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Abstract

Background: Solitary fibrous tumors (SFTs) are rare spindle-cell tumors. Their cell-of-origin and molecular basis are poorly
known. They raise several clinical problems. Differential diagnosis may be difficult, prognosis is poorly apprehended by
histoclinical features, and no effective therapy exists for advanced stages.

Methods: We profiled 16 SFT samples using whole-genome DNA microarrays and analyzed their expression profiles with
publicly available profiles of 36 additional SFTs and 212 soft tissue sarcomas (STSs). Immunohistochemistry was applied to
validate the expression of some discriminating genes.

Results: SFTs displayed whole-genome expression profiles more homogeneous and different from STSs, but closer to
genetically-simple than genetically-complex STSs. The SFTs/STSs comparison identified a high percentage (,30%) of genes
as differentially expressed, most of them without any DNA copy number alteration. One of the genes most overexpressed in
SFTs encoded the ALDH1 stem cell marker. Several upregulated genes and associated ontologies were also related to
progenitor/stem cells. SFTs also overexpressed genes encoding therapeutic targets such as kinases (EGFR, ERBB2, FGFR1,
JAK2), histone deacetylases, or retinoic acid receptors. Their overexpression was found in all SFTs, regardless the anatomical
location. Finally, we identified a 31-gene signature associated with the mitotic count, containing many genes related to cell
cycle/mitosis, including AURKA.

Conclusion: We established a robust repertoire of genes differentially expressed in SFTs. Certain overexpressed genes could
provide new diagnostic (ALDH1A1), prognostic (AURKA) and/or therapeutic targets.
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Introduction

Solitary fibrous tumor (SFT) is a rare spindle cell neoplasm,

observed at all ages, but more often between 50 and 70 years [1].

Initially, SFTs were most commonly found in the pleura [1], but

may in fact occur in any part of the body [2]. The cell-of-origin

and etiology are uncertain, but SFTs are thought to derive from

mesenchymal fibroblastic cells. According to the WHO classifica-

tion of Soft Tissue Tumors, SFTs have a ‘‘patternless architecture

characterized by a combination of alternating hypocellular and

hypercellular areas separated from each other by thick bands of

hyalinized somewhat keloidal, collagen and branching haeman-

giopericytoma-like vessels’’. These tumors have variable immuno-

reactivity for non specific markers such as CD34, CD99, BCL2,

and vimentin. Misdiagnosis is frequent with other spindle cell

lesions, especially synovialosarcomas or fibrosarcomas [3], notably

in the case of unusual location. Prognosis is good in the majority of

cases. However, 10 to 20% of SFTs (so-called ‘‘malignant SFTs’’)

behave aggressively with local invasiveness and/or recurrences,

and/or occasional distant metastases [4;5]. Histological features

for malignancy include large size, high mitotic count (.4 per 10

high-power fields, HPF), high cellularity, necrosis, hemorrhage,

cytological atypias with pleiomorphism, and infiltrative growth

pattern [4;6]. But, these features do not always predict unfavorable

clinical outcome [2;4;7;8]. Today, the clinical outcome of SFTs is

difficult to predict, and efforts are ongoing to improve the

prognostication of disease [9]. For many authors, the complete

resection of the tumor with negative margins is the most important

prognostic factor. Surgery represents the mainstay of treatment for

primary tumors or local relapses. In the case of an unresectable or

metastatic disease, chemotherapy and radiotherapy are not

efficient and the prognosis is poor [10]. Clearly, more reliable

diagnostic and prognostic markers, and alternative treatments are

urgently needed for SFT patients.
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At the molecular level, the disease is poorly known. No

consistent cytogenetic abnormality has been reported [11–16].

Frequent expression of PDGFR and MET tyrosine kinase

receptors was reported [17], as well as rare mutations involving

PDGFRB. P53 expression has been associated with poor prognosis

[17;18] as well as PDGFRB mutation [19]. Alterations of the IGF

and insulin receptor pathway have been documented [20].

However, to date, none of these alterations has reached clinical

application as diagnostic, prognostic or therapeutic target. High-

throughput molecular analyses have been applied to soft tissue

sarcomas (STSs) [21], but very rarely to SFTs, To our knowledge,

only two gene expression profiling studies have been reported to

date [22;23], including a relatively limited number of cases (13 and

23), and only one compared SFT with STS [22].

Here, we have hybridized a series of 16 SFTs. using whole-

genome DNA microarrays and analyzed their gene expression

profiles in combination with profiles of publicly available data sets

including 36 additional SFTs and 212 STSs. We compared SFTs

and STSs in terms of transcriptional heterogeneity and profiles.

We also compared SFTs according to their anatomical location

and mitotic index. Finally, immunohistochemistry (IHC) was

applied to validate at the protein level the differential expression of

some discriminating genes.

