N

N

Fingerprinting OpenFlow Controllers: The First Step to
Attack an SDN Control Plane
Abdelhadi Azzouni, Othmen Braham, Thi-Mai-Trang Nguyen, Guy Pujolle,
Raouf Boutaba

» To cite this version:

Abdelhadi Azzouni, Othmen Braham, Thi-Mai-Trang Nguyen, Guy Pujolle, Raouf Boutaba. Finger-
printing OpenFlow Controllers: The First Step to Attack an SDN Control Plane. 59th annual IEEE
Global Communications Conference (GLOBECOM 2016), Dec 2016, Washington DC, United States.
pp.1-6, 10.1109/GLOCOM.2016.7841843 . hal-01538464

HAL Id: hal-01538464
https://hal.sorbonne-universite.fr /hal-01538464

Submitted on 13 Jun 2017

HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est

archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

destinée au dépot et a la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche francais ou étrangers, des laboratoires
publics ou privés.

https://hal.sorbonne-universite.fr/hal-01538464
https://hal.archives-ouvertes.fr

Fingerprinting OpenFlow controllers: The first step
to attack an SDN control plane

Abdelhadi Azzouni', Othmen Braham?, Nguyen Thi Mai Trang!, Guy Pujolle', and Raouf Boutaba®

'LIP6 / UPMC; Paris, France {abdelhadi.azzouni,thi-mai-trang.nguyen,guy.pujolle} @lip6.fr
2Virtuor; Paris, France othmen.braham @ virtuor.fr
3University of Waterloo; Waterloo, ON, Canada rboutaba@uwaterloo.ca

Abstract—Software-Defined Networking (SDN) controllers are
considered as Network Operating Systems (NOSs) and often
viewed as a single point of failure. Detecting which SDN con-
troller is managing a target network is a big step for an attacker
to launch specific/effective attacks against it. In this paper, we
demonstrate the feasibility of fingerpirinting SDN controllers. We
propose techniques allowing an attacker placed in the data plane,
which is supposed to be physically separate from the control
plane, to detect which controller is managing the network. To
the best of our knowledge, this is the first work on fingerprinting
SDN controllers, with as primary goal to emphasize the necessity
to highly secure the controller. We focus on OpenFlow-based SDN
networks since OpenFlow is currently the most deployed SDN
technology by hardware and software vendors.

keywords - Software-Defined Networking, OpenFlow, Con-

trol Plane, security.

I. INTRODUCTION AND MOTIVATION

Software-Defined Networking (SDN) is an emerging archi-
tecture that is dynamic, agile, centrally managed and pro-
grammable, making it ideal for the evolving nature of today’s
applications. SDN separates the network control plane from
the data plane (Fig. [I), enabling more flexibility in managing
and programming the network. The centralized control pro-
vided by SDN is expected to facilitate the deployment and
hardening of network security [1]], [2]. However, SDN con-
trollers can be subject to new threats compared to conventional
network architectures. For example, an attacker can change
the whole underpinning of the network traffic behavior by
modifying the controller. The Open Networking Foundation
(ONF) identifies a number of SDN security issues that the
community must address [3|:

Application
pplaycr — 1y App App App

II Controller APIs

Controller

Southbound API (OpenFlow)][1[1[

Data plane

Control
layer

Forwarding layer Data plane Data plane

Fig. 1. SDN architecture

o The centralized controller emerges as a potential single
point of attack that must be protected.

o The southbound interface between the controller and
underlying networking devices (OpenFlow) is vulnerable
to threats that could degrade the availability, performance,
and integrity of the network. Using TLS or UDP/DTLS
is recommended to secure the OpenFlow channel.

o The underlying network must be capable of enduring oc-
casional periods where the SDN controller is unavailable.

In the most common schemes of attacking a remote system,
the first step is to determine the set of possible attacks
by collecting information about the target. In this paper,
we demonstrate some techniques that allow an attacker to
fingerprint the OpenFlow controller of the network. Once the
attacker knows which controller is used, he/she can launch
tailored attacks exploiting its known vulnerabilities. We study
the common case where the attacker is placed in the underlying
network managed by the target SDN controller, and does not
have access to either the controller or the control channel.

