
HAL Id: hal-01538471
https://hal.sorbonne-universite.fr/hal-01538471v1

Preprint submitted on 13 Jun 2017

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

A Long Short-Term Memory Recurrent Neural Network
Framework for Network Traffic Matrix Prediction

Abdelhadi Azzouni, Guy Pujolle

To cite this version:
Abdelhadi Azzouni, Guy Pujolle. A Long Short-Term Memory Recurrent Neural Network Framework
for Network Traffic Matrix Prediction. 2017. �hal-01538471�

https://hal.sorbonne-universite.fr/hal-01538471v1
https://hal.archives-ouvertes.fr


A Long Short-Term Memory Recurrent Neural
Network Framework for Network Traffic Matrix

Prediction
Abdelhadi Azzouni and Guy Pujolle

LIP6 / UPMC; Paris, France {abdelhadi.azzouni,guy.pujolle}@lip6.fr

Abstract—Network Traffic Matrix (TM) prediction is defined
as the problem of estimating future network traffic from the
previous and achieved network traffic data. It is widely used in
network planning, resource management and network security.
Long Short-Term Memory (LSTM) is a specific recurrent neural
network (RNN) architecture that is well-suited to learn from
experience to classify, process and predict time series with time
lags of unknown size. LSTMs have been shown to model temporal
sequences and their long-range dependencies more accurately
than conventional RNNs. In this paper, we propose a LSTM RNN
framework for predicting Traffic Matrix (TM) in large networks.
By validating our framework on real-world data from GÉANT
network, we show that our LSTM models converge quickly and
give state of the art TM prediction performance for relatively
small sized models.

keywords - Traffic Matrix, Prediction, Neural Networks,
Long Short-Term Mermory

I. INTRODUCTION

Most of the decisions that network operators make depend
on how the traffic flows in their network. However, although it
is very important to accurately estimate traffic parameters, cur-
rent routers and network devices do not provide the possibility
for real-time monitoring, hence network operators cannot react
effectively to the traffic changes. To cope with this problem,
prediction techniques have been applied to predict network
parameters and therefore be able to react to network changes
in near real-time.

The predictability of network traffic parameters is mainly
determined by their statistical characteristics and the fact
that they present a strong correlation between chronolog-
ically ordered values. Network traffic is characterized by:
self-similarity, multiscalarity, long-range dependence and a
highly nonlinear nature (insufficiently modeled by Poisson and
Gaussian models) [2].

A network TM presents the traffic volume between all pairs
of origin and destination (OD) nodes of the network at a
certain time t. The nodes in a traffic matrix can be Points-
of-Presence (PoPs), routers or links.

Having an accurate and timely network TM is essential
for most network operation/management tasks such as traffic
accounting, short-time traffic scheduling or re-routing, network
design, long-term capacity planning, and network anomaly
detection. For example, to detect DDoS attacks in their early
stage, it is necessary to be able to detect high-volume traffic

clusters in near real-time. Another example is, upon congestion
occurrence in the network, traditional routing protocols cannot
react immediately to adjust traffic distribution, resulting in
high delay, packet loss and jitter. Thanks to the early warning,
a proactive prediction-based approach will be faster, in terms
of congestion identification and elimination, than reactive
methods which detect congestion through measurements, only
after it has significantly influenced the network operation.

Several methods have been proposed in the literature for
network traffic forecasting. These can be classified into two
categories: linear prediction and nonlinear prediction. The
most widely used traditional linear prediction methods are: a)
the ARMA/ARIMA model [3], [6], [7] and b) the HoltWinters
algorithm [3]. The most common nonlinear forecasting meth-
ods involve neural networks (NN) [3], [8], [9]. The experi-
mental results from [13] show that nonlinear traffic prediction
based on NNs outperforms linear forecasting models (e.g.
ARMA, ARAR, HW) which cannot meet the accuracy re-
quirements. Choosing a specific forecasting technique is based
on a compromise between the complexity of the solution,
characteristics of the data and the desired prediction accuracy.
[13] suggests if we take into account both precision and
complexity, the best results are obtained by the Feed Forward
NN predictor with multiresolution learning approach.

