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Abstract

In this work, we propose an semi-analytical micromechanical model to study the elasto-
plastic response of porous materials subjected to cyclic loading with isotropic and linear
kinematic hardening at finite strains. To this end, we use an approximate but numerically
efficient decoupled homogenization strategy between the elastic and plastic parts. The
resulting effective back stress in the porous solid, similar to the macroscopic stress and
plastic strain, has non-zero hydrostatic terms and depends on the porosity, the void shape
and orientation as a result of the homogenization process. Subsequently, a complete set
of equations is defined to describe the evolution of the microstructure, i.e., void volume
fraction (porosity), (ellipsoidal) void shape and orientation both in the elastic and the plastic
regimes. The model is then numerically implemented in a general purpose user-material
subroutine. Full field finite element simulations of multi-void periodic unit cells are used to
assess the predictions of the proposed model. The latter is found to be in good qualitative
and quantitative agreement with the finite element results for most of the loading types,
hardening parameters and porosities considered in this study, but is less accurate for very
small porosities. The combined analytical and numerical study shows that elasticity is an
important mechanism for porosity ratcheting in addition to strain hardening. Specifically,
in order to recover the main qualitative features of porosity ratcheting for all cyclic loads
considered in the present study, it is shown to be critical to take into account the evolution
of the microstructure not only during the plastic loading, as is the usual hypothesis, but
also during elastic loading. Finally, the effect of isotropic and linear kinematic hardening is
found to be highly non-monotonic and non-trivial upon porosity ratcheting for most cases
considered here.
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1. Introduction

A large number of studies has been devoted the last years to the modeling of elasto-
plastic porous materials. Most of those studies focused on monotonic loading conditions,
isotropic hardening of the matrix and subsequent ductile damage prediction. The number of
works on this topic are numerous and will not be referred to here. On the other hand very
few studies up to date have dealt with the cyclic response of such porous solids. Several of
the questions that arise when cyclic loading is applied are related to elasticity effects, the
presence of kinematic hardening, the use of small or finite strains to analyze the problem,
the amplitude of the overall stress/strain that is applied, the stress triaxiality and Lode
parameter or even anisotropy effects introduced by the void shape and orientation, void
shape and orientation effects and ultimately the number of cycles analyzed. Obviously all
these questions cannot be addressed in a single paper but are important to the study of
cyclic loading and fatigue of such materials.

Advances in imaging techniques (SEM and tomography) have clearly revealed the pres-
ence of voids in metals. Recently, Limodin et al. (2014), Dezecot et al. (2016) and Dahdah et
al. (2016) have obtained 3D tomographic images for aluminum alloys manufactured by lost-
foam-casting fabrication techniques. Voids of various sizes and shapes (spherical, ellipsoidal
but also non-canonical) were observed. The presence of initial voids as well as of secondary
porosity resulting from debonding and/or fracturing of second phase particles was found to
be critical for the fatigue life of such solids. The significance of voids has also been studied
in a different context by Charkaluk et al. (2014), where a probability density function using
a quantitative analysis of the microstructure of the material was used to characterize the
fatigue lifetime.

From the micromechanical point of view, early studies by Devaux et al. (1997); Brocks
and Steglich (2003); Besson and Guillemer-Neel (2003); Rabold and Kuna (2005) and Kondo
et al. (2003) have explored numerically and analytically the cyclic response of porous ma-
terials at small and moderate number of cycles with a main emphasis on axisymmetric
loading states at large strains. Their analysis has mainly focused on the prediction of poros-
ity ratcheting, which is a critical mechanism for fatigue fracture. In particular, in Devaux
et al. (1997), porosity ratcheting has been attributed to asymmetries between tension and
compression mainly due to hardening and elasticity. Besson and Guillemer-Neel (2003) has
proposed a rather complete model that takes into account isotropic and nonlinear kinematic
hardening in the matrix combined into a modified Gurson (1977) model. While his study
has revealed a striking effect of void growth and ratcheting when that model was used in
structural calculations, it was stated that the model itself predicts poorly the ratcheting
effect. Subsequent studies by Pirondi et al. (2006) and Hommel and Meschke (2010) have
attempted to further calibrate those models for porous materials in order to analyze exper-
imental axisymmetric specimens. This proved a difficult task and use of a large number of
additional parameters was required. Yield surface evolution of the cyclically loaded porous
material has been studied by Seifert and Schmidt (2009). Yet, those models have proven
insufficient to describe the low-cycle response of the experimental specimens, especially at
lower triaxialities. Moreover, micromechanical models of porous material with ellipsoidal
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voids have been proposed in literature particularly in the case of monotonic loading (see
for example Gologanu and Leblond (1993); Leblond and Gologanu (2008)). Two more re-
cent studies, the first purely numerical (Mbiakop et al., 2015a) and the second numerical
and analytical Lacroix et al. (2016) have contributed further to the understanding of the
macroscopic response of porous materials under cyclic loading.

Specifically, Mbiakop et al. (2015a) has carried out an extensive parametric study to
investigate the effects of stress triaxiality, Lode angle, initial void shapes, matrix elasticity
and isotropic (but much less kinematic) hardening upon the cyclic response of periodic
porous solids. Following, similar observations by Devaux et al. (1997) (see also Mbiakop et
al. (2015a)) show a significant effect of the isotropic hardening and the matrix elasticity on
the resulting porosity ratcheting (i.e., void growth with increase of the number of cycles).
Of equal importance to porosity ratcheting was also the stress triaxiality and the initial
void shape. A possible interpretation is that porosity ratcheting is mainly a combined
consequence of hardening and elasticity, which induce under finite strains an asymmetry in
the void shape and porosity evolution. In turn, a closer look to the deformation of the void
revealed a strong deviation from an ellipsoidal void shape (called ellipsoidicity deviation)
at large number of cycles and axisymmetric loading states. This last observation could put
into question the use of simplified homogenization and micromechanical models for porous
materials with ellipsoidal voids. Yet, as we will see in this work, these models, although being
approximate in terms of void shape description, can still provide qualitative and quantitative
tools to analyze complex loading paths such as cyclic loads. Finally, in a very recent study,
Lacroix et al. (2016) have analyzed in more detail the effect of elasticity and hardening in
a spherical porous shell under different triaxial states and reached similar conclusions. In
that work, based on an earlier model by Leblond et al. (1995), a first attempt to propose
an improved Gurson model via radial discretization of an underlying spherical microcell at
each material point was done.

In the present study, we use the linear comparison composite (LCC) homogenization
method of Ponte Castañeda (1991) (see also Michel and Suquet (1992)) to extend the MVAR
model of Danas and Aravas (2012) in the context of isotropic–linear kinematic hardening
and cyclic loads. The present model, which deals with general ellipsoidal void shapes and
orientations, uses a simplified decoupled homogenization strategy to separately deal with
the elastic and plastic homogenization and proposes a complete set of evolution laws for
the porosity, void shape and orientation during elastic and plastic loading, respectively. In
turn, isotropic hardening is taken into account in a heuristic manner at the very end of the
homogenization process, since such a procedure has been shown recently (Papadioti et al.,
2016) to provide sufficiently accurate results not only for the macroscopic stress - strain
response but also for the average strains in the inclusions.

It should be noted at this point that the decoupled homogenization strategy followed in
the present work can in practice introduce errors in cyclic loads. These errors tend to be
more important at large volume fractions of the inclusions or pores (Idiart and Lahellec,
2016) but they also tend to smear out at larger number of cycles. In the present study we
deal with moderate porosities (less than 10%) and the errors due to the decoupling strategy
are shown to be minor and negligible by comparison with the full field finite element results
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obtained in the present paper. In other cases, however, that these errors could be large,
the decoupling strategy should probably be used with caution. To amend this, recently,
Lahellec and Suquet (2007) proposed an incremental variational formulation for materials
with a hereditary behavior described by two potentials: a free energy and a dissipation
function. This method has been introduced mainly to deal with the coupled elasto-plastic
response of composites in an attempt to resolve the cyclic response of these materials (see
also recent work by Brassart et al. (2011)). Note that these more advanced methods use the
aforementioned or variants of the LCC estimates.

The aim of this paper is twofold. The first objective is to develop a homogenization model
for porous materials (denoted as MVARX model henceforth) subjected to cyclic loads, where
the elasticity contribution to the evolution of microstructure, the geometric anisotropy of
the microstructure (void shapes and orientations) and the matrix hardening (isotropic and
linear kinematic ones) can be simultaneously taken into account. The second objective is to
assess the proposed model with full field multi-void computations by comparing the stress
and porosity ratcheting response as a function of the number of cycles. More specifically, af-
ter a brief presentation of the microstructure (i.e. void geometry) and the matrix properties
in Section 2, the instantaneous effective response is obtained in Section 3 both in the elastic
and the plastic regime. Next, Section 4 discusses the microstructure evolution equations
and defines the elasto-plastic incremental modulus. The numerical implementation of the
present model into a user-material subroutine (UMAT) in Abaqus is discussed in Appendix
A. The MVARX model is then assessed in Section 5 by comparison with results for ten and
thirty cycles at finite strains obtained with the finite element method (FEM). Additional
parametric studies for different types of cyclic loads (with no compression and initial pre-
stress) are also carried using the MVARX model in Section 6 for up to hundred cycles. We
finally conclude the present work with section 7.