Materials and Methods

Gene Expression Profiling of Solitary Fibrous Tumors
Sixteen pre-treatment samples of pathologically confirmed SFT

were available for RNA profiling. They were collected from 16

patients who underwent initial surgery (N = 12) and/or diagnostic

biopsy (N = 4) in one of the 6 participating centers. Samples were

macrodissected by pathologists, and frozen within 30 min of

removal in liquid nitrogen in our biobank (Biobank authorization

number 2008/70, APHM). All profiled specimens contained more

than 70% of tumor cells. The main histoclinical characteristics of

patients and samples are listed in Table 1. The median age was 52

years, and the sex ratio 7F/9M. Samples corresponded to primary

tumors (14 cases) and local relapses (2 cases). Their origin was

meningeal (12 cases) and extra-meningeal (soft tissue: 4 cases). The

mitotic count was low (5 or less than 5 mitoses for 10 high-power

fields HPF) in 10 samples, and high (more than 5 mitoses/10 HPF)

in 6. Ten cases were cellular forms of SFT while six were

conventional. Each patient gave written informed consent for

molecular analysis, and the study was approved by our institu-

tional ethics committee.

Total RNA was extracted from frozen samples by using the All-

In-One Norgen Biotek kit (Thorold, Canada) and integrity was

controlled by Agilent analysis (Bioanalyzer, Palo Alto, CA). Gene

expression profiling was done with Affymetrix U133 Plus 2.0

human oligonucleotide microarrays containing over 47,000

transcripts and variants, including 38,500 well-characterized

human genes. Preparation of cRNA, hybridizations, washes and

detection were done as previously described [24]. Expression data

were analyzed by the RMA (Robust Multichip Average) method in

R using Bioconductor and associated packages [25]. RMA

performed the background adjustment, the quantile normalization

and finally the summarization of 11 oligonucleotides per gene.

Raw data of the 16 SFT samples that we have hybridised are

publicly available in a MIAME format in the ArrayExpress

database (accession number: E-MTAB-1361).

Public Gene Expression Data Sets
To increase the size of the SFT series and include STS samples

as controls, we collected three publicly available data sets: West’s

set [23] collected from (http://microarray-pubs.stanford.edu/tma-

portal/DTF_SFTbreast) and including 13 SFTs (surgical speci-

men; disease stage not available) and 30 STS profiled using

42,000-element cDNA microarrays, Hajdu’s set [22] collected

from (http///cbio.mskcc.org/Public/SFT) and including 23 SFTs

(surgical specimen representing 9 primary tumors, 4 local relapses

and 10 metastatic relapses) and 33 STSs profiled using Affymetrix

U133A microarrays, and Barretina’s set [26] collected from NCBI

GEO database (GSE21124) and including 149 STSs profiled using

U133A microarrays. Both expression and histoclinical (Table S1)

data were collected.

Analysis of Gene Expression Data
Whole-genome mRNA expression profiles of 52 SFTs and 212

STSs were available for analysis. For the unsupervised analysis and

the supervised analyses (except that centered on the mitotic index),

samples were divided in a learning set including our series pooled

with West and Barretina’s series (29 SFTs and 179 STSs) and an

independent validation set (Hajdu’s series: 23 SFTs and 33 STSs).

Before analysis, expression data generated from different techno-

logical platforms and laboratories were processed to eliminate

potential biases. The three combined series of the learning set

(West and Barretina’s series and our series) were pre-processed

together. By contrast, the validation set (Hajdu’s series), which was

analyzed separately, did not need further pre-processing of

uploaded data.

Pre-processing of expression data included as first step the

selection of genes unique and common to the three data sets. We

mapped hybridization probes across the different technological

platforms (Affymetrix U133A and U133 Plus 2.0, and Stanford

cDNA microarrays). Affymetrix gene chips annotations were

updated using NetAffx Annotation files (www.affymetrix.com;

release from 01/12/2008). Stanford gene annotations were

retrieved and updated using EntrezGene (Homo sapiens gene

information db, release from 09/12/2008, ftp://ftp.ncbi.nlm.

nih.gov/gene/). All probes were then mapped based on their

EntrezGeneID. When multiple probes were mapped to the same

GeneID, the one with the highest variance in a particular data set

was selected to represent the GeneID. For redundant Affymetrix

Table 1. Histoclinical characteristics of SFT samples.

Characteristics N %

Age, years

median 52

range 22–68

Sex

female 7 44

male 9 56

Location

meningeal 12 75

extra-meningeal 4 25

Histological subtype

cellular 10 62

fibrous 6 38

Mitotic count

low 10 62

high 6 38

doi:10.1371/journal.pone.0064497.t001
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probe sets, those with an extension « _at », next « s_at », and

followed by all other extensions were preferentially kept. This step

retained a total of 10,138 unique genes common to the three

series. The second step was the normalization of the three

combined data sets for these 10,138 genes using Distance

Weighted Discrimination (DWD) [27]. Analysis of this pooled

set was then unsupervised and supervised.

Unsupervised analysis was done using hierarchical clustering in

the learning set. Before analysis, data were log2-transformed.

Clustering was done using the Cluster program [28] with data

median-centered on genes, Pearson correlation as similarity

metrics and centroid linkage clustering. Results were displayed

using TreeView program [28]. The robustness of tumor clusters

was estimated by the AU (Approximately unbiased) p-values

provided by multiscale bootstrap resampling in the R-package

pvclust [29], larger the p-values, more robust the clusters.