Unlike feed forward neural networks (FFNN), Recurrent
Neural Network (RNNs) have cyclic connections over time.
The activations from each time step are stored in the internal
state of the network to provide a temporal memory. This
capability makes RNNs better suited for sequence modeling
tasks such as time series prediction and sequence labeling
tasks.

Long Short-Term Memory (LSTM) is a RNN architecture
that was designed by Hochreiter and Schmidhuber [15] to
address the vanishing and exploding gradient problems of
conventional RNNs. RNNs and LSTMs have been successfully
used for handwriting recognition [1], language modeling,
phonetic labeling of acoustic frames [10].

In this paper, we present a LSTM based RNN framework
which makes more effective use of model parameters to train
prediction models for large scale TM prediction. We train and
compare our LSTM models at various numbers of parameters
and configurations. We show that LSTM models converge
quickly and give state of the art TM prediction performance



for relatively small sized models. Note that we do not address
the problem of TM estimation in this paper and we suppose
that historical TM data is already accurately obtained.

The remainder of this paper is organized as follows: Section
II summarizes time-series prediction techniques. LSTM RNN
architecture and equations are detailed in section III. We detail
the process of feeding our LSTM architecture and predicting
TM in section IV. The prediction evaluation and results are
presented in section V. Related work is presented in section
VI and the paper is concluded by section VII.

II. TIME SERIES PREDICTION

In this section, we give a brief summary of various linear
predictors based on traditional statistical techniques, such as
ARMA (Autoregressive Moving Average), ARIMA (Autore-
gressive Integrated Moving Average), ARAR (Autoregressive
Autoregressive) and HW (HoltWinters) algorithm. And non-
linear time series prediction with neural networks.

1) Linear Prediction:
a) ARMA model: The time series {Xt} is called an

ARMA(p, q) process if {Xt} is stationary (i.e. its statistical
properties do not change over time) and

Xt−φ1Xt−1−...−φpXt−p = Zt+θ1Zt−1+...+θqZt−q (1)

where {Zt} ≈ WN(0, σ2) is white noise with zero mean
and variance σ2 and the polynomials φ(z) = 1− φ1z − ...−
φpz

p and θ(z) = 1+θ1z+ ...+θqz
q have no common factors.

The identification of a zero-mean ARMA model which
describes a specific dataset involves the following steps [20]:
a) order selection (p, q); b) estimation of the mean value of the
series in order to subtract it from the data; c) determination of
the coefficients {φi, i = 1, p} and {θi, i = 1, q}; d) estimation
of the noise variance σ2. Predictions can be made recursively
using:

X̂n+1 =


∑n
j=1 θnj(Xn+1−j − X̂n+1−j) if1 ≤ n ≤ m)∑q
j=1 θnj(Xn+1−j − X̂n+1−j)

+φ1Xn + ..+ φpXn+1−p ifn ≥ m
where m = max(p, q) and θnj is determined using the

innovations algorithm.
b) ARIMA model: A ARIMA(p, q, d) process is de-

scribed by:

φ(B)(1−B)dXt = θ(B)Zt (2)

where φ and θ are polynomials of degree p and q respec-
tively, (1−B) represents the differencing operator, d indicates
the level of differencing and B is the backward-shift operator,
i.e. BjXt = Xt−j

c) ARAR algorithm: The ARAR algorithm applies
memory-shortening transformations, followed by modeling the
dataset as an AR(p) process: Xt = φ1Xt−1+..+φpXt−p+Zt

The time series {Yt} of long-memory or moderately long-
memory is processed until the transformed series can be
declared to be short-memory and stationary:

St = ψ(B)Yt = Yt + ψ1Yt−1 + ...+ ψkYt−k (3)