2. Void geometry and local matrix response

This section deals with the modeling of a porous elasto-plastic material comprising el-
lipsoidal voids. In order to carry out the homogenization problem in Section 3, we first
define the void geometry (i.e., microstructure) by introducing the relevant microstructural
variables and then describe the local constitutive response of the phases.

2.1. Description of microstructure

Let us consider a porous material whose microstructure is taken to be statistically uni-
form and described by a representative volume element (RVE) (see Fig.1), denoted Ω. It is
composed of the matrix Ω(1) and the void space Ω(2). Specifically, the matrix Ω(1) is sup-
posed to be made of an elastoplastic material with linear kinematic strain hardening, while
the void phase is in the form of ellipsoids uniformly distributed in the matrix. Note that the
voids Ω(2) change their volumes, shapes and orientations under finite deformations, which
leads to a deformation induced anisotropy. These variables are conveniently grouped by the
set

sα =
{
f, w1, w2,n

(1),n(2),n(3) = n(1) × n(2)
}
. (1)
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The above variables are detailed below.

• Porosity f = V (2)/V , where the total volume V = V (1) +V (2) compose the matrix V (1)

and the vacuous phase V (2).

• Two void aspect ratios w1 = a3/a1 and w2 = a2/a1, where 2ai, (i = 1, 2, 3) denote the
length of the principal axes of the representative ellipsoidal void (note that all voids
have the same aspect ratios in this study).

• The void orientation unit vectors n(i), (i = 1, 2, 3) defining the orthogonal basis re-
spectively coinciding with the principal axes of the representative ellipsoidal void (note
that all voids have the same orientation in this study).

Figure 1: Representative volume element (RVE)

2.2. Local response of the matrix

In order to simplify the homogenization process, we initially neglect the isotropic hard-
ening of the matrix phase which we will add in an ad-hoc manner at the final homogenized
model in Section 3 1. This approximation has already been shown to be sufficiently accu-
rate (Danas and Aravas, 2012; Cao et al., 2015; Papadioti et al., 2016). By contrast, linear
kinematic hardening is introduced by use of an energy term and needs to be homogenized.
The relevant variables needed for the matrix are thus the microscopic strain tensor ε, the
corresponding plastic one εp and a second order tensor α representing the linear kinematic
hardening variable.

Consequently, the Helmholtz free energy of the matrix material can be described by two
quadratic potentials (see for instance Chaboche and Jung (1998)), one for the elastic energy
and the other for the stored energy, i.e.,

W(εe,α) =
1

2
εe : Le : εe +

1

2
α : LX : α (2)

1As is the usual practice in such problems, we first homogenize the elastic part using small strains and
the viscoplastic part using a stress potential which can be related to an incremental strain-rate framework.
Then, the homogenized problem is extended to a finite strain framework in Section 3.3.
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Here, εe is the elastic strain tensor and Le the elastic modulus tensor of the matrix phase
which is the inverse of the elastic compliance tensor Me. They take the form

Le = M−1
e , Me =

1

2µe
K +

1

3κe
J (3)

where µe and κe are the elastic shear and bulk moduli of the matrix, respectively. Recall also
here the fourth order deviatoric projection tensor K or Kijkl = (δikδjl + δilδjk)/2 − δijδkl/3
and the hydrostatic projection tensor J or Jijkl = δijδkl/3, with δij being the Cartesian
components of the Kronecker delta.

In turn, the potential related to the kinematic hardening, is described here by an isotropic
fourth-order tensor LX named as the kinematic strain hardening modulus, such that

LX = M−1
X , MX =

1

2µX
K +

1

3κX
J with µX =

C

3
, κX 7→ ∞ (4)

in which C is the kinematic hardening parameter (Prager, 1949) (see also Chaboche and Jung
(1998); Chaboche (2008)). It is important to emphasize here that the kinematic hardening
bulk modulus κX 7→ ∞ due to the plastic incompressibility of matrix, but the limit must
be taken after the homogenization is carried out, otherwise the effect of the porous phase
will not be appropriately taken into account. α in Eq.(2) is the tensorial internal variable
descrbing kinematic hardening.

The constitutive law derived from Eq.(2) reads:

σ =
∂W
∂εe

= Le : εe, χ =
∂W
∂α

= LX : α (5)

where χ is the microscopic (local) back stress tensor, which is deviatoric due to the incom-
pressibility of the matrix.

Next, we describe the dissipative character of the rate-dependent plastic matrix phase
by a stress dissipation (viscoplastic) potential, which takes the form

U(σ − χ) =
d0 σ0

n+ 1

[
(σ − χ)eq

σ0

]n+1

, with (σ − χ)eq =

√
3

2
(s− χ) : (s− χ). (6)

Here, the scalars σ0 and d0 denote the flow stress of the matrix and a reference strain rate,
s is the deviator of the microscopic (local) stress tensor.

Note that the viscoplastic nonlinearity of the matrix phase is characterized by the creep
exponent n (i.e. strain-rate sensitivity parameter m = 1/n) and the homogenization model
discussed in Section 3 is one for a general viscoplastic response and for any value of n.
Nonetheless, the interest in this work is mainly on rate-independent plasticity, which implies
taking the limit of n 7→ ∞. This again will be considered after the homogenization procedure
is carried out. In the rate-independent limit n 7→ ∞, the stress potential in (6) becomes

U(σ − χ) =

{
0, if (σ − χ)eq/σ0 ≤ 1
∞, otherwise

(7)
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which is the indicator function of the plastic domain in the case of the linear kinematic
hardening yield condition (i.e. Prager model (Prager, 1949)) in the matrix, defined by

Φ(σ,χ) = (σ − χ)eq − σ0 ≤ 0. (8)

Using finally the yield condition (8), one obtains the constitutive laws for the corresponding
strain-rate measures by considering an associated flow-rule

ε̇p = λ̇
∂Φ

∂σ
, α̇ = −λ̇ ∂Φ

∂χ
⇒ ε̇p = α̇, (9)

where the (˙) denotes time derivative.

3. Instantaneous effective response - decoupled homogenization

The main objective of this section is the description of the decoupled linear/non-linear
homogenization procedure for the porous material described in Section 2. The effective
(macroscopic) elastic and plastic behavior of the porous material will be treated indepen-
dently at this level (see similar work in Aravas and Ponte Castañeda (2004) and Danas
and Aravas (2012)). The independent treatment is of course an assumption, as discussed
in detail by Lahellec and Suquet (2007), but as we will show later in the results section,
it is a sufficiently accurate one for low to moderate porosities considered here. By decou-
pling elastic and plastic regions (similar to numerous earlier studies, e.g. one of the earli-
est ones Aravas (1987)), one can treat the homogenization of the elastic problem and the
(visco)plastic problem separately. In the following, we first present briefly the homogeniza-
tion of the elastic problem in small strains. Then, we describe the nonlinear homogenization
of the (visco)plastic stress potential which can be related to a strain-rate (i.e., velocity gra-
dient) dissipation potential. Finally, we assemble the two decoupled parts in a finite-strain
framework by using objective co-rotational rates and microstructural spins. The numerical
implementation of the presented homogenization model is detailed in Appendix A.

3.1. Effective free energy at small strains

In this subsection, we describe the homogenization of the free energy in Eq.(2). As
mentioned before, we follow a decoupled strategy allowing to homogenize the two-potentials
in (2) separately, neglecting then the coupling between them. This approach simplifies
considerably the homogenization problem but of course introduces an error. Nevertheless,
as we will see in the results section, this error is relatively minor for low to moderate porosity
and is more present in the first cycle.

Consequently, the effective free energy reads

W̃ (Ee,A) =
1

2
Ee : L̃e : Ee +

1

2
A : L̃X : A, (10)

where Ee is the effective elastic strain tensor and A the macroscopic counterpart of α. The
effective elastic stiffness tensor, L̃e, and the secant linear kinematic hardening modulus, L̃X ,
respectively, become

L̃e = M̃−1
e , M̃e = Me +

f

1− fQ
−1
e , (11)
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and (for κX 7→ ∞)

L̃X = M̃−1
X , M̃X =

1

2µX
K +

f

1− fQ
−1
X . (12)

In these expressions, Qe and QX are fourth order “compressible” (due to the void phase)
microstructural tensors with both major and minor symmetries. They can be calculated
from the Eshelby tensor Se and SX , respectively (Eshelby, 1957; Mura, 1987) via

Qe(µe, κe, w1, w2,n
(1),n(3),n(2)) = Le : (I− Se) . (13)

and
QX(µX , κX , w1, w2,n

(1),n(2),n(3)) = lim
κX 7→∞

LX : (I− SX) (14)

Note again that the incompressibility limit κX 7→ ∞ needs to be evaluated after the multi-
plication of the LX with (I− SX).

The effective state law can be derived from the effective free energy (10), where Σ is the
macroscopic stress tensor and X is the macroscopic back stress tensor:

Σ =
∂W̃

∂Ee

= L̃e : Ee, X =
∂W̃

∂A
= L̃X : A (15)

It should be emphasized here that the effective back stress tensor X has a nonzero com-
pressible part since LX is compressible.

