ARCHETYPES
The four reference GABAergic archetypes and the typicality spec-
trum which we found at μ = 1.349 were robust in a wide param-
eter range. They were also optimal, in the sense that any attempt
to reliably extract more archetypes from our sample was unsuc-
cessful. Indeed, for μ < 1.204, even tiny changes in μ shattered
entirely the extracted fuzzy partition (Figure 2E). Introducing a
metaphor, one might say that adopting a too small μ would be
like looking at a poor quality printed image through a macro lens.
This would reveal most likely the low resolution of the halftone
screen, rather than additional relevant details. Conversely, using
a too large μ would be like taking an out-of-focus snapshot
(Figure 2F). Therefore, our present list of archetypes should be
considered, citing again Tyner (1975, p. 91), as “a temporary con-
venience, a rather crude data storage system,” reflecting only our
present state of knowledge (and ignorance).

The failure to extract more archetypes was likely due to the
lack of supplemental properties allowing subdivision of neuronal
populations (Tyner, 1975). Such features might correspond to
morphology and connectivity patterns (Markram et al., 2004;
Christophe et al., 2005; Krimer et al., 2005; Perin et al., 2011),
synaptic activity (Dumitriu et al., 2007), temporal dynamics
of activity (Klausberger and Somogyi, 2008), and/or mecha-
nisms of synaptic plasticity (Szabo et al., 2012). The analysis
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summarized by Figure 7 revealed that a smaller number of fea-
tures was required to correctly discriminate the archetypes that
emerged earlier at a high value of μ. The consideration of addi-
tional features in our classification would therefore most likely
allow the discrimination of additional neuronal types, not yet
emerged out of the residual UFO class. The simple results sum-
marized by Figure 7 and Table 7 constitute only the first steps of
a systematic study of the impact of different properties on neu-
ronal classification, which goes beyond the limits of the present
study.

Finally, since specific selection criteria (i.e., superficial layers
and prominent radial processes) were used to increase the proba-
bility of collecting NPY neurons (Karagiannis et al., 2009), our
results are not necessarily representative of the entire popula-
tion of cortical interneurons. Nevertheless, in a complementary
study aimed at characterizing deep layers neurons not necessarily
exhibiting radial processes (Perrenoud et al., 2013), very similar
classes of interneurons were obtained. Therefore, we believe that
our approach provides at least a comprehensive view of interneu-
ronal types, even if it does not claim to give an absolute and
definitive classification of them.

FROM DEVELOPMENT TO GRADED DIVERSITY
Neuronal phenotypes are largely determined by developmental
processes, which depend not only on the embryonic origin and
date of birth (Butt et al., 2005; Miyoshi et al., 2007) but also on
the signaling environment (Batista-Brito and Fishell, 2009) or the
ongoing network activity (Cossart, 2011).

Glutamatergic neurons have embryonic origins, dates of birth,
and migration patterns very different from that of interneurons
(Wonders and Anderson, 2006). They were the first archetype
to singularize and had no edge cell with the four well-defined
interneuron archetypes (Figures 2, 6). Similarly, the FS-PV and
the Adapting VIP archetypes exhibiting also clearly distinct
embryonic origins (Butt et al., 2005; Miyoshi et al., 2007; Lee
et al., 2010; Vucurovic et al., 2010) were the two first interneuron
archetypes to emerge and no edge cell could be found between
them. These observations suggest that neuronal archetypes that
are primarily specified by clearly distinct spatial and temporal ori-
gins generally display very different phenotypic traits (Wonders
and Anderson, 2006). Such multiple distinctive features result in
an early singularization and therefore in a limited number of edge
cells.

Neurons initially sharing similar origins progressively spec-
ify during development to form distinct neuronal classes. FS-PV
and Adapting SOM neurons, both derived from the medial gan-
glionic eminence (Wonders and Anderson, 2006; Miyoshi et al.,
2007), provide an example of such a developmental divergence.
The observation of edge cells between these archetypes could
speculatively reflect a vestige of their shared spatial embryonic
origin. Alternatively, since neurons were collected from juve-
nile rats (P19) the existence of edge cells between FS-PV and
Adapting SOM neurons (e.g., cell b) which exhibited a relatively
high input resistance could also correspond to maturating FS-PV
neurons. Indeed, these neurons progressively reduce their input
resistance by acquiring two-pore K+ leak conductances (Okaty
et al., 2009).

Conversely, neurons of distinct embryonic origins can also
converge to a similar functional class. Adapting NPY neurons pro-
vide such an example of developmental convergence. Although
they display common electrophysiological, molecular, and mor-
phological features (Povysheva et al., 2008; Gelman et al., 2009;
Karagiannis et al., 2009; Zaitsev et al., 2009; Lee et al., 2010) they
remarkably originate either from the medial or caudal ganglionic
eminences, or the preoptic area (Gelman et al., 2009; Tricoire
et al., 2010; Vucurovic et al., 2010).