The autoregressive model fitted to the mean-corrected series
Xt = St − S, t = k + 1, n, where S represents the sample
mean for Sk+1, ..., Sn , is given by φ(B)Xt = Zt , where
φ(B) = 1 − φ1B − φl1B

l1 − φl2B
l2 − φl3B

l3 , {Zt} ≈
WN(0, σ2), while the coefficients φj and the variance σ2 are
calculated using the YuleWalker equations described in [20].
We obtain the relationship:

ξ(B)Yt = φ(1)S + Zt (4)

where ξ(B)Yt = ψ(B)ϕ(B) = 1+ ξ1B + ...+ ξk+l3B
k+l3

From the following recursion relation we can determine the
linear predictors

PnYn+h = −
k+l3∑
j=1

ξPnYn+h−j + φ(1)S h ≥ 1 (5)

with the initial condition PnYn+h = Yn+h for h ≤ 0.

d) HoltWinters algorithm: The HoltWinters forecasting
algorithm is an exponential smoothing method that uses recur-
sions to predict the future value of series containing a trend.
If the time series has a trend, then the forecast function is:

Ŷn+h = PnYn+h = ân + b̂nh (6)

where ân and b̂n are the estimates of the level of the trend
function and the slope respectively. These are calculated using
the following recursive equations:{

ân+1 = αYn+1 + (1− α)(ân + b̂n)

b̂n+1 = β(ân+1 − ân) + (1− β)̂bn
(7)

Where Ŷn+1 = PnYn+1 = ân + b̂n represents the one-
step forecast. The initial conditions are: â2 = Y2 and b̂2 =
Y2 − Y1. The smoothing parameters α and β can be chosen
either randomly (between 0 and 1), or by minimizing the sum
of squared one-step errors

∑n
i=3(Yi − Pi−1Yi)2 [20].

2) Neural Networks for Time Series Prediction: Neural
Networks (NN) are widely used for modeling and predicting
network traffic because they can learn complex non-linear
patterns thanks to their strong self-learning and self- adaptive
capabilities. NNs are able to estimate almost any linear or
non-linear function in an efficient and stable manner, when
the underlying data relationships are unknown. The NN model
is a nonlinear, adaptive modeling approach which, unlike the
techniques presented above, relies on the observed data rather
than on an analytical model. The architecture and the param-
eters of the NN are determined solely by the dataset. NNs are
characterized by their generalization ability, robustness, fault
tolerance, adaptability, parallel processing ability, etc [14].

A neural network consists of interconnected nodes, called
neurons. The interconnections are weighted and the weights
are also called parameters. Neurons are organized in layers: a)
an input layer, b) one or more hidden layers and c) an output
layer. The most popular NN architecture is feed-forward in
which the information goes through the network only in the



Fig. 1: Feed Forward Deep Neural Network

forward direction, i.e. from the input layer towards the output
layer, as illustrated in figure 1.

Prediction using a NN involves two phases: a) the training
phase and b) the test (prediction) phase. During the training
phase, the NN is supervised to learn from the data by pre-
senting the training data at the input layer and dynamically
adjusting the parameters of the NN to achieve the desired
output value for the input set. The most commonly used
learning algorithm to train NNs is called the backpropagation
algorithm. The idea of the backpropagation is to propagate of
the error backward, from the output to the input, where the
weights are changed continuously until the output error falls
below a preset value. In this way, the NN learns correlated
patterns between input sets and the corresponding target val-
ues. The prediction phase represents the testing of the NN. A
new unseen input is presented to the NN and the output is
calculated, thereby predicting the outcome of new input data.

III. LONG SHORT TERM MEMORY NEURAL NETWORKS

Fig. 2: Deep Recurrent Neural Network

FFNNs can provide only limited temporal modeling by
operating on a fixed-size window of TM sequence. They can
only model the data within the window and are unsuited to
handle historical dependencies. By contrast, recurrent neural
networks or deep recurrent neural networks (figure 2) contain
cycles that feed back the network activations from a previous
time step as inputs to influence predictions at the current time
step (figure 3). These activations are stored in the internal
states of the network as temporal contextual information [10].