3.2. Effective (visco)plastic potential

The effective (visco)plastic stress potential of the porous material is formally defined by

Ũ(Σ, sα) = min
σ∈S(σ)

∫

Ω

U(σ) dV = (1− f) min
σ∈S(σ)

∫

Ω(1)

U (1)(σ) dV (16)

where S(σ) represents the set of statically admissible stress field, i.e.,

S(σ) = {σ : div σ = 0 in Ω, σ = 0 in Ω(2), σ · n = 0 on ∂Ω(2)}. (17)

Following the work of Mbiakop et al. (2015b), which is based on the original method
of Ponte Castañeda (1991), we introduce the approximate estimates for the effective stress
potential

Ũ(Σ−X, sα) ' stat
µp

{
ŨL(Σ−X, µp)− (1− f) stat

σ̂−χ

[
UL(σ̂ − χ, µp)− U(σ̂ − χ)

]}
(18)

where ŨL denotes the effective stress potential of a LCC and UL describes the quadratic
effective stress potential of the matrix in the LCC. In the present case, those read

UL(σ − χ, µp) =
1

6µp
(σ − χ)2

eq, (19)
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ŨL(Σ−X, µp) =
1

2
(Σ−X) : M̃p(µp) : (Σ−X). (20)

An improved expression of the effective plastic compliance tensor M̂p for the linear compar-
ison porous material (see Danas and Aravas (2012)) takes the form

M̃p = M̃var
p + (q2

J − 1)J : M̃var
p : J, (21)

with

M̃var
p =

3

2µp
K +

3f

(1− f)µp
Q̂−1
p , qJ =

1− f√
f ln (1/f)

. (22)

Readers are referred to the appendix of Cao et al. (2015) who provides explicit expressions

for the evaluation of the tensor of Q̂p. Following Danas and Aravas (2012)), it is easily shown

that M̃p is proportional to µ−1
p . Therefore, by introducing a fourth order tensor which is

homogeneous of degree zero in µp, e.g.,

M̂p = µpM̃p =
3

2
K +

3f

(1− f)
Q̂−1
p + (q2

J − 1)
3f

(1− f)
J : Q̂−1

p : J, (23)

the optimization with respect to µp in (18) is straightforward.
More specifically, inserting (19) and (20) into (18), and considering (6), one obtains

Ũ(Σ−X, sα) ' stat
µp

[
1

2µp
(Σ−X) : M̂p : (Σ−X)

+(1− f) stat
σ̂−χ


 d0 σ0

n+ 1

(
(σ̂ − χ)eq

σ0

)n+1

− 1

6µ
(σ̂ − χ)2

eq




 .

(24)

The first optimization operation in (24) with respect to σ̂ −X results in

d0

(
(σ̂ − χ)eq

σ0

)n−1

=
σ0

3µp
. (25)

Substitution of the above optimized expression (25) in (24) and optimization with respect
to µp gives the optimized plastic modulus of the LCC as

µp =
σn0
3d0

[
1− f

3(Σ−X) : M̂p : (Σ−X)

]n−1
2

(26)

with M̂p being derived in equation (23).
Finally, substitution of the above result in (24) leads to the final expression, called here

MVARX (modified variational with linear kinematic hardening) model,

Ũ(Σ−X, sα) = (1− f)
d0 σy(ε̄

p)

n+ 1

[
3(Σ−X) : M̂p : (Σ−X)

(1− f)σ2
y(ε̄

p)

]n+1
2

. (27)
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In this expression, we have heuristically replaced σ0 with σy(ε̄
p) to allow for a general

isotropic hardening, as ε̄p denotes the accumulated (creep) plastic strain in the matrix
phase. This is done approximately here since the homogenization process was carried out
for a matrix with no isotropic hardening. Nonetheless, in numerous recent studies (see
for instance Cao et al. (2015) and Papadioti et al. (2016)), this approximation was shown
to deliver very accurate results and thus is used here as well. In the present study, the
instantaneous yield stress σy of the matrix phase is expressed in terms of the initial yield
stress σ0, the initial yield strain ε0 of the matrix material and the isotropic hardening
exponent N , as

σy = σ0

(
1 +

ε̄p

ε0

)1/N

, ε0 =
σ0

E
. (28)

Any other isotropic hardening law for the matrix could be used without incurring any changes
in the homogenized model .

Next, in order to obtain a yield criterion in the rate independent limit, it suffices to
consider the limit n 7→ ∞ in (27). This readily leads to the effective yield condition for the
porous material

Φ̃(Σ−X, sα) =
3(Σ−X) : M̂p : (Σ−X)

1− f − σ2
y(ε̄

p) = 0. (29)

3.3. Extension to finite strains

In this section, we extend the previous set of equations in the context of finite strains
and objective co-rotational stress rates. The macroscopic strain-rate tensor D of the ho-
mogenized porous material are classically assumed to be the sum of the elastic part De and
the plastic one Dp so that

D = De +Dp. (30)

Next, by refering to the effective elastic energy (10), we assume the effective hypoelastic
response Aravas and Ponte Castañeda (2004)

De = M̃e :
◦
Σ, with

◦
Σ = Σ̇− ω ·Σ + Σ · ω, (31)

and similarly

◦
X = L̃X : Ȧ = L̃X : Dp, with

◦
X = Ẋ − ω ·X +X · ω, (32)

where we will show later in Eq.(33) that Ȧ = Dp. The effective back stressX has a non-zero
hydrostatic part and depends on the porosity, void shape and orientation as a consequence of
the compressible L̃X tensor. This is of course due to the homogenization of the corresponding
potential energy for the kinematic hardening in equation (10). In the last two expressions,
the superscript (◦) denotes rates that are co-rotational with the microstructure (i.e., void
anisotropy), which is measured by the so-called microscopic spin of the voids ω (or the
microstructural spin which is a skew symmetric second order tensor) (Aravas and Ponte
Castañeda, 2004) to be defined formally in the following section.

10
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Finally, since the matrix obeys an associated plastic flow rule, the homogenized porous
material does too (Rice, 1971) in the plastic regime. As a result, the effective plastic strain-
rate and effective hardening variable A (conjugate measure to the effective back stress X)
are simply

Dp = Λ̇
∂Φ̃

∂Σ
= Λ̇N , Ȧ = −Λ̇

∂Φ̃

∂X
= Dp (33)

Dp = Ȧ is a direct consequence of the dependency of the effective stress potential on Σ−X.

4. Microstructure evolution

In this section, we write down the evolution laws for all the microstructural variables
described in the context of relation (1) (see Fig.1). Those include the porosity f , the shape of
the voids, described by the two aspect ratios w1 and w2, and the orientation of the principal
axes of the representative ellipsoidal void n(i) (with n = 1, 2, 3). Moreover, as it will become
apparent in the results sections, we provide evolution equations for the above-mentioned
variables not only during plastic loading as is the usual practice in porous solids but also
during elastic loading. Since the strategy followed in this work is to decouple the elastic and
plastic homogenization problems, it is natural that the same procedure may be used in the
context of microstructure evolution. In other words, the microstructural variables sα evolve
in the elastic regime due to the purely elastic strains and in the plastic regime due to the
plastic strains. Henceforth, all subscripts “e” refer to elastic quantities and “p” to plastic
quantities, respectively.

4.1. Evolution laws in elastic regime

In this section, we provide all the necessary quantities needed to evaluate the evolution
of the void microstructure in the context of linear elasticity. In this regard, the estimation
of the phase average elastic strain-rate fields, D

(1)
e in the matrix phase and D

(2)
e in the void

phase, are given in terms of the strain-rate concentration tensors by (Hill, 1963; Laws, 1973;
Willis, 1981)

D(1)
e = A(1)

e : De, D(2)
e = A(2)

e : De, (1− f)D(1)
e + fD(2)

e = De (34)

where the strain rate concentration tensor (or the localization tensor) denoted as A(r)
e (r =

1, 2) read

A(1)
e =

1

1− fMe : L̃e, A(2)
e =

1

f

[
I−Me : L̃e

]
, (1− f)A(1)

e + fA(2)
e = I. (35)

Here, Me and L̃e are given by Eqs. (3) and (12), respectively. Note also that A(r)
e (r = 1, 2)

are fourth-order tensors that exhibit minor symmetry (but not necessarily major symmetry).
Corresponding expressions have been introduced by Ponte Castañeda (1997) (see also

Kailasam and Ponte Castañeda (1998)) for the evaluation of the average spin tensors in the
vacuous phase, such that

W (2)
e = We − Ce : De, Ce = −(1− f)Te : A(2)

e , (36)
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where Te is the fourth order Eshelby rotation tensor2 depending on the aspect ratios w1,
w2 and the orientation vectors n(1), n(2), n(3), Ce is skew-symmetric in the first two indices
and symmetric in the last two ones, and We is the macroscopic elastic spin tensor.