This work aims to demonstrate the feasibility of fingerpir-
inting OpenFlow controllers, with the ultimate goal of building
a Penetration Testing framework that can be used by network
administrators to test their SDN networks. Many frameworks
have been created for the same purpose in traditional networks,
NMAP [4]], for instance, is a widely used scanner that can
fingerprint remote systems among other capabilities. OWASP
Zed Attack Proxy Project (ZAP) [5] is another security testing
framework that includes fingerprinting remote web servers
and web applications. As in NMAP and ZAP, our proposed
techniques are not to be used separately, that is, one may
get non-accurate results when only using the first Timing-
Analysis based technique (section for example, but
the combination of all proposed techniques, generally gives
accurate results. The contributions of this paper are as follows:

o« We demonstrate the feasibility of fingerpirinting attack
on OpenFlow controllers by designing, implementing and
testing several fingerpirinting techniques and

o We highlight the need for building a Penetration Testing
framework for SDN networks.

This paper is organized as follows. Section [lI| provides
OpenFlow background information. Related works are dis-
cussed in section Our proposed fingerpirinting techniques

are presented in section our experimental testbed is de-
scribed in section [V| and the results are given in section
Section [VII] concludes the paper and discusses some future
directions.

II. BACKGROUND INFORMATION

OpenFlow is the first standard communication interface
defined between the control and forwarding layers of an SDN
architecture [7]. Contrary to traditional routers, where the
fast packet forwarding (data path) and the high level routing
decisions (control path) occur on the same device. OpenFlow
separates these two functions: An OpenFlow switch consists
of one or more flow tables, which performs packet lookups
and forwarding, and interfaces to external controllers. The
controller controls the switch by adding, updating, and deleting
flow entries via OpenFlow messages, proactively or reactively
(in response to arrival of new flows) .

An OpenFlow message is either a switch-to-controller or a
controller-to-switch message. OpenFlow messages are detailed
in [8]] of which the most important ones are:

o Hello messages: exchanged between the controller and
the switch when the connection is first established.

o Echo request/reply messages: used to exchange informa-
tion about latency, bandwidth and liveness.

o Packet-In messages: used by the switch to send a packet
to the controller when it has no flow-table matching the
packet.

o Packet-Out messages: used by the controller to inject
packets into the data plane of a particular switch.

« Flow-mod messages: used by the controller to modify the
state of an OpenFlow switch.

o Stats request messages: used by the controller to request
information about individual flows.

III. RELATED WORK

S. Shi and G. Gun developed SDN Scanner [9] which
exploits the network header field change. If a client sends
packets to an SDN network, this client will observe different
response times, because the flow setup time can be added in
the case of non-matching flow (i.e., there is no corresponding
flow rule in the data plane: response time 7'1) compared to
the case when the corresponding flow rule exists (response
time 7'2). SDN Scanner collects the response times then uses
statistical tests to compare them. Thus, if an attacker can
clearly differentiate T'1 from 72 then he/she can detect the
SDN network (the presence of an SDN controller). The eval-
uations conducted in the paper showed that SDN Scanner can
fingerprint 24 networks out of 28 (i.e., a fingerprinting rate of
85.7%). However, SDN Scanner does not detect the controller
type. In addition, collecting accurate values of 7'1 and T2
is extremely hard in real-world WANs because of the many
variables that affect the response time. As such this method
may not be efficient in WANS. [[10] leverages information from
the RTT and packet-pair dispersion to fingerprint controller-
switch interactions (i.e. whether an interaction between the

controller and the switches has been triggered by a given
packet) in a remote SDN network.

L. Junyuan et. al [11] propose techniques to infer key
network parameters like flow table capacity and flow table
usage. For example, when the flow table is full, extra inter-
actions between controller and switch are needed to remove
some of the existing flow entries to make room for new
ones, which may result in a performance decrease of the
network. An attacker can take advantage of the perceived
performance change to launch more effective attacks. More
specifically, knowing the flow table size and usage, the attacker
can estimate with high accuracy how many packets he/she
needs to generate per second to flood the flow table and the
required time to fill it up. hence, he/she could choose and
correctly configure their attacking tools. Contrary to [L1], our
methods aim to infer control plane parameters to fingerprint
controllers, which is more critical and of higher impact.