FROM LOCAL CUES TO GRADED DIVERSITY
The overall converging phenotypic homogeneity of Adapting
NPY neurons is however mitigated by the differential expression
of NOS-1 (Cauli et al., 2004; Karagiannis et al., 2009; Kubota
et al., 2011; Perrenoud et al., 2012a), which in the hippocampus
(Tricoire et al., 2010; Jaglin et al., 2012), but not in the neocortex
(Magno et al., 2012), is dependent on the embryonic origins.

This hints at other potential determinants of graded diver-
sity. The density of cortical NOS-1 interneurons is enriched in
the vicinity of blood vessels (Cauli et al., 2004; Tricoire et al.,
2010; Perrenoud et al., 2013; Rockland and Nayyar, 2012). Given
the shared local cues governing neuritic branching and vascular
sprouting (Stubbs et al., 2009; Adams and Eichmann, 2010), it
is likely that the local vascular environment might also orientate
phenotypic traits.

More generally, an appealing hypothesis deserving future
investigation is that certain atypical traits could emerge as a phe-
notypic adaptation to context-dependent signaling. The acquisi-
tion of secondary functional specializations would contribute to
blur inter-archetype boundaries.

A RESERVOIR OF PHENOTYPES FOR FUNCTIONAL DEGENERACY
An important motivation underlying many studies of neuronal
diversity is to establish a correspondence between neuronal types
and their respective functions. Under this perspective, the diver-
sity of neuronal types would correspond tightly to the multiplicity
of possible functional specializations (Burkhalter, 2008). Such a
view is however oversimplified under many aspects.

First, relatively homogeneous groups of neurons can exert
multiple functions. For instance, the overall population of
Adapting NPY/neurogliaform neurons (Karagiannis et al., 2009;
Zaitsev et al., 2009) is responsible for slow GABAergic inhibi-
tion (Tamás et al., 2003; Szabadics et al., 2007; Oláh et al., 2009).
Since NPY and NO are respectively potent vasoconstrictor and
vasodilator of cortical blood vessels (Cauli et al., 2004; Cauli and
Hamel, 2010), the Adapting NPY archetype might also be spe-
cialized in a complex control of blood perfusion (Estrada and
DeFelipe, 1998).

Second, different neuronal populations can contribute and/or
cooperate to a same function. The neurovascular coupling is
indeed mediated by multiple vasoactive messengers produced by
different cell types (Attwell et al., 2010; Cauli and Hamel, 2010).
Several neuronal types, including NOS-1 and VIP-expressing
interneurons (Cauli et al., 2004; Perrenoud et al., 2013) as well
as COX-2 expressing pyramidal cells (Niwa et al., 2000; Wang
et al., 2005; Lecrux et al., 2011) are the primary sources of
these vasodilatory compounds. Such a partial functional overlap
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between different neuronal types confers robustness to the neu-
rovascular response (Leithner et al., 2010), essential for normal
brain functions (Iadecola, 2004).

Therefore, the will to maintain a one-to-one matching between
neuronal types and functions would ineluctably lead to the defi-
nition of a combinatorial number of neuronal types (Parra et al.,
1998).

The multiplicity of cell types devoted to the neurovascu-
lar response constitutes an example of functional degeneracy
(Edelman, 1987; Tononi et al., 1999), defined as the ability of
heterogeneous elements to perform the same function. Beyond
redundancy, occurring when a given function is achieved by repli-
cating homogeneous elements, degeneracy confers higher robust-
ness through adaptability. Indeed, heterogeneous elements can
react differently in different contexts providing a considerable
margin of safety over a wide spectrum of conditions.

A RESERVOIR OF PHENOTYPES FOR FUNCTIONAL COMPENSATION
Another interesting question raised by our systematic exploration
is how specific functions could be reliably achieved by networks
whose cellular components are heterogeneous in a structured and
graded manner.

A same circuit function can arise from very diverse com-
binations of neuronal properties and interaction mechanisms
(Prinz et al., 2004; Goaillard et al., 2009). Indeed, heterogeneity
of cellular properties does not necessarily translate to different

performance at the network level for at least two reasons: First,
many of these properties might be irrelevant for the function of
the network, and, in absence of specific constraints, they would
freely assume values over broad ranges. Second, even variations
of certain critical properties in a cell might be compensated by
covariations in other cells in the network. These two aspects
might contribute to the intra-archetype diversity emphasized
by our analysis. In addition, compensation between heteroge-
neous elements might provide a more flexible and robust solution
than optimization of individual elements to achieve network
functions (Marder and Goaillard, 2006). In this context the exis-
tence of a structured continuum of diversity might be viewed
as a prerequisite for the emergence of reliable operation at the
system level.
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