Following the definition of the elastic concentration tensors A(2)
e and Ce, the elastic

contribution to the microstructure evolution, ṡα, becomes:

• for the porosity evolution

ḟe = f
[
tr(D(2)

e )− tr(De)
]
. (37)

• for the two void aspect ratios evolution,

˙(we)1 = (we)1

(
n(3)
e ⊗ n(3)

e − n(1)
e ⊗ n(1)

e

)
: A(2)

e : De

˙(we)2 = (we)2

(
n(3)
e ⊗ n(3)

e − n(2)
e ⊗ n(2)

e

)
: A(2)

e : De

(38)

• for the void orientation unit vectors,

ṅ(i)
e = ωe · n(i)

e , i = 1, 2, 3, (39)

where ωe is the elastic part of the microstructural spin tensor, which is skew-symmetric
and reads

ωe =We − [Ce : De−
1

2

3∑

i,j=1, i6=j

(we)
2
i + (we)

2
j

(we)
2
i − (we)

2
j

[(
n(i)
e ⊗ n(j)

e + n(j)
e ⊗ n(i)

e

)
: A(2)

e : De

]
(n(i)

e ⊗ n(j)
e )

]
.

(40)

In the same line of thought with the plastic spin (Dafalias, 1985), one could introduce the
“elastic spin” W E

e = We − ωe, which is used to defined the spin of the continuum relative
to the microstructure when the porous material is under elastic loading. One has then

W E
e = Ce : De−

1

2

3∑

i,j=1, i6=j

(we)
2
i + (we)

2
j

(we)
2
i − (we)

2
j

[(
n(i)
e ⊗ n(j)

e + n(j)
e ⊗ n(i)

e

)
: A(2)

e : De

]
(n(i)

e ⊗n(j)
e ).

(41)

4.2. Evolution laws in the plastic regime

A brief review of the plasticity contribution to the microstructure evolution is given
in this section. Following the work of Ponte Castañeda and Zaidman (1994) and Ponte
Castañeda and Suquet (1998) (see also Aravas and Ponte Castañeda (2004)), we first define

2The tensor Te can be found in Mura (1987) or in the appendix of Aravas and Ponte Castañeda (2004)
denoted with the symbol Π.
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the evolution of the accumulated plastic strain ε̄p which is used to describe the isotropic
hardening in the matrix phase (see Eq.(29)). Specifically, one can obtain the evolution law
for ε̄p by setting the macroscopic plastic work equal to the microscopic one, such that

(Σ−X) : Dp = (1− f)σy(ε̄
p) ˙̄εp. (42)

Considering the macroscopic flow rule (33), one has then

˙̄εp = Λ̇
(Σ−X) : N

(1− f)σy(ε̄p)
= Λ̇ g1(Σ−X, sα) (43)

where N denotes the direction of the plastic flow and has been defined in (33) while g1 is a
homogeneous function of degree zero in Λ̇.

Next, the plastic strain rate and plastic spin concentration tensors take the following
form (Danas and Aravas, 2012)

A(1)
p =

3

2(1− f)
K : M̂−1

p , A(2)
p =

1

f

[
I− 3

2
K : M̂−1

p

]
, Cp = −(1− f)Tp : A(2)

p (44)

where M̂p has been defined by equations (21), (22) and (23), while the plastic Eshelby
rotation tensor Tp is given in Aravas and Ponte Castañeda (2004) or Cao et al. (2015)
(denoted with the symbol Π in those references).

The microstructure evolution laws are then given as follows:

• Porosity. Taking into account matrix incompressibility during plastic loading, the
corresponding evolution law for the porosity is obtained from the kinematic relations

ḟp = αf (1− f) tr(Dp) = Λ̇αp(1− f)tr(N ) = Λ̇ g2(Σ−X, sα) (45)

where g2 is a scalar homogeneous function of degree zero in Λ̇ and αf (f0) is a calibration
function of the initial porosity f0 introduced to enhance the accuracy of the initial
porosity effect on the void growth. In the present work, we use

αf (f0) = af 2
0 + bf0 + c,

with a = 42.80, b = −2.69 and c = 1.04, which are obtained from the least squares
method by considering the FEM computations carried out in this work.3

• Aspect ratios. The plastic contribution to the evolution of the aspect ratios of the
ellipsoidal voids is defined by

˙(wp)1 = αw(wp)1

(
n(3)
p ⊗ n(3)

p − n(1)
p ⊗ n(1)

p

)
: A(2)

p : Dp = Λ̇ g3(Σ−X, sα)

˙(wp)2 = αw(wp)2

(
n(3)
p ⊗ n(3)

p − n(2)
p ⊗ n(2)

p

)
: A(2)

p : Dp = Λ̇ g4(Σ−X, sα)
(46)

3It should be noted here that from a practical and engineering point of view, αf could also be calibrated
from direct experimental measurements but this is not further pursued here.
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g3 and g4 are scalar homogeneous functions of degree zero in Λ̇ while the scalar factor
αw = 1.75 has been introduced similar to the original MVAR model (Danas and
Aravas, 2012) to improve the corresponding prediction of the void shape evolution,
but could be seen more generally as a calibration parameter.

• Void orientation vectors. The evolution of the orientation vectors due to plastic strains
reads

ṅ(i)
p = ωp · n(i)

p , i = 1, 2, 3 (47)

with

ωp =Wp − Λ̇ [Cp : N

−1

2

3∑

i,j=1, i6=j

(wp)
2
i + (wp)

2
j

(wp)
2
i − (wp)

2
j

[(
n(i)
p ⊗ n(j)

p + n(j)
p ⊗ n(i)

p

)
: A(2)

p : N
]
n(i)
p ⊗ n(j)

p

]

(48)

Using further the well known definition of the “plastic spin” (Dafalias, 1985) as W P
p =

Wp − ωp = Λ̇ΩP , one can rewrite equation (48) as

ΩP = Cp : N−1

2

3∑

i,j=1, i6=j

(wp)
2
i + (wp)

2
j

(wp)
2
i − (wp)

2
j

[(
n(i)
p ⊗ n(j)

p + n(j)
p ⊗ n(i)

p

)
: A(2)

p : N
]
n(i)
p ⊗n(j)

p

(49)
Note that W P

p describes the spin of the continuum relative to the microstructure
when the porous material is under purely plastic loading. Alternative expressions that
describe the evolution of the void aspect ratios and the orientation vectors, that are
not singular for spherical or spheroidal void shapes, have been recently proposed by
Madou et al. (2013) and could be used readily used in the present model.

4.3. Elasto-plastic Jacobian

In order to implement numerically the present constitutive model, it is useful to evaluate
at this point the elasto-plastic Jacobian, denoted by Lep. Using Jaumann objective measures,
the general form of the macroscopic constitutive law can be written as (Aravas and Ponte
Castañeda, 2004)

O
Σ = Lep : D. (50)

The Jaumann rates
O
Σ and

O
X can also be obtained from the co-rotational Cauchy stress

rate tensor
◦
Σ and back stress tensor

◦
X as a function of the plastic spin W P

p , i.e.,

O
Σ =

◦
Σ + Σ ·W P

p −W P
p ·Σ,

O
X =

◦
X +X ·W P

p −W P
p ·X (51)

while, using equation (31), the Cauchy stress co-rotational with the microstructure can be
written as ◦

Σ = L̃e : (D −Dp) = L̃e : D − Λ̇L̃e : N . (52)
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In this last equation, the plastic multiplier Λ̇ can be calculated from the consistency condition
Φ̇ = 0, as

˙̃
Φ =

∂Φ̃

∂Σ
:
◦
Σ +

∂Φ̃

∂X
:
◦
X +

∂Φ̃

∂ε̄p
˙̄εp +

∂Φ̃

∂sα
· ◦sα = 0, (53)

where sα denotes the set of the microstructural variables defined in (1) and by use of (47),

one readily gets
◦
n

(i)
= 0. It is recalled that the co-rotational back stress rate has been

defined in equation (32).

Remark: For completeness, the Jaumann rates of the microstructural variables
O
sα are

given as follows (see also (Aravas and Ponte Castañeda, 2004))

O
sα =

{
O
f = ḟ ,

O
w1 = ẇ1,

O
w2 = ẇ2,

O
n

(i)

= −Λ̇ΩPn(i)

}

As a result, taking into account (33), the consistency condition (53) can be recast into

N : (
◦
Σ−

◦
X) +

∂Φ̃

∂ε̄p
˙̄εp +

∂Φ̃

∂f
ḟ +

∂Φ̃

∂w1

ẇ1 +
∂Φ̃

∂w2

ẇ2 = 0. (54)

Recall at this point that ε̇
p

= Λ̇g1, ḟp = Λ̇g2, ẇp1 = Λ̇g3 and ẇp2 = Λ̇g4 (see also Eqs.(45) -
(46)). Then, by introducing

H = −
(
∂Φ̃

∂εp
g1 +

∂Φ̃

∂f
g2 +

∂Φ̃

∂w1

g3 +
∂Φ̃

∂w2

g4

)
(55)

equation (54) becomes

N : (
◦
Σ−

◦
X)− Λ̇H = 0. (56)

Next, inserting (32) and (51) into equation (56), one has

N : L̃e : D − Λ̇ ·N : L̃e : N − Λ̇ ·N : L̃X : N − Λ̇ ·H = 0, (57)

and the plastic multiplier can be readily obtained as

Λ̇ =
N : L̃e : D

L
, L = N : L̃e : N +N : L̃X : N +H. (58)

Combining (51), (52) and (58), the Jaumann rate of the stress tensor can be explicitly
expressed as

O
Σ =

[
L̃e −

(L̃e : N )⊗ (N : L̃e)
L

+
N : L̃e
L

⊗ (Σ ·ΩP −ΩP ·Σ)

]
: D (59)

from which we obtain the elasto-plastic Jacobian

Lep = L̃e −
(L̃e : N )⊗N : (L̃e)

L
+
N : L̃e
L

⊗ (Σ ·ΩP −ΩP ·Σ) (60)
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This last expression has the same structure as the corresponding one in Aravas and Ponte
Castañeda (2004) with the only difference lying in the expression of L defined in equation

(58), which is augmented with the linear kinematic hardening modulus L̃X and the fact that
the normal N = N (Σ −X). The numerical implementation of the model is described in
Appendix A.