IV. FINGERPRINTING OPENFLOW CONTROLLERS

The main approach developed in this paper is to combine
several techniques to fingerprint an SDN controller from its
underlying data forwarding plane. Although our proposed
techniques can be used separately, the accuracy of the results
is much higher when combining them. Also, using only one
technique may not give any result in some situations. In other
words, each method has its success probability, and combin-
ing several techniques intuitively increases the probability of
identifying the type of SDN controller used.

The following subsections present our techniques catego-
rized into two classes: Timing-Analysis based techniques and
Packet-Analysis based techniques.

A. Timing-Analysis based techniques

These techniques are based on time measurement to infer
some indicative parameters of the controller.

1) Timeout Values Inference: Each flow entry has an
idle_timeout and a hard_timeout field values associated with
it. They indicate respectively the time in seconds after which
the entry will be removed from the switch if no packet matches
it, and the time after which to remove the entry anyway.
These timeout values can be set and modified by application
developers or network administrators. But, in most cases when
the network or parts of the network only need a basic flow
forwarding without additional traffic engineering logic, the
network admins tend to use the forwarding applications that
come with the controllers (typically L2-Switches) and the
probability that they change these applications’ parameters is
fairly low. Note that in recent controllers, those forwarding
elements even include some advanced features [12]].

The idea is to infer flow-entry timeout values and compare
them to known timeout values of different controllers (timeout
database). The timeout database is constructed as follows: for
open source controllers, default timeout values can be gathered
from their code source or configuration files. For proprietary
controllers, the default timeout values can easily be figured
out by simply using the controller and directly measuring the

values. This method can be fairly accurate because of the low
probability for default values to be modified by administrators.

To measure timeout values from an end-host in the un-
derlying network, we propose the two following algorithms
(algorithm [I] and algorithm [2). These algorithms consider
network disruptions that may affect communication channels
between end-hosts and the switch, and between the switch and
the controller. Both algorithms require the ability to connect to
another end-host in the same data plane (a pingable end-host).
Algorithm [l| measures idle_timeout in two steps: first, it calcu-
lates RTT_avg (average Round-Trip Time using ping) in case
when corresponding flow entries are installed in the switch.
Measurements may be made for a configurable duration and/or
number of probing packets n. Second, it measures RT'T every
wait seconds. wait value will be incremented by step seconds
until a significant difference between measured RTT" and
calculated RTT _avg is encountered. This difference means
that the flow entry expired and the switch needed to call the
controller asking how to handle the new ping. Final value
of wait matches the flow-entry idle_timeout value. A more
accurate version of the algorithm is conceivable by using a
binary search around the final wasit value, but by using step
of Hms, the algorithm remains very accurate even without
binary search.

Note that in some controllers, the default idle_timeout
value is set to 0 which means infinite, so the flow entry will
never be removed. We found this in the Ryu controller and
Hydrogen, an old version of OpenDaylight [13]]. In this
case, after a number of iterations, the algorithm will decide
that the ¢dle_timeout value is infinite and the controller may
be Ryu or Hydrogen version of OpenDaylight. The search
space has been limited to two controllers in this case, but we
need to apply more techniques to decide which one of them.

Algorithm 1 idle_timeout measurement

1: Send first ping to install flow entry;

2: Send n pings and calculate the average ping time

RTT _avg;

Wait wait seconds;

Send one ping and calculate ping time T}ing

if Tping = RTT _avg then //the flow entry still exists
wait < wait + step;
Go to 3;

else//idle_timeout expired and the flow entry removed
idle_timeout = wait

10: end if

R A

To measure hard_timeout value, we first calculate the
average of RTT time (RTT_avg) and idle_timeout values
as in algorithm [I] Second, we send one ping to install the
flow entry in the switch. Then, we send a ping every wait
seconds such as wait value is less then idle_timeout. As
long as the RTT value is close to the average (RTT_avg),
we continue to add wazit seconds to the hard_timeout value
initialized to zero. We stop when we find a RT'T" value which
is significantly greater than (RTT _avg).