Supervised analyses used a learning set and a validation set as

recommended. The series used as learning or validation set in the

different supervised analyses are indicated in Table S1. For each

signature, Significance Analysis of Microarrays (SAM) [30]

identified and ranked genes discriminating the two groups of

samples in the learning set, from which PAM (Prediction Analysis

of Microarrays) [31] developed a predictive model. The robustness

of PAM models was estimated using both internal cross-validation

(CV) across 100 iterations and external validation in an

independent data set. For the mitotic index signature that included

only overexpressed genes, we could not use PAM to develop the

classifier. This latter was defined as a metagene computed as the

mean expression level of included genes. The optimal threshold for

classification was determined in the learning set using ROC curve

(defined as the cut-off that maximizes the ROC area), and was

then applied to the validation set (West’s series here).

To help in the interpretation, the lists of differential genes were

interrogated using the Ingenuity Pathway Analysis (IPA) software

(version 5.5.1–1002; Ingenuity Systems, Rewood City, CA) and

the GO (Gene Ontology) database.

Array-based Comparative Genomic Hybridization
We have previously reported an array-based comparative

genomic hybridization (aCGH) analysis of 47 SFTs [32], including

12 out of the 16 SFT samples profiled in the present study at the

transcriptional level. Samples had been profiled usng high-

resolution 244K CGH microarrays (Hu-244A, Agilent Technol-

ogies, Massy, France), using a pool of 13 normal male DNA as

reference. Here, we searched for copy number alterations (CNA)

of the genes found as differentially expressed between SFTs and

STSs. Low-level CNAs were defined as gain when log2 ratio was

superior to 0.5 and as loss when inferior to 21.

Immunohistochemistry
Automated immunohistochemistry (iHC) was performed on

slides of tissue microarrays (TMA) paraffin blocks including 93

SFTs (80 meningeal and 13 from soft tissue) and 752 STSs

including 98 genetically-confirmed synovial sarcomas, 50 epithe-

lioid sarcomas, 44 dedifferentiated liposarcomas, 339 pleiomor-

phic or undifferentiated sarcomas, 71 leiomyosarcomas, and 150

GIST. TMA included also 147 « benign tumors » including 80

desmoId tumors and 31 pleiomorph/fusiform cell lipomas.

All tumor specimens were fixed in 4% formalin. TMAs were

prepared as previously described [33]. For each sample, three

representative sample areas were carefully selected from a

hematoxylin–eosin-stained section of a donor block. The diameter

of core cylinders was 0.6 mm for SFTs and 1 mm for soft tissue

tumors. Each were punched from three representative areas and

deposited into two separate recipient paraffin blocks using a

specific arraying device (Alphelys). Automated IHC was per-

formed using a Ventana automate (Benchmark XT, Ventana

Medical Systems SA, Illkirch, France). Two proteins were

analyzed: ALDH1 and AURKA, using respectively the anti-

ALDH1 antibody (clone 44/ALDH, BD Transduction Laborato-

ries, dilution: 1/500) and the anti-AURKA antibody (clone

JLM2P, Novocastra, dilution 1/50). For ALDH1, the positive

external control was a glioblastoma tissue sample, whereas

negative controls corresponded to omission of primary antibody

or irrelevant antibodies of the same isotype. IHC was recorded as

positive when a cytoplasmic staining was observed in 5% or more

of the tumor cells as previously described [34]. Then a semi-

quantitative analysis was done for positive specimens leading to 3

categories: weak positivity (5–10% of stained cells), moderate

positivity (11–50%), and strong positivity (.50%). For AURKA,

the staining was recorded as positive when observed in at least 1%

of tumor cells [35;36]. The positive control was lymphocytes in the

germinal center of tonsil, whereas negative control was obtained

by omitting the primary antibody.

Statistical Analyses
Correlations between sample groups and histoclinical parame-

ters were calculated with the Fisher’s exact test. Odds ratios (OR)

were given with their 95% confidence interval. All statistical tests

were two-sided at the 5% level of significance. Statistical analyses

were done using the SPSS software (version 10.0.5).

Results

SFTs are Very Different from STSs on a Whole-genome
Scale

Hierarchical clustering was applied to the 29 SFTs and 179

STSs pooled from the learning set (Figure 1A–B). All SFTs

clustered together, suggesting clear distinction from STSs, and

displayed relatively homogeneous expression profiles. In fact, all

208 samples were sorted into two major clusters (I and II), which

correlated with the histological type (SFT, STS with simple genetic

alterations thereafter designed genetically-simple STS, and STS

with complex genetic alterations thereafter designed genetically-

complex STS; p,2.2E-16, Fisher exact test). Cluster I (N = 97)

consisted of all 29 SFTs in the left branch (cluster Ia) and 68 STSs

in the right branch (cluster Ib). These 68 STS included all

genetically-simple STSs (all 5 DFSPs, all 5 GISTs, all 20 myxoid/

round cell liposarcomas, and all 6 synovial sarcomas), and only

32/143 genetically-complex STSs (19/46 dedifferentiated liposar-

comas, 9/23 pleiomorphic liposarcomas, 3/35 leiomyosarcomas,

and 1/39 malignant fibrous histiocytomas). Cluster II (N = 111)

included only genetically-complex STSs, with leimyosarcomas (left

branch, cluster IIa) being more homogeneous than dedifferenti-

ated liposarcomas, pleiomorphic liposarcomas, and malignant

fibrous histiocytomas (right branch, cluster IIb). The most

heterogeneous STSss were the dedifferentiated liposarcomas and

the pleiomorphic liposarcomas, which were scattered across the

two clusters, intermixed with other STS subtypes. The pvclust

package defined the robustness of tumor clusters (data not shown).