5. Assessment of the MVARX model with FEM simulations

In this section, the predictions of the MVARX model are assessed by comparison to
FEM simulations for cyclic loadings and finite strains. To this end, the MVARX model is
implemented in a user-defined material subroutine (UMAT) in ABAQUS/Standard software.
The homogenized elasto-plastic constitutive equations are integrated at each Gauss point of
a single cubic 8-node element, which serves immediately as a representative volume element.
Note that the isotropic and kinematic hardening are fully characterized by the hardening
exponent N and hardening modulus C (see equations (6) and (4)), as well as the Young’s
modulus E of the matrix phase.

In turn, for the FEM simulations, we use periodic unit cells comprising uniformly dis-
tributed voids. This is achieved by use of an Random Sequential Adsorption (RSA) al-
gorithm as described in Lopez-Pamies et al. (2013). In Fig.2, we show three different re-
alizations comprising 30 monodisperse voids with a total initial porosity f0 = 5%4. The
comparison between the MVARX model and the FEM is done for the average macroscopic
stress and porosity.

4It should be pointed out here that the MVARX estimations and FEM computations are realized by
considering the porous material only with initial spherical voids but of course allow for void shape evolution
during the deformation process. The initial void shape effects have been shown to have a significant effect
on the cyclic response (Mbiakop et al., 2015a) but in the present study we choose to focus on the rest of the
parameters of the problem and concentrate the study on porosity ratcheting only.
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(a) (b) (c)

Figure 2: Geometries and meshes of three different realizations comprising 30 voids with a total initial
porosity f0 = 5%.

Specifically, in this section, we consider a uniaxial tension/compression cyclic loading,
as shown schematically in Fig.3. In each step of each cycle, we control the average nominal
strain E22 = U2/L in the unit-cell (U2 is the axial applied displacement and L the initial
side length of the RVE cube), which initially increases from E22 = 0 to E22 = 0.05 (the later
corresponds to the maximal imposed displacement Umax), then unloads from E22 = 0.05
to E22 = 0, next reversely loads from E22 = 0 to E22 = −0.05 and finally unloads from
E22 = −0.05 to E22 = 0. The number of cycles is denoted as Nr. In addition, the matrix
material has a Young modulus E/σ0 = 300, a Poisson ratio ν = 0.3 and an initial porosity
f0 = 0.05, unless otherwise stated.

More specifically, section 5.1 investigates first the detailed response of MVARX in the case
of two cycles. As expected, the influence of the matrix hardening on the effective constitutive
relation Σ22 − E22 and on the porosity evolution are clearly illustrated and validated. This
effect is also discussed in section 5.2 in the case of 10 cycles. In the remaining sections
5.3 to 5.4 we study the effect of the Young modulus of the matrix material, the matrix
elasticity contribution and the initial porosity f0 upon the effective cyclic response of the
porous material.
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Figure 3: Schematic explanation of the uniaxial “traction-compression” cyclic loading

5.1. Detailed response for 2 cycles

In Fig.4, we show comparisons between the MVARX model and the FEM for combined
isotropic and kinematic hardening with N = 10 and C/σ0 = 10 for two complete cycles. In
Fig.4(a), we observe that the agreement between the MVARX predictions and the numerical
results for the effective stress-strain response Σ22 − E22 is very good for the entire loading
history. The effects of the isotropic and kinematic hardening are well predicted in the
present case. A slight difference is observed in the inset of that figure exactly at the elasto-
plastic transition. This difference, as already mentioned above, is due to the decoupled
homogenization strategy used in section 3. This difference is of course minor and thus
justifies to keep the present approximation. In turn, Fig.4(b) shows the evolution of porosity
f as a function of the nominal axial strain E22. The MVARX model tends to overestimate
the porosity evolution as already observed in previous studies (see for instance Cao et al.
(2015)) but qualitatively captures the increase of porosity at the second cycle. For that, one
only needs to follow the value of porosity at E22 = 0.05 after one and two cycles. Both the
MVARX and the FEM predict porosity ratcheting (see relevant numerical results of Mbiakop
et al. (2015a)), which is a highly non-trivial qualitative feature of the model. In the following
parts of this section, we switch to plots for larger numbers of cycles Nr = 10 or 30 in order
to assess mainly the qualitative performance of the model with respect to the FEM results.
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Figure 4: Comparison of MVARX model predictions to FEM computations in 2 cycles loadings. (a): effective
constitutive response: Σ22 − E22. (b): porosity evolution f − E22
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5.2. Relative effect of isotropic and kinematic hardening of the matrix

In this section, we investigate the relative effect of the two types of hardening by showing
collective results for Nr = 10 cycles. Note here that from now on, only the macroscopic state
at the maximum strain Umax/L of each cycle will be considered both for the macroscopic
uniaxial stress evolution with respect to the number of cycles Σ22 − Nr and the porosity
ratcheting f − Nr. More specifically, we first switch off isotropic hardening by setting
N = ∞ and vary C/σ0 = 0, 1, 10. In both Fig.5(a) and 5(b), the MVARX predictions
for the macroscopic uniaxial stress response and the porosity evolution are in very good
qualitative agreement with the FEM results for this number of cycles. In particular, we
observe a slight decrease of the stress with increasing Nr, which is a direct consequence of
porosity ratcheting (i.e., porosity increase) as a function of Nr (see Fig.5(b)). In turn, for
the porosity evolution, we observe that the MVARX model initially overestimates f but, in
turn, the porosity ratcheting slope (i.e., the porosity rate of increase with the number of
cycles) is in very good quantitative agreement with the FEM results. Both, the MVARX
and the FEM, predict porosity ratcheting, i.e., porosity increase with the number of cycles
Nr. Again the initial difference in the porosity prediction at cycle 1 is due to the quadratic
character of the MVARX criterion, which tends to overestimate void growth in uniaxial
tension loads (as discussed in Fig.3b of Cao et al. (2015)). This can be amended in future
studies by use of “cosh” term following a similar procedure with that discussed in Cao et
al. (2015) and Mbiakop et al. (2015b).

A second very interesting result, obtained by both the MVARX and the FEM, is that
for C/σ0 = 10, porosity ratcheting is weaker than for C/σ0 = 0 or C/σ0 = 1. This implies
that significant kinematic hardening could decelerate porosity ratcheting in certain cases.
Similar observations were done in the numerical study of Mbiakop et al. (2015a), albeit
for a nonlinear kinematic hardening matrix. In Section 6, we carry out a more complete
parametric study using the MVARX model to investigate further this effect and we will see
that the combined effect between C/σ0 and N is highly non-trivial and non-monotonic.
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Figure 5: MVARX prediction and validation with FEM computations of the matrix kinematic hardening
effect in 10 cycles loadings. (a): effective uniaxial stress variation: Σ22−Nr. (b): porosity evolution f −Nr

Next, in Fig.6, we switch off the kinematic hardening effect by setting C/σ0 = 0 and
vary N = ∞, 10. A striking observation from this figure is that even in the absence of
both isotropic and kinematic hardening, i.e, for N = ∞ and C/σ0 = 0, we observe a
significant porosity ratcheting for both the MVARX model and the FEM results. This
clearly shows that elasticity effects are predominant and cannot be neglected. In fact, it
appears that under cyclic loading elasticity is the main mechanism for porosity ratcheting,
while hardening seems to slightly affect the porosity ratcheting slopes and its amplitude,
in this case. The effect of the matrix elasticity will be specifically studied in section 5.3.
Again, the MVARX model is in very good qualitative agreement with the FEM results for
both the stress and porosity evolution as a function of the number of cycles. Specifically,
in Fig.6(a), the MVARX model is in excellent agreement with the FEM for the prediction
of the stress as a function of number of cycles Nr, where we observe a significant increase
of the stress due to the isotropic hardening exponent and subsequent saturation at larger
number of cycles, as expected. Similar to the previous case discussed, in Fig.6(b), we have
porosity ratcheting and, while MVARX overestimates the actual porosity ratcheting (for the
same reasons discussed previously in Fig.5), it does on the other hand capture sufficiently
well the porosity evolution rate of increase as well as the effect on the hardening exponent
N . In fact, in this case, we observe that both MVARX and the FEM give lower porosity
ratcheting for N = 10 than for N = ∞. It should be noted that the present observations
are valid for the number of cycles and types of loadings considered and could of course lead
to different conclusions if other triaxialities and Lode angles or general loading states are
considered (see for instance Mbiakop et al. (2015a)).
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Figure 6: MVARX prediction and validation with FEM computations of the matrix isotropic hardening
effect in 10 cycles loadings. (a): effective uniaxial stress variation: Σ22−Nr. (b): porosity evolution f −Nr

5.3. Effect of the matrix elasticity

In this section, we investigate the relative effect of the matrix Young’s modulus E upon
the stress and porosity evolution as a function of the number of cycles Nr. We thus first
consider two values for the Young modulus, E/σ0 = 300, 1000 without matrix hardening
(i.e. N =∞ and C/σ0 = 0). In Fig.7(a), we observe that the stress Σ22 is well predicted by
the MVARX model when compared with the FEM. The uniaxial yield stresses Σ22 (obtained
at U2 = Umax of each cycle) is unaffected by the Young’s modulus as a consequence of the
perfect plasticity considered in this case.