Algorithm 2 hard_timeout calculation
. hard_timeout < 0 seconds;
: Calculate RTT _avg as in algorithm 1;
. Calculate idle_timeout as in algorithm 1;
Send one ping to make the controller install flow entry;
Wait wait seconds, wait must be less then idle_timeout;
: Send one ping and calculate ping time T}p4;
if Tying = RTT _avg then //the flow entry still exists
hard_timeout < hard_timeout + wait
Go to 5;
. else//hard_timeout expired and the flow entry removed
print hard_timeout
: end if

R A A S ol S

—_ =
[=]

The attacker then compares the measured values
(idle_timeout, hard_timeout) to known timeout values
of controllers to guess which controller is used.

2) Processing-Time Inference: Each SDN controller is pro-
grammed differently using different tools, libraries and frame-
works, so that each controller has its own execution speed.
In other words, when receiving packets from the data plane,
each controller takes a different time to process those packets
and reply back to the data plane. The idea of this technique
is to use estimated packet-processing time to determine the
controller. As we mentioned before, authors of [9]] used timing
to determine if a remote network is an SDN network based
on the difference of RTT in two cases: presence and absence
of flow entries. As it has been mentioned by the authors,
it is very difficult to measure with high accuracy the RTT
to a remote network in a WAN because of many potential
sources of disruption that may result in random variations of
RTT values. In our technique, these disruption sources are
minimal since the attacker is placed in the data plane of the
target controller. And unlike [9], our method uses some key
parameters inferred from the network to estimate processing
time with higher precision.

The main idea in our approach is to measure the re-
sponse time of the target controller and compare it to the
processing-time database created beforehand. The processing-
time database is a table that associates each controller to
its processing time. Like in the previous technique (time-
out values inference), we need a pingable destination end-
host in the same data plane (the best scenario is that the
attacker controls the destination end-host as well to be sure
that its processing time does not affect the measurements).
To create the processing-time database, we use a simplified

Controller

S D
B o &5 o &

Fig. 2. Simplified architecture to measure controllers’ processing time
architecture (Fig. 2)) where the propagation times (1) and (2)
are minimal. we first measure idle_timeout and RTT _avg
values as in algorithm [T} Then, we send n (100 for exam-
ple) pings separated by period seconds between every two

pings, with period greater then idle_timeout. Every ping
will cause the switch to send a Packet-In to the controller
(by receiving the Packet-In message, the controller processes
it to extract field values and installs the corresponding flow
rule into the switch). Finally we calculate the average ping
time T}q.4 Of the n pings and we record Tpq09 — RTT _avg
value in a table. This is the processing time of the current
controller. We repeat this process with all controllers and
we create the processing-time database by inserting tuples
(controller, processing_time(T,)) (algorithm [3).

Algorithm 3 Building the processing-time database
1: Calculate RTT _avg as in algorithm 1;
2: Calculate idle_timeout as in algorithm 1;
3: for i < 1..n do
4 Wait period seconds, period must be greater than
idle_timeout;
Send a ping and save ping time;
6: end for
7: Calculate the average of saved ping time values Tpqug
and calculate controller processing time 1), = Tpq09 —
RTT _avg;
8: Insert (controller,T,) in the processing-time database;

W

Note that, as propagation times (1) and (2) (Fig. [2) are
minimal, measured RTT'_avg is accurate and hence 7T}, values
are accurate.