As expected, all SFTs and all genetically-simple STSs, except

GISTs (93% robust cluster), were included in 100% robust

clusters. By contrast, only a part of genetically-complex STSs

(from 26 to 66% according to the histological type) were included

in robust clusters (AU p-value $95%).

Clustering identified coherent gene clusters (zoomed in

Figure 1C as metagenes) corresponding to specific biological

functions or cell types: a ‘‘proliferation cluster’’ overexpressed in

Expression Profiling of Solitary Fibrous Tumour
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genetically-complex STSs, a ‘‘muscle cluster’’ overexpressed in

leimyosarcomas overall, an ‘‘immune cluster’’ and an ‘‘extracel-

lular matrix cluster’’ overexpressed in dedifferentiated liposarco-

mas and malignant fibrous histiocytomas overall in agreement

with their immune and fibrous features, a ‘‘ribosomal protein

cluster’’ overexpressed in myxoid/round cells liposarcomas

overall. Other biologically relevant clusters included a ‘‘vascular

cluster’’ and an ‘‘early response gene cluster’’. We also identified a

cluster of co-expressed genes representing a presumptive gained

chromosomal region – the ‘‘12q13–15 gain cluster’’ - of which

86% of genes, including MDM2 and CDK4, are located on the

12q13–15 chromosomal region; as expected, its expression was

visually associated with dedifferentiated liposarcomas. Visually, 4

gene clusters (proliferation, immune, muscle, and extracellular

matrix) were underexpressed in SFTs overall as compared with

genetically-complex STSs. Finally, we confirmed the expected

overexpression of some genes: KIT and ANO1/DOG1 in GISTs,

MDM2 and CDK4 in non-myxoid/round cells liposarcomas,

CALD1 and tropomyosin genes (TPM1, TPM2) in leiomyosarco-

mas, PDGFB in DFSPs, MUC1/EMA in synovial sarcomas, and

CD34 in SFTs.

Comparison of SFTs and All STSs by Supervised Analysis
SAM analysis identified 3,401 genes as differentially expressed

between SFTs (N = 29) and STSs (N = 179) from the learning set

(FDR inferior to 0.01%), including 1,622 and 1,779 genes,

respectively overexpressed and underexpressed in SFTs (Table

S2). Figure 2A shows the resulting classification of 208 samples

that, as expected, perfectly correlated with the pathological type

(p,2.2E-16, Fisher’s exact test). The robustness of the Gene

Expression Signature (GES) was first verified by PAM cross-

validation in the learning set with 100% of samples correctly

classified (p,2.2E-16, Fisher’s exact test). More importantly, the

signature and the PAM model defined in the learning set, when

applied to a totally independent validation set of 56 samples (23

SFTs and 33 STSs), nearly perfectly separated the two patholog-

ical types with only 1 STS sample falsely predicted as SFT (97%

accuracy; p = 5.4E-16, Fisher’s exact test; Figure 2B).

To translate the RNA expression profiles into functionality, the

list of differentially expressed genes was interrogated by IPA and

GO software. Given the high percentage of differential genes, the

gene list was first reduced to genes with an arbitrary fold change

(FC) of expression between SFT and STS of at least 2 (702 genes).

Results are shown in Table S3.

Figure 1. Whole-genome expression profiling of SFTs and STSs. A. Hierarchical clustering of 208 samples (29 SFTs and 179 STSs) and 10,089
genes with significant variation in mRNA expression level across the samples (SD$0.25). Each row of the data matrix represents a gene and each
column a sample. Expression levels are depicted according to the color scale shown at the bottom, where red and green indicate expression levels
respectively above and below the median and the color saturation represents the magnitude of deviation from the median. The dendrogram of
samples (above matrixes) represents overall similarities in gene expression profiles and is zoomed in B. Colored bars to the right indicate the locations
of 8 gene clusters of interest. B. Dendrogram of samples. Top, two large groups of samples (designated I and II) are evidenced by clustering and
delimited by the orange vertical line. Each cluster is divided into two subclusters (a and b) delimited by orange dotted vertical lines. Bottom, some
characteristics of samples are represented according to a color ladder: sample type (black, SFT; white, STS); histological subtype (black, SFT; pink,
DFSP; salmon, GIST; dark blue, synovial sarcoma; light green, myxoid/round cells liposarcoma; yellow, dedifferentiated liposarcoma; dark green,
pleomorphic liposarcoma; red, leiomyosarcoma; purple, malignant fibrous histiocytoma); degree of genetic complexity of STSs (white, simple; grey,
complex). C. Metagene (MG) of the 8 gene clusters shown in Figure 1A (the metagene is the mean expression level of included genes) and four
control genes (EntrezGene symbol) known as differentially expressed according to the histological subtype.
doi:10.1371/journal.pone.0064497.g001
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Comparison of SFTs and Genetically-simple STS by
Supervised Analysis

Because SFTs displayed whole-genome expression profiles

closer to those of genetically-simple STSs than to those of

genetically-complex STSs, themselves very different from genet-

ically-simple STSs, we repeated the analysis by comparing in the

learning set the 29 SFTs with the 36 genetically-simple STSs. The

results were very close to those of the first analysis. A total of 2,914

genes were differentially expressed (1,368 and 1,546 respectively

overexpressed and underexpressed in SFTs) with a FDR inferior to

0.01% (Table S4), with 2,052 genes common between the two

signatures (60% of genes for the first signature, 70% for the second

one). The signature was robust with 100% accuracy of classifica-

tion (Figure S1) by the PAM model in the learning set by cross-

validation (p = 4E-19, Fisher’s exact test) and 95% in the

independent validation set (23 SFTs and 15 STSs) where only 2

out of 38 samples were misclassified (p = 8.8E-09, Fisher’s exact

test).

