T. Walther, R. Farese, and . Jr, The life of lipid droplets, Biochimica et Biophysica Acta (BBA) - Molecular and Cell Biology of Lipids, vol.1791, issue.6, pp.459-466, 2008.
DOI : 10.1016/j.bbalip.2008.10.009

T. Fujimoto and R. Parton, Not Just Fat: The Structure and Function of the Lipid Droplet, Cold Spring Harbor Perspectives in Biology, vol.3, issue.3, 2011.
DOI : 10.1101/cshperspect.a004838

D. Murphy and J. Vance, Mechanisms of lipid-body formation, Trends in Biochemical Sciences, vol.24, issue.3, pp.109-115, 1999.
DOI : 10.1016/S0968-0004(98)01349-8

Y. Ohsaki, J. Cheng, M. Suzuki, Y. Shinohara, and A. Fujita, Biogenesis of cytoplasmic lipid droplets: From the lipid ester globule in the membrane to the visible structure, Biochimica et Biophysica Acta (BBA) - Molecular and Cell Biology of Lipids, vol.1791, issue.6, pp.399-407, 2009.
DOI : 10.1016/j.bbalip.2008.10.002

R. Lehner, J. Lian, and A. Quiroga, Lumenal Lipid Metabolism: Implications for Lipoprotein Assembly, Arteriosclerosis, Thrombosis, and Vascular Biology, vol.32, issue.5, pp.1087-1093, 2012.
DOI : 10.1161/ATVBAHA.111.241497

N. Abumrad and N. Davidson, Role of the Gut in Lipid Homeostasis, Physiological Reviews, vol.92, issue.3, pp.1061-1085, 2012.
DOI : 10.1152/physrev.00019.2011

G. Gibbons, K. Islam, and R. Pease, Mobilisation of triacylglycerol stores, Biochimica et Biophysica Acta (BBA) - Molecular and Cell Biology of Lipids, vol.1483, issue.1, pp.37-57, 2000.
DOI : 10.1016/S1388-1981(99)00182-1

S. Olofsson, P. Bostrom, L. Andersson, M. Rutberg, and J. Perman, Lipid droplets as dynamic organelles connecting storage and efflux of lipids, Biochimica et Biophysica Acta (BBA) - Molecular and Cell Biology of Lipids, vol.1791, issue.6, pp.448-458, 2009.
DOI : 10.1016/j.bbalip.2008.08.001

B. Hodges and C. Wu, Proteomic insights into an expanded cellular role for cytoplasmic lipid droplets, The Journal of Lipid Research, vol.51, issue.2, pp.262-273, 2010.
DOI : 10.1194/jlr.R003582

URL : http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2803228

J. Bouchoux, F. Beilstein, T. Pauquai, I. Guerrera, and D. Chateau, The proteome of cytosolic lipid droplets isolated from differentiated Caco-2/TC7 enterocytes reveals cell-specific characteristics, Biology of the Cell, vol.50, issue.11, pp.499-517, 2011.
DOI : 10.1042/BC20110024

H. Zhang, Y. Wang, J. Li, J. Yu, and J. Pu, Proteome of Skeletal Muscle Lipid Droplet Reveals Association with Mitochondria and Apolipoprotein A-I, Journal of Proteome Research, vol.10, issue.10, pp.4757-4768, 2011.
DOI : 10.1021/pr200553c

S. Larsson, S. Resjo, M. Gomez, P. James, and C. Holm, Characterization of the Lipid Droplet Proteome of a Clonal Insulin-producing ?-Cell Line (INS-1 832/13), Journal of Proteome Research, vol.11, issue.2, pp.1264-1273, 2012.
DOI : 10.1021/pr200957p

A. Kimmel, D. Brasaemle, M. Mcandrews-hill, C. Sztalryd, and C. Londos, Adoption of PERILIPIN as a unifying nomenclature for the mammalian PAT-family of intracellular lipid storage droplet proteins, The Journal of Lipid Research, vol.51, issue.3, pp.468-471, 2010.
DOI : 10.1194/jlr.R000034

N. Wolins, D. Brasaemle, and P. Bickel, A proposed model of fat packaging by exchangeable lipid droplet proteins, FEBS Letters, vol.276, issue.23, pp.5484-5491, 2006.
DOI : 10.1016/j.febslet.2006.08.040

D. Brasaemle and N. Wolins, Packaging of Fat: An Evolving Model of Lipid Droplet Assembly and Expansion, Journal of Biological Chemistry, vol.287, issue.4, pp.2273-2279, 2012.
DOI : 10.1074/jbc.R111.309088