Algorithm 4 Fingerprinting controller
1: Calculate RTT _avg as in algorithm 1;

Calculate idle_timeout as in algorithm 1,

for i < 1..m do //m = 20 for example
Wait period seconds, period must be greater then

idle_timeout;
Send a ping and save ping time;

6: end for

7: Calculate the average of saved ping-time values RTT’
and compare RTT' — RTT _avg to the processing-time
entries;

Bl

W

Now that we have the processing-time database, to fin-
gerprint the target controller that manages the real SDN
network we are connected in, we first measure RT7T _avg to a
destination, then we ping the same destination with a spoofed
IP address to ensure that no corresponding flow entry exists
in the switch and we compare the value RTT — RTT _avg
to the processing-time database entries. For accuracy, we do
not rely on a single ping, disruptions can happen during the
ping affecting the response time. Instead, we send many (20
for example) pings with period seconds between every two
pings (such as period value is greater than idle_timeout),
we calculate the average of these ping times RT'T” and finally
compare the value RTT" — RTT _avg to the processing-time
database entries (algorithm [)).

In addition to the probability that the network admin some-
how modifies the execution time of the controller, which we

argue is very low, there is a fair chance that during the scan, the
controller is overloaded resolving requests and installing rules,
which may significantly change the response time. In this case,
if the attacker has further knowledge about the network state
then he/she can surpass this problem. For example, he/she
can avoid peak hours, and only scan the controller when the
network is in its normal state.

B. Packet-Analysis based techniques

1) LLDP message analysis: This is a passive method which
consists of identifying the controller by sniffing and analyzing
OpenFlow Discovery Protocol (OF D P) packets sent over the
data plane.

SDN is based on maintaining a global network view at
the level of the controller. To obtain the global network
topology, discovery modules of the controllers use OF DP
to collect updated information from different elements of the
network including end hosts. OF DP leverages the packet
format of Link Layer Discovery Protocol (LLDP) with subtle
modifications to perform topology discovery in an OpenFlow
network.

Unlike ordinary LLDP enabled switches, an OpenFlow
switch needs the controller to send and process OF DP
messages and cannot do this by itself. The following is a
simple scenario of the topology discovery process using
OFDP. First, the SDN controller creates an individual
LLDP packet for each port on each switch. Then, the
controller sends these packets to the switches via Packet-Out
messages that include instructions to send them out on the
corresponding ports. In each switch, all received LLDP
packets will be forwarded to neighbours. When a switch
receives a new LL D P packet from another switch, it forwards
it to the controller via a Packet-In message. At the end of
the process, the controller will get information about all
the data-plane connections. The entire discovery process is
repeated periodically with the time periods varying from one
controller to another, which is can be leveraged to identify
which controller is managing the network. Also, the content
of the LLDP packets differs from one controller to another,
which can be used accurately identify the controller. Table
in section shows LLDP packets sent by different
controllers.

2) ARP response analysis: This technique can only be
used to determine if the controller is the Hydrogen version
of OpenDaylight and cannot be generalized to other types of
controllers. It builds on the observation of how the controller
reacts to unknown Address Resolution Protocol (ARP) re-
quests in the data plane. The attacker sends an unknown ARP
request, which means that the destination IP address is not
assigned to any host in the network. As the destination IP is not
present in the network, the switch, in addition to broadcasting
the request, sends it to the SDN controller via a Packet-In
message asking how to handle it. The OpenFlow specifications
indicate that the controller responds to the switch by a Packet-
Out and/or a flow-mod message explaining how to handle the

request. The controller’s response message differs from one
controller to another, but the only controller whose behavior
can be captured from an end-host is Hydrogen. Hydrogen
version of OpenDaylight instructs the switch to broadcast the
request once again which duplicates it in the broadcast domain.
This duplicated ARP request, with one of the switch’s Media
Access Control (M AC) addresses as source address, indicates
that Hydrogen is used.

As we mentioned in the introduction, the techniques we
presented in this section are not to be used in an exclusive
manner. Each technique is able to identify the controller with
a certain probability that we did not compute analytically in
this paper. The user can use a subset or all the techniques
executing them one by one, or better combine them in some
optimal order. The selection of the optimal combination of
techniques is an interesting research question that we leave
for future work.