However, training conventional RNNs with the gradient-
based back-propagation through time (BPTT) technique is

Fig. 3: DRNN learning over time

difficult due to the vanishing gradient and exploding gradient
problems. The influence of a given input on the hidden layers,
and therefore on the network output, either decays or blows
up exponentially when cycling around the networks recurrent
connections. These problems limit the capability of RNNs to
model the long range context dependencies to 5-10 discrete
time steps between relevant input signals and output [11].

To address these problems, an elegant RNN architecture
Long Short-Term Memory (LSTM) has been designed [15].
LSTMs and conventional RNNs have been successfully ap-
plied to sequence prediction and sequence labeling tasks.
LSTM models have been shown to perform better than RNNs
on learning context- free and context-sensitive languages for
example [5].

A. LSTM Architecture

The architecture of LSTMs is composed of units called
memory blocks. Memory block contains memory cells with
self-connections storing (remembering) the temporal state of
the network in addition to special multiplicative units called
gates to control the flow of information. Each memory block
contains an input gate to control the flow of input activations
into the memory cell, an output gate to control the output flow
of cell activations into the rest of the network and a forget gate
(figure 4).

Fig. 4: LSTM node

The forget gate scales the internal state of the cell before
adding it back to the cell as input through self recurrent
connection, therefore adaptively forgetting or resetting the
cells memory. The modern LSTM architecture also contains



peephole connections from its internal cells to the gates in the
same cell to learn precise timing of the outputs [4].

B. LSTM Equations

In this subsection we provide the equations for the activation
(forward pass) and gradient calculation (backward pass) of an
LSTM hidden layer within a recurrent neural network. The
backpropagation through time algorithm with the exact error
gradient is used to train the network. The LSTM equations are
given for a single memory block only. For multiple blocks the
calculations are simply repeated for each block, in any order
[12].

a) Notations:

• wij the weight of the connection from unit i to unit j
• ati the network input to some unit j at time t
• bti the value of the same unit after the activation function

has been applied
• ι input gate, φ forget gate, ω output gate
• C set of memory cells of the block
• stc state of cell c at time t (i.e. the activation of the linear

cell unit)
• f the activation function of the gates, g cell input activa-

tion functions, h cell output activation functions
• I the number of inputs, K the number of outputs, H

number of cells in the hidden layer

Note that only the cell outputs btc are connected to the other
blocks in the layer. The other LSTM activations, such as the
states, the cell inputs, or the gate activations, are only visible
within the block.

We use the index h to refer to cell outputs from other blocks
in the hidden layer.

As with standard RNNs the forward pass is calculated for a
length T input sequence x by starting at t = 1 and recursively
applying the update equations while incrementing t, and the
BPTT backward pass is calculated by starting at t = T , and
recursively calculating the unit derivatives while decrementing
t (see Section 3.2 for details). The final weight derivatives are
found by summing over the derivatives at each timestep, as
expressed in Eqn. (3.34). Recall that

δtj =
∂O

∂atj
(8)

Where O is the objective function used for training.
The order in which the equations are calculated during the

forward and backward passes is important, and should proceed
as specified below. As with standard RNNs, all states and
activations are set to zero at t = 0, and all δ terms are zero at
t = T + 1.

b) Forward Pass: Input Gates

atι =

I∑
i=1

wiιx
t
i +

H∑
h=1

whιb
t−1
h +

C∑
c=1

wcιs
t−1
c (9)

btι = f(atι) (10)

Forget Gates

atφ =

I∑
i=1

wiφx
t
i +

H∑
h=1

whφb
t−1
h +

C∑
c=1

wcφs
t−1
c (11)

btφ = f(atφ) (12)

Cells

atc =

I∑
i=1

wicx
t
i +

H∑
h=1

whcb
t−1
h (13)

stc = btφs
t−1
c + btιg(a

t
c) (14)

Output Gates

atω =

I∑
i=1

wiωx
t
i +

H∑
h=1

whωb
t−1
h +

C∑
c=1

wcωs
t−1
c (15)

btω = f(atω) (16)

Cell Outputs
btc = btωh(s

t
c) (17)

c) Backward Pass:

εtc =
∂O

∂btc
(18)

εts =
∂O

∂stc
(19)

Cell Outputs

δtι = f ′(atι)

C∑
c=1

g(atc)ε
t
s (20)

Output Gates

δtφ = f ′(atφ)

C∑
c=1

st−1c εts (21)

States
δtc = btιg

′(atc)ε
t
s (22)

Cells

εts = btωh
′(stc)ε

t
c + bt+1

φ εt+1
s + wcιδ

t+1
ι + wcφδ

t+1
φ + wcωδ

t+1
ω

(23)
Forget Gates

δtω = f ′(atω)

C∑
c=1

h(stc)ε
t
c (24)

Input Gates

εts =

K∑
k=1

wckδ
t
k +

H∑
h=1

wchδ
t+1
h (25)

where f() (frequently noted as σ(.)) is the standard logis-
tic sigmoid function defined in Eq.(8), g() and h() are the
transformations of function () whose range are [-2,2] and [-
1,1] respectively: σ(x) = 1

1+e−x , g(x) = 4
1+e−x − 2 and

h(x) = 2
1+e−x − 1



IV. TRAFFIC MATRIX PREDICTION USING LSTM RNN

In this section we describe the use of a deep LSTM archi-
tecture with a deep learning method to extract the dynamic
features of network traffic and predict the future TM. This
architecture can deeply excavate mutual dependence among
the traffic entries in various timeslots.

A. Problem Statement

Let N be the number of nodes in the network. The N -
by-N traffic matrix is denoted by Y such as an entry yij
represents the traffic volume flowing from node i to node j. We
add the time dimension to obtain a structure of N-by-N-by-T
tensor (vector of matrices) S such as an entry stij represents
the volume of traffic flowing from node i to node j at time
t, and T is the total number of time-slots. The traffic matrix
prediction problem is defined as solving the predictor of Y t

(denoted by Ŷ t) via a series of historical and measured traffic
data set (Y t−1, Y t−2, Y t−3, ..., Y t−T ). The main challenge
here is how to model the inherent relationships among the
traffic data set so that one can exactly predict Y t.

B. Feeding The LSTM RNN

To effectively feed the LSTM RNN, we transform each
matrix Y t to a vector Xt (of size N×N ) by concatenating its
N rows from top to bottom. Xt is called traffic vector (TV).
Note that xn entries can be mapped to the original yij using
the relation n = i×N + j. Now the traffic matrix prediction
problem is defined as solving the predictor of Xt (denoted by
X̂t) via a series of historical measured traffic vectors (Xt−1,
Xt−2, Xt−3, ..., Xt−T ).

One possible way to predict the traffic vector Xt is to
predict one component xtn at a time by feeding the LSTM
RNN one vector (xt0, x

t
1, ..., x

t
N2) at a time. This is based on

the assumption that each OD traffic is independent from all
other ODs which was shown to be wrong by [21]. Hence,
considering the previous traffic of all ODs is necessary to
obtain a more accurate prediction of the traffic vector.

Continuous Prediction Over Time: Real-time prediction
of traffic matrix requires continuous feeding and learning.
Over time, the total number of time-slots become too big
resulting in high computational complexity. To cope with this
problem, we introduce the notion of learning window (denoted
by W ) which indicates a fixed number of previous time-slots
to learn from in order to predict the current traffic vector Xt

(Fig. 5).

Fig. 5: Sliding learning window

We construct the W -by-N2 traffic-over-time matrix (that we
denote by M ) by putting together W vectors (Xt−1, Xt−2,
Xt−3, ..., Xt−W ) ordered by time. Note that T ≥ W (T
being the total number of historical matrices) and the number
of matrices M is equal to T/W .

C. Performance Metric

To quantitatively assess the overall performance of our
LSTM model, Mean Square Error (MSE) is used to estimate
the prediction accuracy. MSE is a scale dependent metric
which quantifies the difference between the forecasted values
and the actual values of the quantity being predicted by
computing the average sum of squared errors:

MSE =
1

N

N∑
i=1

(yi − ŷi)2 (26)

where yi is the observed value, ŷi is the predicted value and
N represents the total number of predictions.

