A. Fujishima and K. Honda, Electrochemical Photolysis of Water at a Semiconductor Electrode, Nature, vol.44, issue.5358, pp.37-38, 1972.
DOI : 10.1038/238037a0

N. S. Lewis and D. G. Nocera, Powering the planet: Chemical challenges in solar energy utilization, Proc. Natl. Acad. Sci, pp.15729-15735, 2006.
DOI : 10.1126/science.1123787

K. J. Young, L. A. Martini, R. L. Milot, R. C. Snoeberger, V. S. Batista et al., Light-driven water oxidation for solar fuels, Coordination Chemistry Reviews, vol.256, issue.21-22, pp.2503-2520, 2012.
DOI : 10.1016/j.ccr.2012.03.031

URL : http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4214930

P. V. Kamat and J. Bisquert, Solar Fuels. Photocatalytic Hydrogen Generation, The Journal of Physical Chemistry C, vol.117, issue.29, pp.14873-14875, 2013.
DOI : 10.1021/jp406523w

M. D. Kärkäs, O. Verho, E. V. Johnston, and B. Åkermark, Artificial Photosynthesis: Molecular Systems for Catalytic Water Oxidation, Chemical Reviews, vol.114, issue.24, pp.11863-12001, 2014.
DOI : 10.1021/cr400572f

V. Pfeifer, T. E. Jones, J. J. Velasco-vélez, C. Massué, M. T. Greiner et al., The electronic structure of iridium oxide electrodes active in water splitting, Phys. Chem. Chem. Phys., vol.66, issue.4, pp.2292-2296, 2016.
DOI : 10.1039/C5CP06997A

N. Bestaoui, E. Prouzet, P. Deniard, and R. Brec, Structural and analytical characterization of an iridium oxide thin layer, Thin Solid Films, vol.235, issue.1-2, pp.35-42, 1993.
DOI : 10.1016/0040-6090(93)90239-L

A. A. Bolzan, C. Fong, B. J. Kennedy, and C. J. Howard, Structural Studies of Rutile-Type Metal Dioxides, Acta Crystallographica Section B Structural Science, vol.53, issue.3, pp.373-380, 1997.
DOI : 10.1107/S0108768197001468

S. Ono, J. P. Brodholt, and G. Price, at high pressures, Journal of Physics: Condensed Matter, vol.20, issue.4, p.45202, 2008.
DOI : 10.1088/0953-8984/20/04/045202

B. A. Hamad, V. Ti, . Ru, and S. Ir, First-principle calculations of structural and electronic properties of rutile-phase dioxides (MO2), M = Ti, V, Ru, Ir and Sn, The European Physical Journal B, vol.70, issue.2, pp.163-169, 2009.
DOI : 10.1140/epjb/e2009-00218-0

S. Agrestini, Y. Utsumi, K. D. Tsuei, and Y. F. Liao, Understanding the Electronic Structure of IrO 2 Using Hard-X-Ray Photoelectron Spectroscopy and Density- Functional Theory Electronic Structure of IrO 2 : The Role of the Metal d Orbitals, 13) Ping, pp.11570-11577, 2014.

Z. Xu and J. R. Kitchin, Tuning oxide activity through modification of the crystal and electronic structure: from strain to potential polymorphs, Phys. Chem. Chem. Phys., vol.117, issue.404, pp.28943-28949, 2015.
DOI : 10.1039/C5CP04840K

Y. Liu, H. Masumoto, and T. Goto, Electrical and Optical Properties of IrO<SUB>2</SUB> Thin Films Prepared by Laser-ablation, MATERIALS TRANSACTIONS, vol.45, issue.10, pp.3023-3027, 2004.
DOI : 10.2320/matertrans.45.3023

J. S. Almeida and R. Ahuja, Electronic and Optical Properties of RuO 2 and IrO 2, Phys. Rev. B, pp.73-165102, 2006.

S. H. Brewer, D. Wicaksana, J. Maria, A. I. Kingon, and S. Franzen, Investigation of the electrical and optical properties of iridium oxide by reflectance FTIR spectroscopy and density functional theory calculations, Chemical Physics, vol.313, issue.1-3, pp.25-31, 2005.
DOI : 10.1016/j.chemphys.2004.11.014