V. EXPERIMENT ENVIRONMENT AND METHODOLOGY

As shown in Figure [3| our experiment environment consists
of four physical machines (only three are shown in Fig.
carrying 4 virtual machines each and connected via OpenFlow
virtual bridges (Openvswitch) forming a small-size data-center
where VMs generate random traffic (ping and iperf) to random
destinations. Note that, since we are not exploiting any weak-
nesses in the switch, it does not make any difference using a
virtual switch or a physical one in this context, we only need
a switch that correctly implements OpenFlow specifications.
Note also that we did not add hops (transit switches) between
bridges and the controller because even in real-world networks,
a very small number (0, 1 or 2) of transit switches is enough
to build a fairly large Local Area SDN network, like a data-
center or a campus network. Such a small number of hops
does not affect timing measurements in previous algorithms,
The attacker is on the red (or black) VM connected to br0,
and can ping the orange (or dark grey) VM connected to br2
(it could be any other VM in the network).

Controller

br0 brl br2 br3 brd

NN A NN

WM VM VM VM VM VM VM

brs
N N

VM VM VM VM

Fig. 3.

We have performed our experiments on five open source

still maintained, OpenFlow controllers among the most

widely used: OpenDaylight [13], POX [14], Beacon [15],
Floodlight[17], and Ryu [18]].

Test environment

VI. RESULTS
A. Timeout Values Inference technique

To evaluate the Timeout Values Inference method, we ran
algorithms [I] and 2] ten times on each controller from the set
of our target controllers. Default timeout values are given in
table [Il Our algorithms did 2 errors in 50 measurements in

both idle_timeout and hard_timeout and that is because
algorithm [T] is used in algorithm

Controller idle_timeout (s) hard_timeout (s)
OpenDaylight 0 0

Floodlight 5 0

POX 10 30

Ryu 0 0

Beacon 5 0

TABLE I
DEFAULT TIMEOUT VALUES

We also evaluated algorithms and separately by
manually setting different values for idle_timeout and
hard_timeout in POX source code, and running the
algorithms from the attacker virtual machine (red VM
in Fig.) to infer these values. We set the val-
ues 5,10,15,..30ms for idle_timeout and the values
10,20, ..60ms for hard_timeout respectively. For each al-
gorithm, we repeated the execution 10 times on each value.
idle_timeout calculation algorithm has an error rate of 0.03%
(2 errors in 60 measurements) with a relative error of less than
1s. The hard_timeout calculation algorithm has an error rate
of 0% (no error) on 60 measurements.

B. Processing-Time Inference technique

First, we have built the processing-time database (table [[I) of
our set of target controllers by running algorithm [3] (n = 100)
on a simplified testbed as described in Fig. [2|

Controller Tp (ms) T, adjusted (ms)
OpenDaylight 1.004 0.177
Floodlight 3.454 2.627
POX 34.266 33.439
Ryu 5.216 4.389
Beacon 3.197 2.370
TABLE II

PROCESSING-TIME DATABASE (Tp: PROCESSING TIME).

Then, to evaluate this technique in our experimental envi-
ronment (Fig. [3)) we have run algorithm [ten times: measured
T, in Fig. {] is the average value of the different executions.
To get more precise comparisons, we calculate T}, adjusted:
adjusted processing time = processing time - the average of
RTT time in case the flow rule exists (RTTq,q).

For controllers Floodlight and Beacon which have very
similar values of T}, the use of only this technique, is not
sufficient as it cannot decide between them.

40
uTp

35 Measured Tp
30
25
20
15

10

OpenDaylight Floodlight POX Ryu Beacon

Fig. 4. Measured processing times compared to average processing times

Controller OF DP interval (s) Remarks

OpenDaylight 5 LLDP packets include System Name field with value = “openflow” and no System

(Lithium & Helium) Description field

OpenDaylight 300 LLDP packets include System Name field with value = "OF—[MAC address of the OF

(Hydrogen) switch]” and no System Description field

Floodlight 15 Each LLDP packet is followed by an 0x8942 Ethernet packet sent in broadcast. This
makes it easy to distinguish between Floodlight and Beacon

POX variable (= 5) LLDP packets include System Description field with value = “dpid:[MAC address of
the OF switch]”

Ryu 1 Note that the Topology discovery module is still not stable and not included in the
controller core.