V. EXPERIMENTS AND EVALUATION

In this section, we will evaluate the prediction accuracy of
our method using real traffic data from the GÉANT backbone
networks [16]. GÉANT is the pan-European research network.
GÉANT has a PoP in each European country and it carries
research traffic from the European National Research and
Education Networks (NRENs) connecting universities and
research institutions. As of 2005, the GÉANT network was
made up of 23 peer nodes interconnected using 38 links. In
addition, GÉANT has 53 links with other domains.

2004-timeslot traffic matrix data is sampled from the
GÉANT network by 15-min interval [17] for several months.
In our simulation, we also compare our prediction and estima-
tion methods with a state-of-the-art method, that is, the PCA
method introduced in the above section.

To evaluate our method on short term traffic matrix predic-
tion, we consider a set of 309 traffic matrices measured be-
tween 01-01-2005 00am and 04-01-2005 5:15am. As detailed
in section IV-B, we transform the matrices to vectors of size
529 each and we concatenate the vectors to obtain the traffic-
over-time matrix M of size 309× 529. We split M into two
matrices, training matrix Mtrain and validation matrix Mtest

of sizes 263 and 46 consecutively. Mtrain is used to train the
LSTM RNN model and Mtest is used to evaluate and validate
its accuracy. Finally, We normalize the data by dividing by the
maximum value.

We use Keras library [18] to build and train our model. The
training is done on a Intel core i7 machine with 16GB memory.
Figures 6 and 7 show the variation of the prediction error when
using different numbers of hidden units and hidden layers
respectively. Finally, figure 8 compares the prediction error
of the different prediction methods presented in this paper
and shows the superiority of LSTM. Note that, the prediction
results of the linear predictors and FFNN are obtained from
[13] and they represent the error of predicting only one traffic
value which is obviously an easier task than predicting the
whole traffic matrix.



Fig. 6: MSE over size of hidden layer

Fig. 7: MSE over number of hidden layers (500 nodes each)

VI. RELATED WORK

Various methods have been proposed to predict traffic ma-
trix. [13] evaluates and compares traditional linear prediction
models (ARMA, ARAR, HW) and neural network based
prediction with multi-resolution learning. The results show
that NNs outperform traditional linear prediction methods
which cannot meet the accuracy requirements. [21] proposes
a FARIMA predictor based on an α-stable non-Gaussian self-
similar traffic model. [19] compares three prediction methods:
Independent Node Prediction (INP), Total Matrix Prediction
with Key Element Correction (TMP-KEC) and Principle Com-
ponent Prediction with Fluctuation Component Correction
(PCP-FCC). INP method does not consider the correlations
among the nodes, resulting in unsatisfying prediction error.
TMP-KEC method reduces the forecasting error of key ele-
ments as well as that of the total matrix. PCP-FCC method
improves the overall prediction error for most of the OD flows.

VII. CONCLUSION

In this work, we have shown that LSTM RNN architec-
tures are well suited for traffic matrix prediction. We have
proposed a data pre-processing and RNN feeding technique
that achieves high prediction accuracy in a few seconds of
computation (approximately 60 seconds for one hidden layer
of 300 nodes). The results of our evaluations show that LSTM
RNNs outperforms traditional linear methods and feed forward
neural networks by many orders of magnitude.

REFERENCES

[1] Liwicki, Marcus, et al. ”A novel approach to on-line handwriting recog-
nition based on bidirectional long short-term memory networks.” Proc.
9th Int. Conf. on Document Analysis and Recognition. Vol. 1. 2007.

Fig. 8: Comparison of prediction methods

[2] W. Leland, M. Taqqu, W. Willinger and D. Wilson, On the self-similar
nature of Ethernet traffic, In Proc. SIGCOMM 93, pp.183193, 1993.