J. Zehmer, Y. Huang, G. Peng, J. Pu, and R. Anderson, A role for lipid droplets in inter-membrane lipid traffic, PROTEOMICS, vol.6, issue.4, pp.914-921, 2009.
DOI : 10.1002/pmic.200800584

M. Robertson, M. Parkes, B. Warren, D. Ferguson, and K. Jackson, Mobilisation of enterocyte fat stores by oral glucose in humans, Gut, vol.52, issue.6, pp.834-839, 2003.
DOI : 10.1136/gut.52.6.834

J. Zhu, B. Lee, K. Buhman, and J. Cheng, A dynamic, cytoplasmic triacylglycerol pool in enterocytes revealed by ex vivo and in vivo coherent anti-Stokes Raman scattering imaging, The Journal of Lipid Research, vol.50, issue.6, pp.1080-1089, 2009.
DOI : 10.1194/jlr.M800555-JLR200

T. Pauquai, J. Bouchoux, D. Chateau, R. Vidal, and M. Rousset, Adaptation of enterocytic Caco-2 cells to glucose modulates triacylglycerol-rich lipoprotein secretion through triacylglycerol targeting into the endoplasmic reticulum lumen, Biochemical Journal, vol.395, issue.2, pp.393-403, 2006.
DOI : 10.1042/BJ20051359

D. Chateau, T. Pauquai, F. Delers, M. Rousset, and J. Chambaz, Lipid micelles stimulate the secretion of triglyceride-enriched apolipoprotein B48-containing lipoproteins by Caco-2 cells, Journal of Cellular Physiology, vol.152, issue.3, pp.767-776, 2005.
DOI : 10.1002/jcp.20173

R. Vidal, S. Hernandez-vallejo, T. Pauquai, O. Texier, and M. Rousset, Apple procyanidins decrease cholesterol esterification and lipoprotein secretion in Caco-2/TC7 enterocytes, The Journal of Lipid Research, vol.46, issue.2, pp.258-268, 2005.
DOI : 10.1194/jlr.M400209-JLR200

H. Duez, M. Pavlic, and G. Lewis, Mechanism of intestinal lipoprotein overproduction in insulin resistant humans, Atherosclerosis Supplements, vol.9, issue.2, pp.33-38, 2008.
DOI : 10.1016/j.atherosclerosissup.2008.05.013

K. Adeli and G. Lewis, Intestinal lipoprotein overproduction in insulin-resistant states, Current Opinion in Lipidology, vol.19, issue.3, pp.221-228, 2008.
DOI : 10.1097/MOL.0b013e3282ffaf82

J. Douglass, N. Malik, S. Chon, K. Wells, and Y. Zhou, Intestinal Mucosal Triacylglycerol Accumulation Secondary to Decreased Lipid Secretion in Obese and High Fat Fed Mice, Frontiers in Physiology, vol.3, p.25, 2012.
DOI : 10.3389/fphys.2012.00025

URL : http://doi.org/10.3389/fphys.2012.00025

A. Uchida, M. Whitsitt, T. Eustaquio, M. Slipchenko, and J. Leary, Reduced Triglyceride Secretion in Response to an Acute Dietary Fat Challenge in Obese Compared to Lean Mice, Frontiers in Physiology, vol.3, p.26, 2012.
DOI : 10.3389/fphys.2012.00026

J. Petit, M. Benichou, L. Duvillard, V. Jooste, and J. Bour, Hepatitis C virus-associated hypobetalipoproteinemia is correlated with plasma viral load, steatosis, and liver fibrosis, Am J Gastroenterol, vol.98, pp.1150-1154, 2003.
DOI : 10.1111/j.1572-0241.2003.07402.x

R. Bartenschlager, F. Penin, V. Lohmann, and P. Andre, Assembly of infectious hepatitis C virus particles, Trends in Microbiology, vol.19, issue.2, pp.95-103, 2011.
DOI : 10.1016/j.tim.2010.11.005

F. Ramalho, Hepatitis C virus infection and liver steatosis, Antiviral Research, vol.60, issue.2, pp.125-127, 2003.
DOI : 10.1016/j.antiviral.2003.08.007

G. Perlemuter, A. Sabile, P. Letteron, G. Vona, and A. Topilco, Hepatitis C virus core protein inhibits microsomal triglyceride transfer protein activity and very low density lipoprotein secretion: a model of viral-related steatosis, The FASEB Journal, vol.16, issue.2, pp.185-194, 2002.
DOI : 10.1096/fj.01-0396com