Beacon 15 LLDP packets include two “unknown” fields and no System Name or Description feild

TABLE III
RESULTS OF LLD P MESSAGE ANALYSIS

C. LLDP message analysis technique

Figure [5] compares L LD P-packet reception intervals for
different controllers. Table [l shows the difference between
controllers’ LLD P packets. By receiving the LLD P packet,
the attacker compares the different values against Fig. [3]
and table [IT]] to identify the controller. Similar to technique
[[V-AT] for proprietary controllers, the way to gather LLDP
information is to simply use the controllers, analyze its LLD P
packets, then use this information to fingerprint target con-
trollers.

1000

100
10 I
1 l l —

ODL (Hydrogen) POX
ODL(Lithium and Helium) Floodlight Ryu

OFDPTime period (s)

Beacon

Fig. 5. Controllers’ LLDP-emission-interval comparison
VII. CONCLUSION
In this work, we demonstrated the feasibility of

fingerprinting attacks on OpenFlow controllers from the
data plane by designing, implementing and testing practical
techniques to identify the controller without access to
the control plane. This is a critical step for a number of
attack models since it provides the attacker with sufficient
information about the controller to carry out more tailored
attacks. Knowing the vulnerabilities of the target controller or
one of its components, the attacker can indeed use known or
design new attacks to take down the controller. In the future,
we plan to expand the scope of this work by fingerprinting a
larger set of controllers and by designing more techniques for
fingerprinting controllers. We also plan to investigate formal
methods for the evaluation of fingerprinting techniques and
how they can be possibly combined to increase success rate.
Finally, we plan to explore what countermeasures must be
deployed to harden the security of SDN networks against
controller fingerprinting and subsequent attacks.

REFERENCES

[1] Ahmad, Ijaz, et al. "Security in software defined networks: a survey.”
Communications Surveys & Tutorials, IEEE 17.4 (2015): 2317-2346.

[2] Scott-Hayward, Sandra, Sriram Natarajan, and Sakir Sezer. ”A survey of
security in software defined networks.” (2015).

[3] Open Networking Foundation. "SDN Security Considerations in the Data
Center”, Version 1.4.0 (Wire Protocol 0x05). October 14, 2013

[4] NMAP. https://nmap.org/

[S] OWASP Zed Attack Proxy Project.
https://www.owasp.org/index.php/OWASP_Zed_Attack_Proxy_Project

[6] Open Networking Foundation. “Software-Defined Networking”.
https://www.opennetworking.org/sdn-resources/sdn-definition.

[7]1 Open Networking Foundation. ”OpenFlow”.
https://www.opennetworking.org/sdn-resources/openflow.

[8] Open Networking Foundation. "OpenFlow Switch Specification”, Version
1.5.0 (Wire Protocol 0x06). December 19, 2014.

[9] Shin, Seungwon, and Guofei Gu. ”Attacking software-defined networks:
A first feasibility study.” Proceedings of the second ACM SIGCOMM
workshop on Hot topics in software defined networking. ACM, 2013.

[10] Bifulco, Roberto, et al. “Fingerprinting software-defined networks.”
2015 IEEE 23rd International Conference on Network Protocols (ICNP).
IEEE, 2015.

[11] Leng, Junyuan, et al. ”An inference attack model for flow table capacity
and usage: Exploiting the vulnerability of flow table overflow in software-
defined network.” arXiv preprint arXiv:1504.03095 (2015).

[12] Project Floodlight. https://floodlight.atlassian.net/wiki/display/floodlight-
controller/Supported+Topologies

[13] Linux Foundation. ”OpenDaylight”. https://www.opendaylight.org/.

[14] Gude, Natasha, et al. NOX: towards an operating system for networks.
ACM SIGCOMM Computer Communication Review 38.3 (2008): 105-
110.

[15] Erickson, David. "The beacon openflow controller.” In Proceedings of
the second ACM SIGCOMM workshop on Hot topics in software defined
networking, pp. 13-18. ACM, 2013.

[16] What is Beacon?. https://openflow.stanford.edu/display/Beacon/Home/

[17] Floodlight. http://Floodlight.openflowhub.org/

[18] Ryu. http://osrg.github.com/ryu/