Y. Zhao, E. A. Hernandez-pagan, N. M. Vargas-barbosa, J. L. Dysart, and T. E. Mallouk, A High Yield Synthesis of Ligand-Free Iridium Oxide Nanoparticles with High Electrocatalytic Activity, The Journal of Physical Chemistry Letters, vol.2, issue.5, pp.402-406, 2011.
DOI : 10.1021/jz200051c

Y. B. He, A. Stierle, W. X. Li, A. Farkas, N. Kasper et al., Oxidation of Ir(111): From O?Ir?O Trilayer to Bulk Oxide Formation, The Journal of Physical Chemistry C, vol.112, issue.31, pp.11946-11953, 2008.
DOI : 10.1021/jp803607y

W. W. Pai, T. Y. Wu, C. H. Lin, B. X. Wang, Y. S. Huang et al., A cross-sectional scanning tunneling microscopy study of IrO2 rutile single crystals, Surface Science, vol.601, issue.12, pp.69-72, 2007.
DOI : 10.1016/j.susc.2007.04.227

G. Novell-leruth, G. Carchini, and N. López, On the Properties of Binary Rutile MO 2 Compounds, M = Ir, Ru, Sn, and Ti: A DFT Study, J. Chem. Phys, vol.138, 2013.

R. Rai, T. Li, Z. Liang, M. Kim, A. Asthagiri et al., Growth and termination of a rutile IrO 2 (100) layer on Ir(111), Surface Science, vol.652, issue.111, pp.213-221, 2016.
DOI : 10.1016/j.susc.2016.01.018

Z. Pavlovic, C. Ranjan, Q. Gao, M. Van-gastel, and R. Schlögl, Probing the Structure of a Water-Oxidizing Anodic Iridium Oxide Catalyst using Raman Spectroscopy, ACS Catalysis, vol.6, issue.12, pp.8098-8105
DOI : 10.1021/acscatal.6b02343

C. Wang, S. S. Siao, and J. Jiang, (110) Surface, Langmuir, vol.27, issue.23, pp.14253-14259, 2011.
DOI : 10.1021/la203339z

C. Wang, S. S. Siao, J. Jiang, and . Bond, (110) Surface: Density Functional Theory Study, The Journal of Physical Chemistry C, vol.116, issue.10, pp.6367-6370, 2012.
DOI : 10.1021/jp300689j

Á. Valdés, J. Brillet, M. Grätzel, H. Gudmundsdóttir, H. A. Hansen et al., Solar hydrogen production with semiconductor metal oxides: new directions in experiment and theory, Phys. Chem. Chem. Phys., vol.115, issue.7, pp.49-70, 2012.
DOI : 10.1039/C1031EE01850G

M. García-melchor, L. Vilella, N. López, and A. Vojvodic, Computationally Probing the Performance of Hybrid, Heterogeneous, and Homogeneous Iridium-Based Catalysts for Water Oxidation, ChemCatChem, vol.132, issue.10, pp.1792-1798, 2016.
DOI : 10.1002/cctc.201600007

M. Pastore, Photoanode for Water Oxidation, Journal of the American Chemical Society, vol.137, issue.17, pp.5798-5809, 2015.
DOI : 10.1021/jacs.5b02128

P. Blöchl, Projector augmented-wave method, Physical Review B, vol.44, issue.24, p.17953, 1994.
DOI : 10.1103/PhysRevB.50.17953

G. Kresse and D. Joubert, From ultrasoft pseudopotentials to the projector augmented-wave method, Physical Review B, vol.9, issue.3, pp.1758-1775, 1999.
DOI : 10.1103/PhysRevB.59.1758

G. Kresse and J. Hafner, Ab initio molecular dynamics for liquid metals, Journal of Non-Crystalline Solids, vol.192, issue.193, pp.558-561, 1993.
DOI : 10.1016/0022-3093(95)00355-X