In turn, Fig.7(b) shows an important effect of the matrix elasticity modulus upon porosity
ratcheting. As originally discussed by Devaux et al. (1997) (and revisited more recently by
Mbiakop et al. (2015a) and Lacroix et al. (2016)), elasticity introduces an asymmetry in the
evolution of void growth and shape under a cyclic load. This asymmetry builds up with
increasing cycles and leads to different porosity ratcheting responses for different Young’s
moduli. This effect is relatively well captured by the MVARX model when compared with
the FEM results. Specifically, both FEM and MVARX predict an increase of porosity
ratcheting with decrease of the Young’s modulus.

Additionally, the effect of the matrix elasticity is studied with fixed values of the isotropic
hardening exponent N = 10 and the linear kinematic hardening constant C/σ0 = 10 by
adopting three different values of Young modulus E/σ0 = 300, 1000, 10000 5. It can be

5Note that in the previous comparisons illustrated in Figs.7(a) and 7(b) where the matrix hardening is
neglected (i.e. N = ∞ and C/σ0 = 0), corresponding results with E/σ0 = 10000 are not shown due to
convergence issues appearing in the numerical multi-void unit-cells as a consequence of the perfect plasticity.
Nonetheless, similar reduction of porosity ratcheting at very large values of E/σ0 and perfect plasticity but
in a simpler one-void unit-cell have been reported previously in Fig.24 of Mbiakop et al. (2015a).
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observed from Fig.7(c) that the stress Σ22 is also well predicted by the MVARX model
comparing with the FEM computations. The increase of the stress for higher Young’s
moduli is directly related to the isotropic hardening law used in Eq.(28), where the matrix
yield stress is an explicit function of E/σ0. The corresponding porosity ratcheting is shown
in Fig.7(d) and by comparison with the previous results for vanishing matrix hardening
(Fig.7(b)), it is evident that elasticity plays a pre-dominant role in porosity ratcheting.
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Figure 7: MVARX prediction and validation with FEM computations of the matrix rigidity effect in 30
cycles loadings. (a): effective uniaxial stress variation: Σ22 −Nr. (b): porosity evolution f −Nr

In order to understand better the elasticity effect, we show in Fig.8 contours of the
axial local plastic strain εp22 in the cycle Nr = 30, at maximum straining Umax/L of the
porous material with fixed values of the isotropic hardening exponent N = 10 and the linear
kinematic hardening constant C/σ0 = 10. We observe that increase of E/σ0 leads to more
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diffuse plastic zones extending to larger regions in the unit-cell. That is somewhat expected
since a high Young’s modulus penalizes severely elastic strains and thus the material tends
to resort to plasticity. Nonetheless, the plastic strain fields are highly heterogeneous due to
the random porous microstructure. In the case of the lowest Young’s modulus, E/σ0 = 300,
plasticity is more localized around the voids and in the inter-void ligaments. This in turn
leads to higher void growth and thus larger porosity ratcheting.

-0.02

Figure 8: Contours of the axial plastic strain εp22 in the first generation of mircrostructure (see Fig.2(a))
at the maximum macroscopic strain Umax/L of the 30th cycle. Matrix hardening constants: N = 10 and
C/σ0 = 10.

In the following, we illustrate clearly the importance of taking into account the evolution
of void volume, shape and orientation during the elastic loading and not only during the
plastic loading which is the general practice in porous material modeling since the early
work of Gurson. The relevant expressions needed for that has been discussed in detail in
section 4.1. Specifically, in Fig.9, we show the stress and porosity evolution as a function
of the number of cycles Nr. The stress response in Fig.9(a) shows very slight and negligible
dependence upon whether the elastic contribution to the microstructure evolution is taken
into account or not. However, porosity ratcheting is strongly affected by elasticity, as clearly
observed in Fig.9(b). By neglecting elasticity contribution to the microstructure evolution,
porosity ratcheting is significantly weaker and with lower slope. Therefore, in our modeling
approach, it appears that this elasticity contribution cannot be neglected, even if the elastic
part is reversible. The reason is related to the above described argument of asymmetry in
the tension-compression response during the elastic regime which, in fact, has non-negligible
effects upon microstructure evolution since the amplitude of elastic strains are comparable
to plastic strains in the case of cyclic loading. In fact, the void volume and shape are
asymmetrically evolving due to elasticity but also due to isotropic and kinematic hardening.
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Figure 9: MVARX prediction and validation with FEM computations of the matrix elasticity contribution
effect to the microstructure evolution in 30 cycles loadings. (a): effective uniaxial stress variation: Σ22−Nr.
(b): porosity evolution f −Nr

5.4. Effect of initial porosity

For completeness, we conclude the assessment of the MVARX model by showing in Fig.10,
the effect of initial porosity f0 on the cyclic response of the porous material. Specifically,
in Fig.10(a), the MVARX predicts very accurately the stress response as a function of
the number of cycles Nr. By contrast, porosity ratcheting is predicted with much less
accuracy as shown in Fig.10(b). Even though, the differences are highly amplified by the
normalization of the curves as we show f/f0 (instead of f where the results look much
closer), the present version of the MVARX model tends to overestimate porosity ratcheting
at smaller initial porosities such as f0 = 0.001, when compared with the FEM results,
even though qualitatively shows the same trends. Thus, the present MVARX estimates
should be considered as conservative, while for better accuracy one can either use more
accurate homogenization schemes (see for instance Danas and Ponte Castañeda (2009a,b))
or calibrate the model by using more Gurson-type yield surfaces as in Cao et al. (2015).
In any case, further calibration of the model with experimental results is necessary for
quantitative agreement.

25



ACCEPTED MANUSCRIPT

ACCEPTED M
ANUSCRIP

T

0 5 10 15 20 25 30
0

0.5

1

1.5

2

2.5

Number of cycles, Nr

Σ
2
2
/
σ
0

 

 

N = 10, C/σ0 = 10, E/σ0 = 300

MVARX: f0 = 0.05
MVARX: f0 = 0.01
MVARX: f0 = 0.001
FEM: f0 = 0.05
FEM: f0 = 0.01
FEM: f0 = 0.001

(a)

0 5 10 15 20 25 30
1

1.1

1.2

1.3

1.4

1.5

1.6

1.7

Number of cycles, Nr

f
/
f 0

 

 

N = 10, C/σ0 = 10, E/σ0 = 300

MVARX: f0 = 0.05
MVARX: f0 = 0.01
MVARX: f0 = 0.001
FEM: f0 = 0.05
FEM: f0 = 0.01
FEM: f0 = 0.001

(b)

Figure 10: MVARX prediction and validation with FEM computations of the initial porosity effect in 30
cycles loadings. (a): effective uniaxial stress variation: Σ22 −Nr. (b): porosity evolution f −Nr

6. MVARX predictions at large number of cycles

In this section, we propose to carry out a parametric study at a larger number of cycles
Nr = 100 using the MVARX model to understand in more detail the relative effect of
isotropic and linear kinematic hardening by varying the isotropic hardening exponent N
and the kinematic hardening parameter C/σ0, for which, as shown in Fig.11, we introduce
another two different cyclic loading conditions. In this figure, in addition to the usual
tension-compression with zero average cyclic load (Fig.11(a)), we also consider cyclic loads
with tension loading-elastic unloading with a non-zero positive mean stress (Fig.11(b)), as
well as with a positive prestress and cycling this point (Fig.11(c)). Again, we control the
axial displacement U2 (or the average strain E22 = U2/L), such that the average nominal
strain takes the value E22 = 0.05. This allows to enter well the plastic region, while the
elastic strains remaining still significant. For the sake of brevity of this parametric study,
we keep the rest of the parameters fixed, i.e., the Young’s modulus E/σ0 = 300, Poisson
ratio ν = 0.3, initial porosity f = 5%, and initially spherical void shapes.

• Type 1 (see Fig.11(a)): Same loading condition as discussed in Section 5.

• Type 2 (see Fig.11(b)): In each cycles, U2 initially increases from U2 = 0 to U2 = Umax
(note that Umax/L = 0.05), then unloads from U2 = Umax to U2 = 0.