Analysis of ontologies was applied to the 752 differential genes

displaying a FC of expression between SFT and STS of at least 2

(Table S5).

Transcriptional Alterations are not Due to DNA Copy
Number Alterations

Twelve out of our 16 SFT samples had been previously profiled

at the DNA level using whole-genome aCGH [32]. Regarding the

3,401-gene signature, 3.071 genes not located on sexual chromo-

somes were present on our aCGH chips. As shown in Table S6,

only 11 out of 3,071 genes showed CNA in at least 1 out of 12

tumors: ADAM22, AFTPH, HLA-DRB6, MEIS1, PELI1, RAB1A,

SERTAD2, SLC25A40, SPRED2, SRI, which were gained in only 1

tumor, and GSTT1 in 2 tumors. However, the CNA was not

necessarily the cause of RNA deregulation. Five of these 11 genes

are located in chromosomal regions with known copy number

variation (CNV). For three other genes, the tumor with gain did

not show the highest expression level within the 12 samples. In

fact, such positive correlation was observed for 3 genes only

(ADAM22, AFTPH, SRI). Thus, most of the genes with RNA

deregulation did not show any DNA CNA. Regarding the second

signature (2,914 genes), the results were very similar (Table S7).

Transcriptional Heterogeneity of SFTs and intra-SFT
Supervised Analyses

As shown in Figure 1, SFTs constituted a homogeneous cluster

when compared to STSs on a whole-genome scale. To study the

intrinsic degree of transcriptional heterogeneity of SFTs, hierar-

chical clustering was applied to the 29 SFT samples from the

learning set. Two major robust tumor clusters (AU p-value $95%)

were identified (Figure S2); they did not correlate with the

following histoclinical features: tumor location (meningeal vs.

extra-meningeal), mitotic count (high vs. low), and histological

subtype (cellular vs. conventional).

Supervised analyses were then done within our 16 SFTs

(learning set), centered on two features, anatomic location and

mitotic count. Regarding the location, we compared the profiles of

12 meningeal versus 4 extra-meningeal samples from our series. We

did not include West’s samples because their anatomic location

was not available. SAM identified 573 genes (FDR ,5%) as

differentially expressed (Table S8), that perfectly classified the 16

samples (Figure 3A). The robustness of this signature was

confirmed by internal cross-validation, but above all, by external

validation in the independent validation set (Hajdu’s set) with 70%

accuracy in the resulting classification (p = 0.019, Fisher’s exact

test; Figure 3B). IPA ontologies associated with the 573-gene list

are shown in Table S9.

The second supervised analysis compared samples according to

their mitotic count: 6 ‘‘high’’ cases vs. 10 ‘‘low’’ cases in the

learning set (our series alone). We found 31 genes (FDR ,15%) as

differentially expressed (Table S10), all overexpressed in the

‘‘high’’ count cases (Figure 3C). The robustness of this 31-gene

signature was confirmed in the West’s data set where all 13

samples (low mitotic count) were correctly predicted (Figure 3D).

To translate the signature into functionality, the list of 31

overexpressed genes was interrogated by IPA software. As

expected (Table S11), most of the overrepresented canonical

pathways and biological functions were associated with cell cycle,

Figure 2. Supervised analysis of SFTs and all STSs. A. Classification of 208 samples (29 SFTs and 179 STSs) from the learning set using the
3,401-gene expression signature. Top, matrix of gene expression data. The legend is similar to Figure 1A. Tumor samples are ordered from left to right
according to the decreasing correlation coefficient of their expression profile with the mean profile of the SFT samples. The genes are ordered form
top to bottom according to their decreasing SAM statistics of SFT association. Middle: actual histological type (black, SFT; white STS). Bottom,
probability (from 0 to 1) for each sample to be predicted as non-SFT by the PAM model based on the signature. Red dots represent SFT samples, and
black STS samples. The solid orange vertical line indicates the threshold of 50% (equiprobability according to PAM model) that separates the two
signature-predicted classes of samples. B. Similar to A, but applied to the 56 samples (23 SFTs and 33 STSs) from the independent validation set.
doi:10.1371/journal.pone.0064497.g002
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cell proliferation, mitotic spindle organization, and DNA replica-

tion and repair.

