
HAL Id: hal-01538564
https://hal.sorbonne-universite.fr/hal-01538564

Preprint submitted on 13 Jun 2017

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

sOFTDP: Secure and Efficient Topology Discovery
Protocol for SDN

Abdelhadi Azzouni, Raouf Boutaba, Thi-Mai-Trang Nguyen, Guy Pujolle

To cite this version:
Abdelhadi Azzouni, Raouf Boutaba, Thi-Mai-Trang Nguyen, Guy Pujolle. sOFTDP: Secure and
Efficient Topology Discovery Protocol for SDN. 2017. �hal-01538564�

https://hal.sorbonne-universite.fr/hal-01538564
https://hal.archives-ouvertes.fr


sOFTDP: Secure and Efficient Topology Discovery
Protocol for SDN

Abdelhadi Azzouni1, Raouf Boutaba2, Nguyen Thi Mai Trang1, and Guy Pujolle1

1LIP6 / UPMC; Paris, France {abdelhadi.azzouni,thi-mai-trang.nguyen,guy.pujolle}@lip6.fr
2University of Waterloo; Waterloo, ON, Canada rboutaba@uwaterloo.ca

Abstract—Topology discovery is one of the most critical tasks
of Software-Defined Network (SDN) controllers. Current SDN
controllers use the OpenFlow Discovery Protocol (OFDP) as
the de-facto protocol for discovering the underlying network
topology. In a previous work, we have shown the functional,
performance and security limitations of OFDP. In this paper,
we introduce and detail a novel protocol called secure and
efficient OpenFlow Discovery Protocol sOTDP. sOFTDP requires
minimal changes to OpenFlow switch design, eliminates major
vulnerabilities in the topology discovery process and improves
its performance. We have implemented sOFTDP as a topology
discovery module in Floodlight for evaluation. The results show
that our implementation is more secure than OFDP and previous
security workarounds. Also, sOFTDP reduces the topology dis-
covery time several orders of magnitude compared to the original
OFDP and existing OFDP improvements.

keywords - Software-Defined Networking, OpenFlow,
Topology Discovery, security.

I. INTRODUCTION

Software-Defined Networking (SDN) introduces the sepa-
ration between the control plane and the data plane of the
network. SDN moves the control logic to a centralized entity
called the controller. The controller instructs switches/routers
in the data-plane as to how packets should be forwarded by
installing forwarding rules in their forwarding tables. To do
so, the de-facto standard protocol for communication between
the controller and switches is OpenFlow. The controller also
provides APIs to write network management applications [1].

One of the controller’s duties is to perform an accurate,
secure and near real time topology discovery to provide man-
agement applications with an up-to-date view of the network
topology. However, all current SDN controllers perform topol-
ogy discovery using OpenFlow Discovery Protocol (OFDP),
which is far from being secure and efficient [3]. Figure 1 shows
how OFDP works; To discover the unidirectional link s1 →
s2, the controller encapsulates a LLDP packet in a packet-out
message and sends it to s1. The packet-out contains instruction
for s1 to send the LLDP packet to s2 via port p1. By receiving
the LLDP packet via port p2, s2 encapsulates it in a packet-
in message and sends it back to the controller. Finally, the
controller receives the LLDP packet and concludes that there
is a unidirectional link from s1 to s2. The same process is
performed to discover the link in the opposite direction s2 →
s1 as well as for all other switches in the network.

In highly dynamic networks like large virtualized data
centers and multi-tenant cloud networks, keeping an up-to-

Fig. 1: Discovering a unidirectional link in OFDP

date view of the topology is a critical function; Switches join
and leave the network dynamically, creating changes in the
topology which affects routing decisions that the controller
has to make continuously. To stay up-to-date, the controller
needs to repeat the process described in figure 1 periodically.
The period between two discovery rounds, we will refer to as
the discovery period, must be chosen carefully based on the
dynamicity, size and capacity of the network.

An inefficient, vulnerable or buggy topology discovery
mechanism can affect routing logic and drastically reduce
network performance. This paper extends our previous work
on OFDP limitations [3] by detailing the design of a secure and
efficient alternative protocol that we call sOFTDP (secure
and efficient OpenFlow Topology Discovery Protocol).

The remainder of this paper is organized as follows: In
section II we show why the de-facto OFDP shouldn’t be
implemented in production networks. We introduce our al-
ternative protocol sOFTDP in section III and evaluate its
performance in section IV. Related work is discussed in
section V and section VI concludes the paper.

II. WHY OFDP SHOULDN’T BE IMPLEMENTED IN
PRODUCTION NETWORKS

In this section, the security and efficiency issues of OFDP
are briefly recalled in order for this paper to be self contained.
We refer to [3] for a more thorough discussion.

A. OFDP is not secure

Current OpenFlow controllers that we have tested (ONOS
[8], OpenDaylight [9], Floodlight [10], NOX [11], POX [11],
Beacon [12], Ryu [13] and Cisco Open SDN Controller [14])
implement default OFDP using clear and unauthenticated
LLDP packets. OFDP is vulnerable to a number of attacks



(a) Switch spoofing attack (b) Link fabrication attack (c) LLDP flooding attack

Fig. 2: Attacks on OFDP

including switch spoofing, link fabrication, controller finger-
printing and LLDP flooding.