• Type 3 (see Fig.11(c)): U2 initially increases from U2 = 0 to U2 = Umax, then unloads
- loads between U2 = Umax to U2 = Umax/2.
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Figure 11: Schematic explanation of three types of uniaxial cyclic loading

In Fig.12, we investigate the effect of cyclic loading type on porosity ratcheting for various
values of N and C/σ0. First of all, in the absence of any hardening, the MVARX model
predicts porosity ratcheting, as shown in 12(a), which is in agreement with the corresponding
FEM results in Fig.6(b). This is true for all loading Types 1, 2 and 3 considered in this
study. In addition, by comparing Figs.12(a)- 12(b) and Figs.12(c)- 12(d), we note that the
addition of kinematic hardening introduces a weak initial decrease of f for loading Types 1
and 2 at small number of cycles, while its effect smears out at larger number of cycles. It
can also observed by comparing Fig.12(a) and 12(b) that the addition of linear kinematic
hardening tends to decelerate the porosity ratcheting when N =∞.
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Figure 12: Effect of cyclic loading type on porosity ratcheting for various values of N and C/σ0.

6.1. Relative effect of hardening for the three loading types

Fig.13 shows the porosity evolution curves for N = ∞, 10, 5 for three different kine-
matic hardening modulus of C/σ0 = 0, 1, 10 in the case of the loading type 1 as defined
in Fig.11(a). From these curves, it is evident that the interplay between the isotropic and
kinematic hardening is non-trivial. For instance, depending on the exponent N , the addition
of kinematic hardening can either reduce (see for instance N =∞ in Fig.13(a)) or increase
(see for instance N = 5 in Fig.13(c)) porosity ratcheting for this type of loading.
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Figure 13: Detail porosity evolution within 100 cycles of the Type 1 cyclic loading with several matrix
hardening parameters (a): without matrix isotropic hardening N = ∞ and C/σ0 = 0, 1, 10 , (b): N = 10
and C/σ0 = 0, 1, 10, (c): N = 5 and C/σ0 = 0, 1, 10

For a more comprehensive visualization, we show in Fig.14 the cross plots of porosity at
U2 = Umax of Nr = 100 cycles. Specifically, in Fig.14(a), we observe that decrease of N (or
equivalently increase of 1/N) could lead to a non-monotonic effect for f if C/σ0 = 0 while
it remains monotonically increasing if C/σ0 = 10. In turn, in Fig.14(b), decrease of N from
∞ to 5 leads to a general increase in porosity ratcheting. Again the relative effect of C/σ0

is non-monotonic with the maximum observed at C/σ0 ∼ 1. Beyond that point, kinematic
hardening tends to decelerate porosity ratcheting for all N considered here.
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Figure 14: MVARX predictions of porosity at 100 cycles for Type 1 cyclic loading with symmetric ten-
sion/compression loads. (a): C/σ0 is respectively fixed at 0, 1, 10 and N varies between ∞ and 5 (i.e. 1/N
varies between 0 and 0.2) (b): N is respectively fixed at ∞, 10, 5 and C/σ0 varies between 0 and 10.

Next, Fig.15, shows porosity evolution curves for N = ∞, 10, 5 for three different kine-
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matic hardening values of C/σ0 = 0, 1, 10 in the case of the loading type 2 as defined in
Fig.11(b), which corresponds to a tension loading and elastic unloading with no overall
compression. In this case, observe a relatively minor effect of both the kinematic hardening
parameter C/σ0 and the isotropic hardening exponent N . Moreover, for all N , we observe a
crossover of the curves. Again for a better illustration, Fig.16 shows cross plots of porosity
at Nr = 100 cycles. Even though, in Fig.16(a), we observe a minimum of f for 1/N ∼ 0.02,
the curves seem to be rather insensitive to both N and C/σ0.
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Figure 15: Detail porosity evolution within 100 cycles of the Type 2 cyclic loading with several matrix
hardening parameters (a): without matrix isotropic hardening N = ∞ and C/σ0 = 0, 1, 10 , (b): N = 10
and C/σ0 = 0, 1, 10, (c): N = 5 and C/σ0 = 0, 1, 10
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Figure 16: MVARX predictions of porosity at 100 cycles for Type 2 cyclic loading. (a): C is respectively
fixed at 0, 1, 10 and N varies between ∞ and 5 (i.e. 1/N varies between 0 and 0.2 (b): N is respectively
fixed at ∞, 10, 5 and C/σ0 varies between 0 and 10.
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Fig.17, shows porosity evolution curves for N = ∞, 10, 5 for three different kinematic
hardening values of C/σ0 = 0, 1, 10 for the loading type 3 defined in Fig.11(b), which
corresponds to a positive tensile pre-stress and subsequent cyclic loading around this pre-
stress. In this case, we observe a significant cross-over of the curves for N = ∞ but no
cross-over for N = 5 for increasing number of cycles Nr. For instance, when N = ∞, the
porosity curve corresponding to C/σ0 = 10 initially decreases with Nr attaining a minimum
at Nr ∼ 5 and then starts increasing again as Nr goes to 100 cycles. Similar to the previous
cases, Fig.18 shows corresponding cross-plots of porosity at Nr = 100 cycles. In this case, in
Fig.18(b), f decreases to an asymptote as C/σ0 increases except for N = ∞ that exhibits
first a minimum. In turn, Fig.18(a) shows a highly non-monotonic response of f , exhibiting
a maximum for 1/N ∼ 0.04 (or N ∼ 25). In this type of loading, increase of 1/N , i.e., a
material with significant isotropic hardening tends to reduce porosity ratcheting .
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Figure 17: Detail porosity evolution within 100 cycles of the Type 3 cyclic loading with several matrix
hardening parameters (a): without matrix isotropic hardening N = ∞ and C/σ0 = 0, 1, 10 , (b): N = 10
and C/σ0 = 0, 1, 10, (c): N = 5 and C/σ0 = 0, 1, 10
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Figure 18: MVARX prediction of the matrix hardening effect on the porosity evolution at 200 cycles of Type
3 cyclic loading. (a): C is respectively fixed at 0, 1, 10 and N varies between ∞ and 5 (i.e. 1/N varies
between 0 and 0.2 (b): N is respectively fixed at ∞, 10, 5 and C/σ0 varies between 0 and 10.

7. Concluding remarks

In this work, we have developed a nonlinear homogenization model (termed MVARX) to
study the response of elasto-plastic porous material with an isotropic and linear kinematic
hardenable matrix subjected to cyclic loading and finite strains. The proposed model is
an extension of the MVAR model of Danas and Aravas (2012) to include linear kinematic
hardening and evolution of microstructure during elastic loading. It is obtained by use of
a decoupled homogenization strategy and is used to describe both the elastic and plastic
effective response. The resulting effective back stress in the homogenized model, as for
the macroscopic stress and plastic strain, has non-zero hydrostatic terms as a result of the
homogenization procedure for a porous material. The model is also numerically implemented
in an efficient general purpose user-material subroutine for structural calculations. The
model is extensively validated by full field finite element calculations of multi-void periodic
unit cells for a number of hardening and elastic parameters. A major finding of this work is
that elasticity is the predominant mechanism for porosity ratcheting as illustrated by both
the numerical analysis and the analytical model.

Specifically, the MVARX model is found to be in very good qualitative agreement with
the finite element results for all loading types, hardening parameters and porosities consid-
ered. Specifically, porosity ratcheting is predicted by both the numerical analysis and the
analytical model and is found to be a non-trivial consequence of both the isotropic and linear
kinematic hardening. The effect of linear kinematic hardening is shown to be weaker than
that of the isotropic hardening at large number of cycles but still present. The main reason
for the observed porosity ratcheting is the initial asymmetry introduced in the response of
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the porous solid during the first cycles, which lead to an asymmetric evolution of the mi-
crostructure during tension and compression. This asymmetry builds up with the increase
of the cycles. This explains partially the importance of the isotropic hardening in porosity
ratcheting, which is predominant in the first cycles and then as is well-known saturates at
larger cycles.

A second observation, which was found to be of critical importance in our modeling
approach, is the effect of elasticity in the evolution of microstructure. Elastic effects com-
bined of course with hardening effects contribute even more to the asymmetric evolution of
the porosity and need to be taken into account in the analytical modeling approach. Since
our modeling uses standard linear homogenization techniques for the linear regime, such
an operation is straightforward by direct use of the phase concentration (or localization)
tensors, which are readily available from the homogenization procedure. The plastic part of
the homogenization is built along the lines discussed by Aravas and Ponte Castañeda (2004)
and more recently by Danas and Aravas (2012).

The MVARX model was used then to investigate three different cyclic loading types
and effects of several values of the isotropic and linear kinematic hardening parameters.
The three loading types considered involve a standard tension/compression cycle with equal
amplitude positive and negative axial strain, a tension loading-elastic unloading with a non-
zero positive average stress state, as well as a cyclic load where a positive prestress is added
first and then cycling around this point is carried out. For the amplitudes considered here,
the tension/compression load is found to lead to the largest porosity ratcheting effect while
the positive prestress load to the smallest one. The relative effect of isotropic and kinematic
hardening in those three loading states is found to be very different. In the last two loading
types the kinematic hardening appears to have a weaker effect than in the first one. The
effect of the corresponding isotropic hardening on the porosity ratcheting is most of the
times non-monotonic and therefore highly non-trivial.