Validation of mRNA Deregulation Using IHC
First, we sought to confirm at the protein level the differential

expression of ALDH1A1 between SFTs and STSs (FC superior to

30 at the RNA level). A total of 93 SFTs and 899 mesenchymal

tumors, including 752 STSs, were analyzed on TMA. Examples of

IHC staining are shown in Figure 4. We first verified the

correlation between RNA (continuous values) and protein (semi-

quantitative values representing the percent of stained tumor cells)

expression in the 15 SFTs profiled with both techniques: 12 cases

were IHC positive and 3 were negative. The correlation was

significant (r = 0.60, p = 0.02, Pearson correlation). We then

compared the protein expression in the whole series of SFTs

and STSs. The difference was highly significant (p = 8.7E-83,

Fisher exact test; OR = 334 [146–864]; Table 2) with 79 out of 93

SFTs that were positive (85%) versus only 12 out of 752 STSs

(1.6%), thus confirming the transcriptional data. The number of

stained tumor cells was relatively high within the 79 ALDH1-

positive SFTs, with 14 cases scored as weak, but 26 as moderate

(11 to 50% positive cells) and 39 as strong (.50% positive cells).

All 44 dedifferentiated liposarcomas, all 339 pleomorph sarcomas,

and all 71 leiomyosarcomas were negative. Seven out of 98

synovial sarcomas (7%) were positive, as were 4 out of 50

epithelioid sarcomas (8%). One out of 150 GISTs (0.6%) showed a

weak positivity. Regarding the benign mesenchymal tumors, 19

out of 147 were positive (13%), including 18 out of 31

pleiomorph/fusiform cell lipomas (58%) and 1 out of 80 desmoId

tumors (1.25%). The difference between the benign tumors and

SFTs for ALDH1 expression was also significant (p = 1.1E-30,

Fisher exact test; OR = 39 [18–92]);

Second, we sought to confirm the differential expression of

AURKA according to the mitotic index of SFTs. AURKA protein

expression and mitotic index were simultaneously available for 51

out of 93 SFTs. Twenty-one out of 30 (70%) samples with low

mitotic index were AURKA-negative and 14 out of 21 (67%)

samples with high mitotic index were AURKA-positive (p = 0.01,

Fisher exact test; OR = 4.51 [1.22–18.44]), thus confirming the

transcriptional data.

Discussion

To our knowledge, only one high-throughput molecular study

in literature has compared the gene expression profiles of SFTs

(N = 23) and STSs (N = 34) [22]; it revealed insights potentially

relevant at the clinical level. Unfortunately, the series size impeded

to test the robustness of differential expression profiles in an

independent validation set, and no protein analysis was reported.

In this context, our present analysis, which pools our own data set

and 3 publicly available data sets, is the largest one analyzing the

genome-wide transcriptional differences between SFTs and STSs

and between relevant subgroups of SFT. We analyzed 52 SFTs

and 212 STSs. This allowed the definition of independent learning

and validation sets. Furthermore, the differential expression of

some genes was confirmed at the protein level using IHC in a

larger series of 93 SFTs and 752 STSs.

Whole-genome unsupervised analysis revealed that SFTs are

very different from STSs and more homogeneous. SFTs were

closer to genetically-simple STSs than to genetically-complex

STSs. They displayed a transcriptional profile nearly as homoge-

neous as myxoid/round cell sarcomas, which are characterized by

a specific translocation. The actual homogeneity of SFTs was

better tested by clustering them separately on a whole-genome

scale. Two robust clusters were identified, but did not correlate

with any tested histoclinical features. To determine whether these

robust clusters represent clinically relevant entities of SFT will

require larger series.

The supervised analyses comparing SFTs and STSs identified a

high proportion of differentially expressed genes despite a stringent

FDR (,0.01%): 3,401 out of 10,089 tested genes (34%) in the

comparison with all STSs, and 2,914 out of 10,089 (29%) in the

comparison with genetically-simple STSs only. For comparison,

the difference is as high as that we had reported between cancers

of different anatomical origin (breast vs colon) or between acute

leukemia representing different cell lineages (myeloid vs lymphoid)

[24]. The reasons for this profound transcriptional difference

between SFT and STS may include different cell–of-origin, but

also particular SFT features such as lower proliferation rate

overall, higher cell purity of samples (lesser contamination by non-

tumor cells), absence of major genetic alterations and higher

genome stability compared to STS. In a subset of samples

previously profiled using aCGH [32], none of the differentially

expressed genes showed recurrent DNA CNA in relation with

mRNA deregulation, suggesting that CNA is not the responsible

mechanism and that other causal molecular alterations, genetic

and/or epigenetic, remain to be identified.

Importantly for high-throughput supervised analyses [37], the

robustness of the two SFT/STS GES (SFTs vs. all STSs, and SFTs

vs. genetically-simple STSs) was confirmed by the nearly perfect

Figure 3. Supervised analyses of SFTs based on the location
and mitotic count. A. Legend similar to Figure 2, but applied to 16
SFT samples (12 meningeal M and 4 extra-meningeal Extra-M). The
signature includes 573 genes. Samples are ordered from left to right
according to the decreasing correlation coefficient of their expression
profile with the mean profile of the meningeal samples. The solid
vertical line indicates the threshold of 50% (equiprobability according
to PAM model) that separates the two signature-predicted classes of
samples. The genes are ordered form top to bottom according to their
decreasing SAM statistics of meningeal SFT association. B. Similar to A,
but applied to the 23 samples from the independent validation set (8
meningeal M and 15 extra-meningeal Extra-M). C. Similar to A, but
applied to 16 SFT samples (10 with low mitotic count MC and 6 with
high count). The signature includes 31 genes. Samples are ordered from
left to right according to the decreasing metagene score. The solid
vertical line indicates the optimal cut-point (0.33) defined using ROC
analysis that separates the two signature-predicted classes of samples.
D. Similar to C, but applied to the 13 samples from the independent
validation set (all with low mitotic count).
doi:10.1371/journal.pone.0064497.g003
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(97% and 95% respectively) classification of samples in indepen-

