
HAL Id: hal-01538157
https://hal.sorbonne-universite.fr/hal-01538157

Submitted on 13 Jun 2017

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Towards automated deployment of self-adaptive
applications on hybrid clouds

Lom Messan Hillah, Rodrigo Assad, Antonia Bertolino, Marcio Delamaro,
Fabio de Rosa, Vinicius Garcia, Francesca Lonetti, Ariele-Paolo Maesano,

Libero Maesano, Eda Marchetti, et al.

To cite this version:
Lom Messan Hillah, Rodrigo Assad, Antonia Bertolino, Marcio Delamaro, Fabio de Rosa, et al..
Towards automated deployment of self-adaptive applications on hybrid clouds. 15th International
Conference on Software Engineering and Formal Methods (SEFM 2017), Sep 2017, Trento, Italy.
�hal-01538157�

https://hal.sorbonne-universite.fr/hal-01538157
https://hal.archives-ouvertes.fr


Towards automated deployment of self-adaptive
applications on hybrid clouds

Lom Messan Hillah12, Rodrigo Assad3, Antonia Bertolino4, Marcio Delamaro5

Fabio De Rosa6, Vinicius Garcia7, Francesca Lonetti4, Ariele-Paolo Maesano6,
Libero Maesano6, Eda Marchetti4, Breno Miranda7, Auri Vincenzi8, and

Juliano Iyoda7

1 Univ. Paris Nanterre, F-92000 Nanterre, France
2 Sorbonne Universités, UPMC, CNRS, LIP6 UMR7606, F-75005 Paris, France

lom-messan.hillah@lip6.fr
3 Ustore

assad@usto.re
4 ISTI-CNR, 56124 Pisa, Italy,

{antonia.bertolino, francesca.lonetti, eda.marchetti}@isti.cnr.it
5 Universidade de São Paulo

delamaro@icmc.usp.br
6 Simple Engineering, F-75011 Paris, France

{libero.maesano, ariele.maesano, fabio.de-rosa}@simple-eng.com
7 Universidade Federal de Pernambuco

{jmi,vcg,bafm}@cin.ufpe.br
8 Universidade Federal de Sao Carlos

auri@dc.ufscar.br

Abstract. Cloud computing promises high dynamism, flexibility, and
elasticity of applications at lower infrastructure costs. However, re-
source management, portability, and interoperability remain a challenge
for cloud application users, since the current major cloud application
providers have not converged to a standard interface, and the deploy-
ment supporting tools are highly heterogeneous. Besides, by their very
nature, cloud applications bring serious traceability, security and privacy
issues. This position paper describes a research thread on an extensible
Domain Specific Language (DSL), a platform for the automated deploy-
ment, and a generic architecture of an ops application manager for self-
adaptive distributed applications on hybrid cloud infrastructures. The
idea is to overcome the cited limitations by empowering the cloud appli-
cations with self-configuration, self-healing, and self-protection capabili-
ties. Such autonomous governance can be achieved by letting cloud users
define their policies concerning security, data protection, dependability
and functional compliance behavior using the proposed DSL. Real world
trials in different application domains are discussed

1 Introduction

Cloud computing is used to provision the physical resources (servers, storage,
network) of the digital ecosystem, allowing a substantial optimization of the



operating costs. However, cloud computing is more than a cost-optimizing tech-
nology. It bears to users significant features - virtualization, job scheduling, and
programmability - allowing the sustainable implementation of robust scalability,
availability, and serviceability requirements on commodity hardware.

However, the most notable features of cloud computing, such as virtualiza-
tion, come at the price of increased security and data protection risks. Moving to
a virtualized environment does not free from the security risks already faced in
the physical environment, but rather introduces new ones, related to virtual ma-
chine and network management, resource exhaustion, hypervisor vulnerabilities,
multi-tenancy handling, and cloud access control.

DevOps is an emerging paradigm of integration of the development process
within the production stage. To adopt DevOps effectively, cloud application
developers have yet to find solutions to tough problems: i) how to design, develop,
deploy, and operate efficiently applications that fulfill, on one side, stringent
scalability, availability and serviceability needs, and, on the other side, strict
security and data protection obligations; ii) how to cope with the heterogeneity
and lack of interoperability of cloud infrastructures and the consequent lack of
portability of cloud applications; iii) how to combine the advantages of agile,
flexible, and continuous integration, testing, delivery, and deployment, and of
mission-critical quality assurance, test, and verification.

The main solution of the aforementioned problems is the automation of De-
vOps jobs, in particular test, configuration, deployment, and ops management.
This position paper introduces an ongoing research on automating installation,
configuration, startup, and operation management of self-adaptive distributed
applications on hybrid cloud infrastructures. In particular, it presents an envis-
aged solution based on three correlated research topics: (i) a declarative, cloud
agnostic, and extensible Domain Specific Language (DSL) for structural and
behavioral modeling and policy definition for automated deployment and self-
management; (ii) a generic and instantiated architecture of an autonomic ops
application manager enabling self-configuration, self-healing, and self-protection;
(iii) a DSL workbench as a service, equipped with editors, wizards, consoles, and
dashboards for deployment and monitoring of self-adaptive cloud applications.