We conclude this work by noting that the present model was found to be less accurate in
quantitative terms especially at smaller initial porosities. This is mainly attributed to the
quadratic character of the original MVAR model of Danas and Aravas (2012) and carries
on to the present MVARX model, which tends to overestimate the porosity evolution in
the first cycle for uniaxial tension loads. To amend this, Cao et al. (2015) has proposed a
modification of the original MVAR model for monotonic loads, which consists in re-writing
it in a Gurson-type form. This led to a decrease of the porosity estimation and a better
agreement with corresponding finite element results. Such a modification is straightforward
in the present model since it affects only the plastic part and will be pursued in a future
study. Again, as shown in Cao et al. (2015), the present model could be easily calibrated by
use of a very small number of parameters in order to describe experimental data.

Last but not least, the proposed model is able to deal with general initial void shapes and
orientations but such a study has not been attempted here for the sake of keeping the work
focused and concise. However, as has been discussed by Mbiakop et al. (2015a), the initial
void shape as well as different triaxialities have significant effects on the cyclic response of
the porous solids. Such a study is left for the future. Alternatively, the consideration of a
fully coupled homogenization method (Lahellec and Suquet, 2007; Idiart and Lahellec, 2016)
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may also constitute a challenging extension at finite strains, which could pave the way to a
refined, probably more quantitative porosity ratcheting prediction.
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Appendix A. Numerical implementation of the MVARX model

This section describes the numerical implementation of the aforementioned constitutive
model. First, it is essential to define the velocity boundary conditions that are related to
the applied finite strains. Thus, one has

v = L · x, with L = Ḟ · F−1 (A.1)

where L and F are respectively the macroscopic velocity gradient and macroscopic defor-
mation gradient. The symmetric and skew-symmetric part of L denote the macroscopic
strain-rate D = 1/2

[L + LT
]

and the macroscopic spin W = 1/2
[L−LT

]
. Note that

similar to the decomposition of the strain-rate to an elastic part and a plastic part (see
equation (30)), we also decompose the macroscopic spin tensor to W = We +Wp. Those
tensors have already been used in the previous sections to describe the evolution of the void
orientation vectors in the elastic and plastic regime.

Remark: For non-viscous plasticity, the magnitude of v (or L) does not affect the
final result. Hence, the total displacement u is expressed in terms of the velocity v via
u = x − ζ = v · t (tn ≤ t ≤ tn+1), where x and ζ respectively define the deformed cur-
rent configuration and the undeformed reference configuration. while v is constant in time t.

Moreover, in order to implement the present model, we recall here the polar decompo-
sition of the deformation gradient F (t) into a rotation tensor R(t) and right stretch tensor
U(t) during the time increment [tn, tn+1], such that

F (t) = MF (t) · Fn = R(t) ·U(t) · Fn, RT (t) ·R(t) = I (A.2)

The strain-rate and the spin tensors can then be obtained from (A.1) as

D(t) =
1

2

[
(MḞ (t) · MF (t)) + (MḞ (t) · MF (t))T

]
,

W (t) =
1

2

[
(MḞ (t) · MF (t))− (MḞ (t) · MF (t))T

]
.

(A.3)

Furthermore, using the logarithmic strain E(t) = lnU(t) at the beginning of the time
increment t = tn and assuming that the eigenvectors of U(t) remain constant in the time
increment [tn, tn+1], one has

D(t) = R(t) · Ė(t) ·RT (t), W (t) = Ṙ(t) ·RT (t) (A.4)
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Using this last decomposition, one can write the Jaumann rates of the macroscopic stress,
the macroscopic backstres, and the orientation vectors as

O
Σ(t) = R(t) · ˙̂

Σ(t) ·RT (t),
O
X(t) = R(t) · ˙̂

X(t) ·RT (t), ,
O
n(i)(t) = R(t) · ˙̂n

(i)
(t) (A.5)

where the quantities with the superscript (̂ ) are the usual time derivatives.
To be more precise, one has at each Gauss integration point the following known and

unknown quantities:

• at the beginning of the increment t = tn, the known quantities are:

Fn, Fn+1, Σn, Xn, sα |n (A.6)

• at the end of the increment t = tn + 1, the following quantities need to be computed

Σn+1, Xn+1, sα |n+1 . (A.7)

Next, in order to probe the plastic yield surface, we introduce the standard “elastic
predictor” as

Σ̂e = Σ̂n + L̃e : ME. (A.8)

As is usual in elasto-plastic integration schemes, if Φ̃(Σ̂e − X̂n, ŝα |n) < 0, the material is

elastically loaded and the linear elastic equations have to be used, whereas if Φ̃ ≥ 0 the
material is plastically loaded.

Appendix A.1. Elasticity implementation

In the case of Φ̃ < 0, the porous material is under elastic loading thus is convenient to
adopt the forward Euler method to compute the unknowns listed above (A.7), which leads
to

Σ̂n+1 = Σ̂e

X̂n+1 = X̂n

fe |n+1= fe |n exp
[
tr(A(2)

e |n: ME)− tr(ME)
]

(we)1 |n+1= (we)1 |n +(we)1 |n (n(3) ⊗ n(3) − n(1) ⊗ n(1)) : A(2)
e |n: ME

(we)2 |n+1= (we)2 |n +(we)2 |n (n(3) ⊗ n(3) − n(2) ⊗ n(2)) : A(2)
e |n: ME

n̂(i)
e |n+1= exp

(
−W E

e |n
)
n̂(i)
e |n

(A.9)

It should be noted that the porosity at the end of the time increment fe |n+1 can be directly
evaluated from equation (37).
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Appendix A.2. Plasticity implementation

If Φ̃ ≥ 0, the porous material is under plastic loading. In this case, the elastic predictor
Σe is corrected to satisfy the plastic criterion (29) through

Σ̂n+1 = Σ̂e − L̃e |n: MEp + MΛ(Σ̂n ·Ωp
n −Ωp

n · Σ̂n) (A.10)

Due to the linear kinematic hardening obtained in the present model and the Jaumann
rate definition in (51)2, the macroscopic back stress X̂n+1 at the end of the time increment
t = tn+1 takes the form

X̂n+1 = X̂n + L̃X |n: MEp + MΛ(X̂n ·ΩP
n −ΩP

n · X̂n). (A.11)

Next, the accumulated plastic strain at the end of time increment is calculated via

ε̄pn+1 = ε̄pn +
Σ̂n : ME

(1− fn)σ0(ε̄pn)
(A.12)

Following the combined implicit-explicit scheme of Aravas and Ponte Castañeda (2004)
and Danas and Aravas (2012), the microstructure variables at t = tn+1 can be computed by

fp |n+1= fp |n +αf (1− fp |n)tr(ME)

(wp)1 |n+1= (wp)1 |n +αw (wp)1 |n (n(3) ⊗ n(3) − n(1) ⊗ n(1)) : A(2)
p |n: ME

(wp)2 |n+1= (wp)2 |n +αw (wp)2 |n (n(3) ⊗ n(3) − n(2) ⊗ n(2)) : A(2)
p |n: ME

n̂(i)
p |n+1= exp

(
−MΛΩP

n

)
· n̂(i)

p |n

(A.13)

Equations (A.13) provide an explicit scheme for the microstructural variables during
plastic loading phase. Note that the stability of this numerical approach is very good by
using below a fully implicit scheme for the plastic strains and yield function. In fact such
a scheme was found to work better than a fully implicit scheme for all variables of the
problem.. In this regard then, the above equations (A.13), MΛ and ME are evaluated using
a standard Newton-Raphson scheme in the instantaneous yield function and plastic flow
equations

Φ̃(Σ̂n+1 − X̂n+1, ŝα |n) = 0 (#1)

MEp = MΛ N̂n+1 (#6).
(A.14)

Here the symbol # is used to denote the number of equations. Note also that for simplicity
in the present work we use the continuum tangent elastoplastic modulus (60) described in
Section 4.3.
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Kailasam, M., Ponte Castañeda, P. (1998). A general constitutive theory for linear and nonlinear particulate
media with microstructure evolution. J. Mech. Phys. Solids 46, 427-465.

Kondo, Y., Sakae, C., Kubota, M., Kudou, T., 2003. The effect of material hardness and mean stress on the
fatigue limit of steels containing small defects. Fatigue Fract. Eng. Mater. Struct. 26, 675-682.

Lacroix, R., Leblond, J-B., Perrin, G. 2016. Numerical study and theoretical modelling of void growth
in porous ductile materials subjected to cyclic loadings. European Journal of Mechanics A/Solids, 55,
100-109.

Lahellec , Pierre Suquet, 2007. On the effective behavior of nonlinear inelastic composites: I. Incremental
variational principles. Journal of the Mechanics and Physics of Solids , 55, 9, 1932–1963.

Laws, N., 1973. On the thermostatics of composite materials. J. Mech. Phys. Solids, 21, 9-17.
Leblond, J.B., Perrin, G., Devaux, J., 1995. An improved Gurson-type model for hardenable ductile metals.

Eur. J. Mech. A Solids 14, 499–527.
Leblond, J.B., Gologanu, M., 2008. External estimate of the yield surface of an arbitrary ellipsoid containing

a confocal void. Comptes Rendus Mécanique, 336(11-12), 813-819.
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Ponte Castañeda, P., 1991. The effective mechanical properties of nonlinear isotropic composites. J. Mech.

Phys. Solids 39, 45-71.
Ponte Casta neda, P., Zaidman, M., 1994. Constitutive models for porous materials with evolving microstruc-

ture. J. Mech. Phys. Solids 42, 1459-1497.
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