[3] P. Cortez, M. Rio, M. Rocha, P. Sousa, Internet Traffic Forecasting using
Neural Networks, International Joint Conference on Neural Networks, pp.
26352642. Vancouver, Canada, 2006.

[4] Felix A. Gers, Nicol N. Schraudolph, and Jurgen Schmidhuber, Learning
precise timing with LSTM recurrent networks, Journal of Machine
Learning Research , vol. 3, pp. 115143, Mar. 2003

[5] Felix A. Gers and Jurgen Schmidhuber, LSTM recurrent networks learn
simple context free and context sensitive lan- guages, IEEE Transactions
on Neural Networks , vol. 12, no. 6, pp. 13331340, 2001

[6] H. Feng, Y. Shu, Study on Network Traffic Prediction Techniques,
International Conference on Wireless Communications, Networking and
Mobile Computing, pp. 10411044. Wuhan, China, 2005.

[7] J. Dai, J. Li, VBR MPEG Video Traffic Dynamic Prediction Based
on the Modeling and Forecast of Time Series, Fifth International Joint
Conference on INC, IMS and IDC, pp. 17521757. Seoul, Korea, 2009.

[8] V. B. Dharmadhikari, J. D. Gavade, An NN Approach for MPEG Video
Traffic Prediction, 2nd International Conference on Software Technology
and Engineering, pp. V1-57V1-61. San Juan, USA, 2010.

[9] A. Abdennour, Evaluation of neural network architectures for MPEG-4
video traffic prediction, IEEE Transactions on Broadcasting, Volume 52,
No. 2, pp. 184192. ISSN 0018-9316, 2006.

[10] Sak, Hasim, Andrew W. Senior, and Franoise Beaufays. ”Long short-
term memory recurrent neural network architectures for large scale
acoustic modeling.” Interspeech. 2014.

[11] Sak et al. Long Short-Term Memory Recurrent Neural
Network Architectures for Large Scale Acoustic Modeling.
https://arxiv.org/pdf/1402.1128.pdf

[12] Alex Graves. Supervised Sequence Labelling with Recurrent Neural
Networks. http://www.cs.toronto.edu/ graves/phd.pdf

[13] Barabas, Melinda, et al. ”Evaluation of network traffic prediction based
on neural networks with multi-task learning and multiresolution decom-
position.” Intelligent Computer Communication and Processing (ICCP),
2011 IEEE International Conference on. IEEE, 2011.

[14] H. Feng, Y. Shu, Study on Network Traffic Prediction Techniques,
International Conference on Wireless Communications, Networking and
Mobile Computing, pp. 10411044. Wuhan, China, 2005.

[15] Hochreiter, Sepp, and Jrgen Schmidhuber. ”Long short-term memory.”
Neural computation 9.8 (1997): 1735-1780.

[16] https://www.geant.org/Projects/GEANT Project GN4
[17] Uhlig, Steve, et al. ”Providing public intradomain traffic matrices to

the research community.” ACM SIGCOMM Computer Communication
Review 36.1 (2006): 83-86.

[18] https://keras.io/
[19] Liu, Wei, et al. ”Prediction and correction of traffic matrix in an

IP backbone network.” Performance Computing and Communications
Conference (IPCCC), 2014 IEEE International. IEEE, 2014.

[20] P. J. Brockwell, R. A. Davis, Introduction to Time Series and Forecast-
ing, Second Edition. Springer-Verlag,ISBN 0-387-95351-5, 2002.

[21] Wen, Yong, and Guangxi Zhu. ”Prediction for non-gaussian self-similar
traffic with neural network.” Intelligent Control and Automation, 2006.
WCICA 2006. The Sixth World Congress on. Vol. 1. IEEE, 2006.


	Introduction
	Time Series Prediction
	Linear Prediction
	Neural Networks for Time Series Prediction


	Long Short Term Memory Neural Networks
	LSTM Architecture
	LSTM Equations

	Traffic Matrix Prediction Using LSTM RNN
	Problem Statement
	Feeding The LSTM RNN
	Performance Metric

	Experiments and Evaluation
	Related Work
	Conclusion
	References