K. Moriya, H. Yotsuyanagi, Y. Shintani, H. Fujie, and K. Ishibashi, Hepatitis C virus core protein induces hepatic steatosis in transgenic mice., Journal of General Virology, vol.78, issue.7, pp.1527-1531, 1997.
DOI : 10.1099/0022-1317-78-7-1527

G. Barba, F. Harper, T. Harada, M. Kohara, and S. Goulinet, Hepatitis C virus core protein shows a cytoplasmic localization and associates to cellular lipid storage droplets, Proceedings of the National Academy of Sciences, vol.15, issue.8, pp.1200-1205, 1997.
DOI : 10.1089/jir.1995.15.705

URL : https://www.ncbi.nlm.nih.gov/pmc/articles/PMC19768/pdf

F. Negro, Hepatitis C Virus-Induced Steatosis: An Overview, Digestive Diseases, vol.28, issue.1, pp.294-299, 2010.
DOI : 10.1159/000282105

P. Targett-adams, D. Chambers, S. Gledhill, R. Hope, and J. Coy, Live Cell Analysis and Targeting of the Lipid Droplet-binding Adipocyte Differentiation-related Protein, Journal of Biological Chemistry, vol.278, issue.18, pp.15998-16007, 2003.
DOI : 10.1074/jbc.M211289200

L. Gall, M. Tobin, V. Stolarczyk, E. Dalet, V. Leturque et al., Sugar sensing by enterocytes combines polarity, membrane bound detectors and sugar metabolism, Journal of Cellular Physiology, vol.115, issue.3, pp.834-843, 2007.
DOI : 10.1002/jcp.21245

URL : https://hal.archives-ouvertes.fr/inserm-00170149

N. Pavio, S. Battaglia, D. Boucreux, B. Arnulf, and R. Sobesky, Hepatitis C virus core variants isolated from liver tumor but not from adjacent non-tumor tissue interact with Smad3 and inhibit the TGF-? pathway, Oncogene, vol.72, issue.40, pp.6119-6132, 2005.
DOI : 10.1023/A:1026475421668

D. Pasdeloup, D. Blondel, A. Isidro, and F. Rixon, Herpesvirus Capsid Association with the Nuclear Pore Complex and Viral DNA Release Involve the Nucleoporin CAN/Nup214 and the Capsid Protein pUL25, Journal of Virology, vol.83, issue.13, pp.6610-6623, 2009.
DOI : 10.1128/JVI.02655-08

I. Chantret, A. Rodolosse, A. Barbat, E. Dussaulx, and E. Brot-laroche, Differential expression of sucrase-isomaltase in clones isolated from early and late passages of the cell line Caco-2: evidence for glucose-dependent negative regulation, J Cell Sci, vol.107, pp.213-225, 1994.

R. Everett, S. Rechter, P. Papior, N. Tavalai, and T. Stamminger, PML Contributes to a Cellular Mechanism of Repression of Herpes Simplex Virus Type 1 Infection That Is Inactivated by ICP0, Journal of Virology, vol.80, issue.16, pp.7995-8005, 2006.
DOI : 10.1128/JVI.00734-06

J. Spandl, D. White, J. Peychl, and C. Thiele, Live Cell Multicolor Imaging of Lipid Droplets with a New Dye, LD540, Traffic, vol.118, issue.11, pp.1579-1584, 2009.
DOI : 10.1111/j.1600-0854.2009.00980.x

C. Blouin, L. Lay, S. Eberl, A. Kofeler, H. Guerrera et al., Lipid droplet analysis in caveolin-deficient adipocytes: alterations in surface phospholipid composition and maturation defects, The Journal of Lipid Research, vol.51, issue.5, pp.945-956, 2010.
DOI : 10.1194/jlr.M001016

URL : http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2853462

N. Khan, K. Sharma, S. Andersson, and R. Auchus, Human 17?-hydroxysteroid dehydrogenases types 1, 2, and 3 catalyze bi-directional equilibrium reactions, rather than unidirectional metabolism, in HEK-293 cells, HEK-293 cells, pp.50-59, 2004.
DOI : 10.1016/j.abb.2004.05.023

J. Mclauchlan, M. Lemberg, G. Hope, and B. Martoglio, Intramembrane proteolysis promotes trafficking of hepatitis C virus core protein to lipid droplets, The EMBO Journal, vol.21, issue.15, pp.3980-3988, 2002.
DOI : 10.1093/emboj/cdf414