2 Related work and background

Self-aware management is becoming commonplace to address the scale, growth,
and reliability of cloud applications. The authors of [IZM+17] propose a concep-
tual framework for analyzing the state-of-the-art and comparing practical char-
acteristics, benefits, and drawbacks of self-awareness approaches used for cloud
applications in different domains. A big challenge of self-aware and adaptive dis-
tributed systems on cloud is achieving self-protection as well as guaranteeing
self-configuration, self-healing, and self-optimization. Aceto et al. [ABdDP13]
examine current platforms and services for cloud monitoring pointing out their
issues and challenges whereas the authors of [KA12] investigate testing models,
recent research works, and commercial tools for cloud testing. However, the main



open issues emerging from the analysis of the literature related to the manage-
ment of elasticity, dependability, and security of cloud applications are mainly
about the limitations of flexibility and portability in a multi-cloud environment.

The OASIS TOSCA [OAS16] standard covers the cloud-portable automation
of installation, configuration, and startup of conventional cloud applications.
TOSCA is a declarative language that let model the distributed application
topology independently from the particular target cloud infrastructure. It uses
the following concepts: Nodes - nodes represent components of an application or
service and their properties; example nodes are computer, network, storage (i.e.
infrastructure-oriented), OS, VM, DB, Web Server (i.e. platform-oriented), func-
tional libraries, or modules (i.e. applicative); (ii) Relationships - they represent
the logical relations between nodes (e.g. hosted on, connects to), and describe the
valid source and target nodes they link together; (iii) Artifacts - they describe
installable and executable objects required to instantiate and manage a service;
(iv) Service Templates - they group the nodes and relationships that make up
a service’s topology. In summary, TOSCA DSL allows describing a distributed
cloud application at the infrastructure level in a portable way. Current TOSCA
implementations target the main cloud provider infrastructures.

3 Outline of the solution

A DSL for self-adaptive cloud applications. We plan to overcome the lim-
itations sketched in the section above by extending the TOSCA standard and
implementations. The planned extensions of the TOSCA standard are about: (i)
language traits for the installation, configuration, and setup of security and data
protection provisions; (ii) language traits for structural and behavioral model-
ing of distributed applications, beyond the infrastructure level, at the applica-
tion/service level; (iii) a policy description language that enables the definition
of self-configuration, self-healing, and self-protection policies to be fulfilled at
runtime. Security and data protection provisions to be automatically installed,
configured and setup with the DSL deal with standard authentication, confiden-
tiality, and integrity. Besides the DSL language traits to efficiently and conve-
niently express these security requirements, the implementation shall take into
account security matters that are particular to cloud deployment. These concerns
are about multi-sites communication, different hypervisors (code which manages
the virtual machines), different hypervisor provided services that could have var-
ious security issues or expose security loopholes, different CPU/memory/storage.
The TOSCA standard already provides a rich and flexible language for struc-
tural modeling (topology) at the infrastructure level. We plan to enrich the lan-
guage with traits for structural modeling at the applicative level, by describing
a distributed application as a graph of logical components connected by service
dependency wires. At deployment time, this structure shall be installed, config-
ured and setup at the applicative level too. This structural model is referenced by
the self-configuration, self-healing and self-protection policies. Behavioral mod-
eling shall leverage an existing standardized notation, such as the State Chart



XML (SCXML) [W3C14]. SCXML provides a powerful, general-purpose and
declarative modeling language to describe the behavior of timed, event-driven,
state-based systems. Therefore, in our context, state machines shall describe the
external interactions between service components, explicitly showing the states
of the conversation of each component with its wired interlocutors. Behavioral
modeling will enable runtime checks and adaptation thanks to monitoring. The
runtime policy language extension shall enable: (i) non-intrusive logging of events
at the infrastructure and the applicative levels; (ii) non-intrusive monitoring
(analysis of the logging stream) with slightly delayed evaluation of infrastruc-
ture events and distributed application behavior (asynchronous passive testing);
(iii) non-intrusive active testing of the deployed application in a concurrent stag-
ing environment; (iv) intrusive active testing in the production environment to
check application robustness and fault tolerance; (v) runtime installation, con-
figuration and setup of components without service interruption, including new
version deployment and version backtracking; (vi) automatic elasticity (scalabil-
ity up and down); (vii) server failover (self-recovery); (viii) masking of transient
network failures; (ix) circuit breaking at the application level; (x) generalized
timeout management. An autonomic ops application manager shall implement
and enforce these policies at run time.