G. Kresse and J. Hafner, molecular-dynamics simulation of the liquid-metal?amorphous-semiconductor transition in germanium, Physical Review B, vol.48, issue.20, pp.14251-14269, 1994.
DOI : 10.1103/PhysRevB.49.14251

G. Kresse and J. Furthmüller, Efficiency of ab-initio total energy calculations for metals and semiconductors using a plane-wave basis set, Computational Materials Science, vol.6, issue.1, pp.15-50, 1996.
DOI : 10.1016/0927-0256(96)00008-0

G. Kresse and J. Furthmüller, total-energy calculations using a plane-wave basis set, Physical Review B, vol.2, issue.16, pp.11169-11186, 1996.
DOI : 10.1103/PhysRevB.54.11169

J. P. Perdew, A. Ruzsinszky, G. I. Csonka, O. A. Vydrov, G. E. Scuseria et al., Restoring the Density-Gradient Expansion for Exchange in Solids and Surfaces, Physical Review Letters, vol.100, issue.13, p.136406, 2008.
DOI : 10.1021/jp0379190

H. J. Monkhorst and J. D. Pack, Special points for Brillouin-zone integrations, Physical Review B, vol.10, issue.12, pp.5188-5192, 1976.
DOI : 10.1103/PhysRevB.13.5188

E. H. Cordfunke, The enthalpy of formation of IrO2 and thermodynamic functions, Thermochimica Acta, vol.50, issue.1-3, pp.177-185, 1981.
DOI : 10.1016/0040-6031(81)85053-8

W. Tang, E. Sanville, and G. Henkelman, A grid-based Bader analysis algorithm without lattice bias, Journal of Physics: Condensed Matter, vol.21, issue.8, p.84204, 2009.
DOI : 10.1088/0953-8984/21/8/084204

URL : http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.575.2313

M. Yu and D. R. Trinkle, Accurate and efficient algorithm for Bader charge integration, The Journal of Chemical Physics, vol.134, issue.6, p.64111, 2011.
DOI : 10.1103/PhysRevB.45.13244

URL : http://arxiv.org/abs/1010.4916

F. Calle-vallejo, D. Loffreda, M. T. Koper, and P. Sautet, Introducing structural sensitivity into adsorption?energy scaling relations by means of coordination numbers, Nature Chemistry, vol.7, issue.5, pp.403-410, 2015.
DOI : 10.1103/PhysRevB.40.3616

URL : https://hal.archives-ouvertes.fr/hal-01234589

R. Kötz and S. Stucki, Stabilization of RuO 2 by IrO 2 for Anodic Oxygen Evolution in Acid Media, Electrochim. Acta, pp.31-1311, 1986.

H. B. Yildiz, B. B. Carbas, S. Sonmezoglu, M. Karaman, and L. Toppare, A photoelectrochemical device for water splitting using oligoaniline-crosslinked [Ru(bpy)2(bpyCONHArNH2)]+2 dye/IrO2 nanoparticle array on TiO2 photonic crystal modified electrode, Ru(bpy) 2 (bpyCONHArNH 2 )] +2 Dye/IrO 2 Nanoparticle Array on TiO 2 Photonic Crystal Modified Electrode, pp.14615-14629, 2016.
DOI : 10.1016/j.ijhydene.2016.04.249

W. J. Youngblood, S. A. Lee, Y. Kobayashi, E. A. Hernandez-pagan, P. G. Hoertz et al., Photoassisted Overall Water Splitting in a Visible Light-Absorbing Dye-Sensitized Photoelectrochemical Cell, Journal of the American Chemical Society, vol.131, issue.3, pp.926-927, 2009.
DOI : 10.1021/ja809108y

F. Osterloh, Inorganic nanostructures for photoelectrochemical and photocatalytic water splitting, Chem. Soc. Rev., vol.25, issue.6, pp.2294-2320, 2013.
DOI : 10.1039/C2CS35266D