G. Moeller and J. Adamski, Integrated view on 17beta-hydroxysteroid dehydrogenases, Molecular and Cellular Endocrinology, vol.301, issue.1-2, pp.7-19, 2009.
DOI : 10.1016/j.mce.2008.10.040

M. English, S. Hughes, K. Kane, M. Langman, and P. Stewart, Oestrogen inactivation in the colon: analysis of the expression and regulation of 17 ? -hydroxysteroid dehydrogenase isozymes in normal colon and colonic cancer, British Journal of Cancer, vol.83, issue.4, pp.550-558, 2000.
DOI : 10.1054/bjoc.2000.1324

T. Sano, G. Hirasawa, J. Takeyama, A. Darnel, and T. Suzuki, 17?-Hydroxysteroid dehydrogenase type 2 expression and enzyme activity in the human gastrointestinal tract, Clinical Science, vol.101, issue.5, pp.485-491, 2001.
DOI : 10.1042/cs1010485

D. Bellocq, J. Molina, E. Rathahao-paris, S. Tache, and F. Pierre, Metabolic bioactivation of oestradiol-17? (E2?) in mouse colon epithelial cells bearing ApcMin mutation, Steroids, vol.75, issue.10, pp.665-675, 2010.
DOI : 10.1016/j.steroids.2010.04.003

S. Boulant, M. Douglas, L. Moody, A. Budkowska, and P. Targett-adams, Hepatitis C Virus Core Protein Induces Lipid Droplet Redistribution in a Microtubule- and Dynein-Dependent Manner, Traffic, vol.278, issue.8, pp.1268-1282, 2008.
DOI : 10.1111/j.1600-0854.2008.00767.x

J. Goodman, Demonstrated and inferred metabolism associated with cytosolic lipid droplets, The Journal of Lipid Research, vol.50, issue.11, pp.2148-2156, 2009.
DOI : 10.1194/jlr.R001446

URL : http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2759820

H. Yao and J. Ye, Long Chain Acyl-CoA Synthetase 3-mediated Phosphatidylcholine Synthesis Is Required for Assembly of Very Low Density Lipoproteins in Human Hepatoma Huh7 Cells, Journal of Biological Chemistry, vol.283, issue.2, pp.849-854, 2008.
DOI : 10.1074/jbc.M706160200

E. Oikawa, H. Iijima, T. Suzuki, H. Sasano, and H. Sato, A Novel Acyl-CoA Synthetase, ACS5, Expressed in Intestinal Epithelial Cells and Proliferating Preadipocytes, Journal of Biochemistry, vol.124, issue.3, pp.679-685, 1998.
DOI : 10.1093/oxfordjournals.jbchem.a022165

N. Gassler, A. Schneider, J. Kopitz, M. Schnolzer, and N. Obermuller, Impaired expression of Acyl-CoA-synthetase 5 in epithelial tumors of the small intestine, Human Pathology, vol.34, issue.10, pp.1048-1052, 2003.
DOI : 10.1053/S0046-8177(03)00431-3

R. Bartz, W. Li, B. Venables, J. Zehmer, and M. Roth, Lipidomics reveals that adiposomes store ether lipids and mediate phospholipid traffic,, The Journal of Lipid Research, vol.48, issue.4, pp.837-847, 2007.
DOI : 10.1194/jlr.M600413-JLR200

Y. Horiguchi, M. Araki, and K. Motojima, Identification and characterization of the ER/lipid droplet-targeting sequence in 17?-hydroxysteroid dehydrogenase type 11, Archives of Biochemistry and Biophysics, vol.479, issue.2, pp.121-130, 2008.
DOI : 10.1016/j.abb.2008.08.020

L. Kaminsky and Q. Zhang, THE SMALL INTESTINE AS A XENOBIOTIC-METABOLIZING ORGAN, Drug Metabolism and Disposition, vol.31, issue.12, pp.1520-1525, 2003.
DOI : 10.1124/dmd.31.12.1520

C. Xu, X. Wang, and J. Staudinger, Regulation of Tissue-Specific Carboxylesterase Expression by Pregnane X Receptor and Constitutive Androstane Receptor, Drug Metabolism and Disposition, vol.37, issue.7, pp.1539-1547, 2009.
DOI : 10.1124/dmd.109.026989

URL : http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2698945

R. Bartz, J. Zehmer, M. Zhu, Y. Chen, and G. Serrero, Dynamic Activity of Lipid Droplets:? Protein Phosphorylation and GTP-Mediated Protein Translocation, Journal of Proteome Research, vol.6, issue.8, pp.3256-3265, 2007.
DOI : 10.1021/pr070158j