The autonomic ops application manager. The classical autonomic ar-
chitecture combines the managed application and an autonomic manager that
oversees it. The abstract (platform independent) architecture of our ops manager
includes (i) a supervisor, and (ii) a collection of concurrent feedback loops. Each
feedback loop monitors and analyses a particular aspect of the managed applica-
tion and its cloud environment and, if needed, plans and executes an adaptation
process, driven by DSL policies, which brings the managed system to a new state.
The abstract (platform independent) model of the feedback loop is the original
MAPE-K generic architecture [IW15]. The supervisor controls the concurrent
feedback loops and handles the interaction with the user, through the monitoring
facility of the DSL workbench. There are no interferences between the managed
application and the Ops manager, except for those performed by the adapta-
tion processes. Significant concerns for the supervisor are the stability, accuracy,
short settling-time, robustness, termination (no deadlock), consistency, scala-
bility, and security of the adaptation processes. Important research questions
are (i) the coordination of autonomous ops manager within cross-organizational
distributed applications, and (ii) the DSL policy change at run time.

The DSL workbench. The DSL workbench (WB) is a Platform as a Service
deployed on the cloud. It shall be accessible by the user via i) the Web-based
Graphical User Interface, and ii) the WB API, a REST interface. The workbench
is composed of three main layers: GUI, Processing, and Storage. The GUI Edit
wizard allows: i) easy graphical drafting of the DSL artifacts (models, policies),
ii) reverse engineering of existing legacy artifacts into the DSL ones, and iii)
straightforward building of the DSL archives (sets of models and policies for an
application to be deployed) and self-adaptive application releases (AR). The GUI
Deploy wizard lets initiate and supervise the deployment of a AR on the target



Fig. 1. General Architecture

cloud infrastructure. When deployed, the application ops manager interacts with
the user through the GUI Monitoring wizard. The Processing layer is composed
of three main components: the DSL Compiler, the Application Deployer, and
the Application Monitor. The compiler builds the AR. The deployer installs,
configures, and startups the application with the AR on the target (multi-)cloud
infrastructure. The monitor implements the interaction with the deployed Ops
Manager. The Storage layer contains: i) the Legacy Artifact Base, that stores
the existing legacy artifacts such as Juju Charms, Kubernetes, Chef cookbooks;
ii) the DSL Artifact Base that stores the DSL artifacts; iii) the Code Base that
stores the codes of the Managed Application and of the Ops Manager. The
general architecture is sketched in Figure 1.

Limitations of the approach. The main limitations of the proposed ap-
proach relate to: i) the fact that the proposed DSL is based on TOSCA and could
collide or overlap with other emerging standards; ii) the inability or difficulty
to integrate the proposed solution within all the available cloud provider infras-
tructures (i.e. Microsoft Azure, Google Cloud, etc.); iii) the lack of optimization
methods for self-adaptive applications on cloud, except for the automatic scal-



ing up and down - the current project focuses on security, dependability, and
fault-tolerance, not on self-optimization.

4 Real-world trials

We plan to try our solution with real-world applications and systems, in partic-
ular in the logistics and high-tech industries. In the logistics domain, decision
making is distributed. All stakeholders make decisions locally and autonomously,
so the most important challenge is to achieve collaborative decision-making
in practice. The proposed solution can be adopted in the logistic domain for
building a cloud-based logistics information platform, as a general exchange
platform, where cloud services are composed to collect, classify, store, analyze,
evaluate, publish (release), manage and control relevant information on inter-
organizational logistics operations, processes, and management.

The proposed solution shall be applied to simplyTestify [sim], which is a
geo-distributed, multi-instance and multi-tenant PaaS offering self-provisioning
and pay-as-you-go test automation services. Even if simplyTestify core modules
have been designed and implemented for cloud portability, the implementation of
strong elasticity, dependability, security, and performance requirements is IaaS-
dependent (the current version of simplyTestify runs on the Amazon Web Ser-
vices public cloud). The DSL, the autonomic ops application manager, and the
workbench shall allow the automatic installation, configuration, and startup of
the PaaS and the policy-driven implementation of the mentioned requirements
in a hybrid cloud including private and other public clouds, such as Microsoft
Azure, Google Cloud, IBM Cloud, etc.

References

[ABdDP13] Giuseppe Aceto, Alessio Botta, Walter de Donato, and Antonio Pescap.
Cloud monitoring: A survey. Computer Networks, 57(9):2093 – 2115, 2013.

[IW15] Didac Gil De La Iglesia and Danny Weyns. MAPE-K Formal Templates
to Rigorously Design Behaviors for Self-Adaptive Systems. ACM Trans.
Auton. Adapt. Syst., 10(3):15:1–15:31, 2015.

[IZM+17] Alex Iosup, Xiaoyun Zhu, Arif Merchant, Eva Kalyvianaki, Martina
Maggio, Simon Spinner, Tarek Abdelzaher, Ole Mengshoel, and Sara
Bouchenak. Self-awareness of Cloud Applications, pages 575–610. 2017.

[KA12] A Vanitha Katherine and K Alagarsamy. Software testing in cloud plat-
form: A survey. Int. J. of Computer Applications, 46(6):21–25, 2012.

[OAS16] OASIS. TOSCA Simple Profile in YAML Version 1.0. OASIS Committee
Specification 01, June 2016.

[sim] simplyTestify. http://simplytestify.com/pages/simplyTestify.
[W3C14] W3C. State Chart XML (SCXML): State Machine Notation for Control

Abstraction. http://www.w3.org/TR/scxml/, May 2014.