dent validation sets. The two signatures were very similar: 70% of

genes of the second GES were also present in the first GES. Our

results also confirmed the previously reported overexpression of

several genes in SFTs as compared with STSs, such as BCL2 [10],

and 10 out of the 16 discriminating genes quoted in the core text

of Hajdu’s report [22]: ALDH1A1, APOD, COL16A1, COL17A1,

COL6A3, DDR1, ERBB2, FGFR1, GRIA2, and IGF1. We also

confirmed the strong overexpression of IGF2, responsible for

hypoglycemia observed in the Doege-Potter syndrome and related

to loss of imprinting (LOI) [22] by aberrant methylation. In this

context, whether IGF2 LOI is associated in SFT with global

Figure 4. Microscopic aspects and ALDH1 expression using IHC. A. Microscopic features (HES) of a glioblastoma used as positive control for
ALDH1 immunostaining. B. ALDH1 expression in the cytoplasm of few astrocytic tumor cells. C–D.Microscopic features (HES) of an SFT in a collagenic
area (C) and of an SFT in a cellular area with an ‘‘hemangiopericytoma’’ vascular pattern (D). E–F. ALDH1 immunostaining in a collagenic area (E) and
in a cellular area (F): note the strong and diffuse expression in the cytoplasm of tumor cells. For all images, magnification is625.
doi:10.1371/journal.pone.0064497.g004
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demethylation, as observed in Wilms tumors [38], warrants

methylome analysis of SFT samples.

Given the fact that CD34, the most consistent marker of SFT to

date, is a marker of hematopoı̈etic stem cells, it was quite

intriguing to find ALDH1A1, another stem cell marker, among the

genes most overexpressed in SFTs (fold change = 34). This

overexpression was validated at the protein level in an indepen-

dent and larger series of samples. Beside a potential diagnostic

interest, such observation might have pathogenic significance.

ALDH1 is a cytosolic detoxifying enzyme responsible for the

oxidation of intracellular aldehydes [39] and involved in the

retinoid metabolism with a role in early differentiation of stem

cells, through the oxidation of retinol to retinoic acid [40]. It is

recognized as a universal marker for both normal and cancer stem

cells [41]. Mesenchymal cells are organized in a hierarchy in

which ALDH1-positive cells display properties of stem cells [42].

Recently, the presence of increased ALDH1 activity allowed the

identification of a subpopulation of human sarcoma cell lines

[43;44] with stem cell properties, including high level of expression

of stem cell genes such as NANOG, OCT3/4, STAT3 and SOX2,

and resistance to chemotherapy. Other results from our supervised

analyses suggest some degree of stemness in SFTs: overexpression

of retinoic acid receptors (RARA, RARG) and several HOX genes

(HOXA2-3-4, HOXB2-3-5-16, HOXC5), known targets of retinoic

acid, as well as overexpression of many genes previously identified

as overexpressed in mesenchymal stem cells [45] such as ANXA1,

APOD, BMP2, CD44, CYR61, FOXO1, GLIPR1, CTGF, LIFR,

SNAI2, and TGFB1 (data not shown). Ontology analysis (applied to

genes differentially expressed and displaying a FC equal or

superior to 2) confirmed this trend with the overrepresentation of

ontologies related to stem cells within the genes upregulated in

SFTs (‘‘LXR/RXR activation’’, ‘‘TR/RXR activation’’, ‘‘LPS/

IL-1 mediated inhibition of RXR function’’, ‘‘PXR/RXR

activation’’, ‘‘ascorbate and aldarate metabolism’’, ‘‘role of

NANOG in mammalian embryonic stem cell pluripotency’’,

‘‘NFkB signaling’’, ‘‘WNT/beta-catenin signaling’’, ‘‘HER2 sig-

naling in breast cancer’’, ‘‘growth hormone signaling’’, ‘‘EGF

signaling’’).

The cell-of-origin of SFT is unknown. Initial studies suggested

that pleural SFTs arise from immature mesenchymal stem cells

located in the submesothelial layer of the visceral pleura [46].

More recent studies based on electron microscopy [47;48] showed

considerable cellular heterogeneity in SFTs, which might originate

from perivascular undifferentiated mesenchymal stem cells able to

differentiate along several evolutional lines such as pericytic,

endothelial and fibroblastic, following a pathway that occurs in

normal angiogenesis. The frequent overexpression of ALDH1 and

other progenitors and stem cells-related genes in SFTs agrees with

this model and suggests an immature undifferentiated state with

high number of mesenchymal progenitor/stem cells. Furthermore,

since ALDH1 has been implicated in resistance to chemotherapy,

notably to drugs classically used in sarcoma patients such as

ifosfamide [49] and anthracyclines [44], its overexpression in SFTs

could explain in part the chemoresistance of these tumors [50].

Interestingly, some genes overexpressed in SFTs encode

therapeutic targets of drugs commercialized or under development

(Table S2): BCL2, CD33, EGFR, ERBB2, FGFR1, FNTA, FYN and

YES1, RARA and RARG, and TLR3. They also include several

additional kinase genes such as CHEK1, DDR1, EPHA1, EPHB1,

JAK2, JAK3, LCK, PIK3C2G, PRKCD, PTK7, STK3, and STK4, and

5 genes coding for histone deacetylases (HDAC1, 3, 4, 5 and 11).