N. Wolins, B. Quaynor, J. Skinner, M. Schoenfish, and A. Tzekov, Adipophilin, and TIP47 package lipid in adipocytes, J Biol Chem, vol.280, pp.3-12, 2005.
DOI : 10.1074/jbc.m500978200

A. Bulankina, A. Deggerich, D. Wenzel, K. Mutenda, and J. Wittmann, TIP47 functions in the biogenesis of lipid droplets, The Journal of Cell Biology, vol.5, issue.4, pp.641-655, 2009.
DOI : 10.1074/jbc.M402264200

B. Lee, J. Zhu, N. Wolins, J. Cheng, and K. Buhman, Differential association of adipophilin and TIP47 proteins with cytoplasmic lipid droplets in mouse enterocytes during dietary fat absorption, Biochimica et Biophysica Acta (BBA) - Molecular and Cell Biology of Lipids, vol.1791, issue.12, pp.1173-1180, 2009.
DOI : 10.1016/j.bbalip.2009.08.002

L. Listenberger, A. Ostermeyer-fay, E. Goldberg, W. Brown, and D. Brown, Adipocyte differentiation-related protein reduces the lipid droplet association of adipose triglyceride lipase and slows triacylglycerol turnover, The Journal of Lipid Research, vol.48, issue.12, pp.2751-2761, 2007.
DOI : 10.1194/jlr.M700359-JLR200

C. Harris, E. Herker, R. Farese, . Jr, and M. Ott, Hepatitis C Virus Core Protein Decreases Lipid Droplet Turnover: A MECHANISM FOR CORE-INDUCED STEATOSIS, Journal of Biological Chemistry, vol.286, issue.49, pp.42615-42625, 2011.
DOI : 10.1074/jbc.M111.285148

URL : http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3234948

L. Wu, M. Einstein, W. Geissler, H. Chan, and K. Elliston, Expression cloning and characterization of human 17 beta-hydroxysteroid dehydrogenase type 2, a microsomal enzyme possessing 20 alpha-hydroxysteroid dehydrogenase activity, J Biol Chem, vol.268, pp.12964-12969, 1993.

T. Saloniemi, H. Jokela, L. Strauss, P. Pakarinen, and M. Poutanen, The diversity of sex steroid action: novel functions of hydroxysteroid (17?) dehydrogenases as revealed by genetically modified mouse models, Journal of Endocrinology, vol.212, issue.1, pp.27-40, 2012.
DOI : 10.1530/JOE-11-0315

M. Poutanen, Understanding the diversity of sex steroid action, Journal of Endocrinology, vol.212, issue.1, pp.1-2, 2012.
DOI : 10.1530/JOE-11-0414

M. Faulds, C. Zhao, K. Dahlman-wright, and J. Gustafsson, The diversity of sex steroid action: regulation of metabolism by estrogen signaling, Journal of Endocrinology, vol.212, issue.1, pp.3-12, 2012.
DOI : 10.1530/JOE-11-0044

X. Wang, G. Smith, B. Patterson, D. Reeds, and J. Kampelman, Testosterone increases the muscle protein synthesis rate but does not affect verylow-density lipoprotein metabolism in obese premenopausal women, 2012.

I. Agledahl, J. Hansen, and J. Svartberg, Postprandial triglyceride metabolism in elderly men with subnormal testosterone levels, Asian Journal of Andrology, vol.10, issue.4, pp.542-549, 2008.
DOI : 10.1111/j.1745-7262.2008.00387.x

URL : http://doi.org/10.1111/j.1745-7262.2008.00387.x

I. Agledahl, J. Hansen, and J. Svartberg, Impact of testosterone treatment on postprandial triglyceride metabolism in elderly men with subnormal testosterone levels, Scandinavian Journal of Clinical and Laboratory Investigation, vol.80, issue.1, pp.641-648, 2008.
DOI : 10.1080/13685530500048872

M. Pfaffl, I. Lange, and H. Meyer, The gastrointestinal tract as target of steroid hormone action: Quantification of steroid receptor mRNA expression (AR, ER?, ER? and PR) in 10 bovine gastrointestinal tract compartments by kinetic RT-PCR, The Journal of Steroid Biochemistry and Molecular Biology, vol.84, issue.2-3, pp.159-166, 2003.
DOI : 10.1016/S0960-0760(03)00025-6