W. R. Duncan and O. Prezhdo, Electronic Structure and Spectra of Catechol and Alizarin in the Gas Phase and Attached to Titanium, The Journal of Physical Chemistry B, vol.109, issue.1, pp.365-373, 2005.
DOI : 10.1021/jp046342z

U. Terranova and D. R. Bowler, Rutile (100): A Density Functional Theory Investigation, The Journal of Physical Chemistry C, vol.114, issue.14, pp.6491-6495, 2010.
DOI : 10.1021/jp911214w

F. Risplendi, G. Cicero, G. Mallia, and N. M. Harrison, (110): a comparison between catechol and isonicotinic acid, Phys. Chem. Chem. Phys., vol.65, issue.1, pp.235-243, 2013.
DOI : 10.1039/C2CP42078C

D. J. Mowbray and A. Migani, (110), Journal of Chemical Theory and Computation, vol.12, issue.6, pp.2843-2852, 2016.
DOI : 10.1021/acs.jctc.6b00217

E. Luppi, I. Urdaneta, and M. Calatayud, Clusters with Time-Dependent Density-Functional Theory, The Journal of Physical Chemistry A, vol.120, issue.27, pp.5115-5124, 2016.
DOI : 10.1021/acs.jpca.6b00477

D. Finkelstein-shapiro, S. K. Davidowski, P. B. Lee, C. Guo, G. P. Holland et al., by a Combined Solid-State NMR and DFT Study, The Journal of Physical Chemistry C, vol.120, issue.41, pp.23625-23630, 2016.
DOI : 10.1021/acs.jpcc.6b08041

M. Calatayud, A. Markovits, M. Menetrey, B. Mguig, and C. Minot, Adsorption on perfect and reduced surfaces of metal oxides, Catalysis Today, vol.85, issue.2-4, pp.125-143, 2003.
DOI : 10.1016/S0920-5861(03)00381-X

L. Liu, S. Li, H. Cheng, U. Diebold, and A. Selloni, : Catechol on Anatase (101), Journal of the American Chemical Society, vol.133, issue.20, pp.7816-7823, 2011.
DOI : 10.1021/ja200001r

T. Rajh, D. M. Tiede, and M. C. Thurnauer, Surface Modification of TiO 2 Nanoparticles with Bidentate Ligands Studied by EPR Spectroscopy, J. Non-Cryst. Solids, issue.62, pp.205-207, 1996.

I. Urdaneta, A. Keller, O. Atabek, J. L. Palma, D. Finkelstein-shapiro et al., Anatase Surfaces, Dopamine Adsorption on TiO 2 Anatase Surfaces, pp.20688-20693, 2014.
DOI : 10.1021/jp506156e

Y. Xu, W. Chen, S. Liu, M. Cao, and J. Li, Interaction of photoactive catechol with TiO2 anatase (101) surface: A periodic density functional theory study, Chemical Physics, vol.331, issue.2-3, pp.275-282, 2007.
DOI : 10.1016/j.chemphys.2006.10.018

R. Sánchez-de-armas, M. A. San-miguel, J. Oviedo, A. Márquez, and J. Sanz, nanoparticles from real time TD-DFT simulations, Electronic Structure and Optical Spectra of Catechol on TiO 2 Nanoparticles from Real Time TD-DFT Simulations, pp.1506-1514, 2011.
DOI : 10.1039/C0CP00906G

R. Sánchez-de-armas, M. A. San-miguel, J. Oviedo, and J. Sanz, Direct vs. indirect mechanisms for electron injection in DSSC: Catechol and alizarin, Computational and Theoretical Chemistry, vol.975, issue.1-3, pp.99-105, 2011.
DOI : 10.1016/j.comptc.2011.01.010

P. C. Redfern, P. Zapol, L. A. Curtiss, T. Rajh, and M. C. Thurnauer, Computational Studies of Catechol and Water Interactions with Titanium Oxide Nanoparticles, The Journal of Physical Chemistry B, vol.107, issue.41, pp.11419-11427, 2003.
DOI : 10.1021/jp0303669