Of course, before any clinical testing, functional experiments are

warranted to determine whether the overexpression of these

‘‘druggable’’ genes in SFTs represents a ‘‘passenger’’ or a ‘‘driver’’

alteration. Histone deacetylases may be interesting candidates.

HDACs are transcriptional corepressors, whose mutations and/or

overepression have been reported in several cancers, making them

new important therapeutic targets. Clinical trials with HDAC

inhibitors are ongoing in sarcomas (NCT01112384: SB039;

NCT00918489: vorinostat; NCT00878800: belinostat). On the

basis of our observation, analysis of patients with SFT is awaited.

Our other supervised analyses compared expression profiles of

SFT subgroups defined upon anatomical location and mitotic

index. Meningeal SFTs have long been considered as different

from pleural or extra-pleural SFTs. Our data suggest that they are

not significantly different at the transcriptional level on a whole-

genome scale. However, a robust 573-gene signature was

identified by supervised analysis, suggesting differences between

both locations. This result is consistent with that reported in a

series of 23 samples [22]. Mitotic index is a prognostic feature of

SFT, but displays some limitations at the technical (reproducibility)

and prognostic levels. We identified a robust 31-gene signature

discriminating SFTs with ‘‘low’’ versus ‘‘high’’ mitotic count. The

analysis revealed many genes related to cell cycle and mitosis,

including the classical Ki67 cell cycle marker and some kinases

involved in G2 and M phases of the cell cycle: Aurora-A, a major

kinase regulating mitosis, BUB1, BUB1B and TTK/MPS1 with

known key roles in the various cell division checkpoints, and

MELK, a regulator of the S/G2 and G2/M transitions.

Interestingly, some of these genes such as AURKA, BUB1, TTK,

and RRM2 code for therapeutic targets of drugs under develop-

ment (Table S5). Using IHC, we could validate the overexpression

of AURKA in SFTs with high mitotic index in a 51-sample series.

In conclusion, we report the largest gene expression profiling

study of SFTs. The robustness of our GES was confirmed using

independent validation sets at the RNA level and for 2 genes at the

protein level. The comparison between SFTs and STSs evidenced

several differentially expressed genes, some of them could provide

new diagnostic markers (ALDH1), as well as potential prognostic

(AURKA) and/or therapeutic targets.

Supporting Information

Figure S1 Supervised analysis of SFTs and genetically-
simple STSs. A. Legend similar to Figure 2, but applied to 65

samples from the learning set including all 29 SFTs and the 36

genetically simple STSs. The signature includes 2,914 genes. B.
Similar to A, but applied to the 38 samples from the independent

validation set including all 23 SFTs and the 15 genetically simple

STSs.

(PPT)

Figure S2 Whole-genome expression profiles of SFTs. A.
Hierarchical clustering of 29 SFTs and 8,679 genes with

significant variation in mRNA expression level across the samples

(SD$0.25). The legend is similar to Figure 1A. B. Dendrogram of

samples. Top, two large groups of samples are evidenced by

Table 2. ALDH1 IHC status and histological types.

ALDH1 IHC status Total

Negative Positive

Histological type STS 740 12 752

STF 14 79 93

Total 754 91 845

doi:10.1371/journal.pone.0064497.t002
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clustering and confirmed as robust by pvclust (AU p-value $95%).

Bottom, some characteristics of samples are represented according

to a color ladder: anatomic location (black, meningeal; white,

extra-meningeal), histological type (black, cellular; white, conven-

tional), and mitotic count (white, low; black, high).

(PPT)

Table S1 Description of the gene expression data sets
analyzed.

(XLS)

Table S2 List of 3,401 genes differentially expressed
between SFTs vs. all STSs.

(XLS)

Table S3 Ontologies associated with the 3,401-gene list
(SFTs vs. all STSs) restricted to 702 genes with FC $2.

(XLS)

Table S4 List of 2.914 genes differentially expressed
between SFTs vs. genetically-simple STSs.

(XLS)

Table S5 Ontologies associated with the 2,914-gene list
(SFTs vs. genetically-simple STSs) restricted to 752
genes with FC $2.

(XLS)

Table S6 Analysis of DNA CNA in the 3,071 genes
differentially expressed between SFTs vs. all STSs, not
located on sexual chromosomes and present on our
Agilent aCGH chips.

(XLS)

Table S7 Analysis of DNA CNA in the 2,014 genes
differentially expressed between SFTs vs. genetically-
simple STSs, not located on sexual chromosomes and
present on our Agilent aCGH chips.
(XLS)

Table S8 List of 573 genes differentially expressed
between meningeal SFTs vs. extra-meningeal SFTs.
(XLS)

Table S9 Ontologies associated with the 573-gene list
(meningeal SFTs vs. extra-meningeal SFTs).
(XLS)

Table S10 List of 31 genes differentially expressed
between SFTs with high mitotic count vs. SFTs with
low count.
(XLS)

Table S11 Ontologies associated with the 31-gene list
(SFTs with high mitotic count vs. SFTs with low count).
(XLS)
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