Switch spoofing. LLDP packets in OFDP have two manda-
tory TLVs: ChassisSubtype and PortSubtype to track pack-
ets. Most controllers we have tested set chassisSubtype value
to the MAC address of the local (or internal) port of the switch.
In figure 2a, the malicious switch s4 intercepts LLDP packets
from s1 containing s1’s local port MAC address and then use
it to connect to the controller as s1.

Link Fabrication. Link Fabrication attacks have two forms:
(i) Link Fabrication by LLDP relay where the adversary has
control over two end-hosts h1 and h2 connected to switches
s1 and s3 respectively. h1 sends the LLDP packets received
from s1 to h2 through an out-of-band connection (a tunnel
over s2 for example), and h2 replicates them to s3 (figure 2b).
(ii) Link Fabrication by fake LLDP injection. If the adversary
has control only over h1, but knows the Data Plane Identifier
(DPID) of s3 then he still can fabricate a unidirectional link
between s3 → s1 by injecting fake LLDP packets into s1 [4],
[6]. As discussed in [3], authenticating LLDP packets using
a static or dynamic key-Hash Message Authentication Code
(HMAC) does not prevent the link fabrication by relay attack.

Controller fingerprinting. The LLDP packets’ content and
frequency is different from one controller to another, which
allows fingerprinting attacks on SDN controllers. An adversary
(h1 in figure 2b) matches the LLDP content he/she receives
from s1 (LLDP packets originating from the controller) against
a controller signature database to detect which controller is
managing the network. Such information is very useful to
launch specific and precise attacks on the controller [15].

LLDP Flooding. An adversary can exhaust the controller’s
resources and congest links connecting switches to the con-
troller by generating enough fake LLDP packets. In figure
2c, h1 generates a large number of LLDP packets and sends
them to s1 which has a rule to forward every LLDP packet
to the controller. Basic countermeasure methods such as port
blocking or packet filtering may not be effective, especially
in the case of very dynamic environments (e.g. multi-tenant
cloud) since connected hosts and switches change frequently
which may result in preventing legitimate LLDP packets from
reaching the controller.

B. OFDP is not efficient

By using OFDP, the controller periodically sends multiple
packets to every switch in the network, which could result
in performance decrease of the data plane. Experiments made
on different controllers [16] show that starting from a certain
network size (i.e. number of switches), running only the dis-
covery module results in significant increase of the controller’s
CPU usage and decrease in performance.

C. OFDP is not scalable

Other issues with OFDP include that it may not reliably
work for heavily loaded links, because discovery packets might
get dropped or delayed. Moreover, when using OFDP in a
multi-controller SDN network (e.g. running several tenant con-
trollers in a virtualized network through FlowVisor), discovery
cost increases linearly as more controllers are added.

III. INTRODUCING SOFTDP: SECURE OPENFLOW
TOPOLOGY DISCOVERY PROTOCOL

In a dynamic data center SDN, the controller needs to be
updated whenever a topology change occurs in order to make
the suitable routing decisions for the new topology. Topology
changes typically occur as a consequence of two events: (i)
a new link is added to the network or (ii) an existing link
is removed from the network. Both events are the result of
either adding a new switch, removing an existing switch or
adding/removing a link between two existing switches (the lat-
ter include link and switch failures). sOFTDP design assumes
that the controller has no prior knowledge of the occurrence
of such events and it is expected to dynamically update its
topology map and adapt its routing decisions accordingly.

Network as a Service (NaaS) platforms are good examples
where the controller has no prior knowledge of upcoming
events. This is the case for example, of a public Cloud
provider that offers customers the possibility to create their
own networks, including hosts and SDN switches in virtual
machines. The consumer (or tenant) can create hosts and
switches and link them on the fly using a web interface, while
the provider’s controller manages the network and ensure the
connectivity. In this way, the tenant can add, remove, place or
move host and switch instances without worrying about the
underlying configuration.

In the remaining of this section we first identify some fun-
damental requirements for topology discovery in the context



of dynamic virtualized data center networks, then we detail
the sOFTDP design choices.

A. Fundamental requirements for topology discovery

Topology discovery is a critical process that is required to
be:
• Error free: a topology error leads to wrong routing of

flows. The impact can be very harmful if the error is in
the routing core (core routers and links)

• Secure: a discovery protocol must be secure, preventing
the introduction of fake links and information leakage
(including topology information).

• Efficient: a discovery protocol must not flood the con-
troller with redundant information and only transmit the
topology events information when they occur.

B. sOFTDP design

sOFTDP 1 is designed to satisfy the above requirements.
The main idea is to move a part of the discovery process from
the controller to the switch. By introducing minimal changes
to the OpenFlow switch design, sOFTDP enables the switch to
autonomously detect link events and notify the controller. We
also implement the necessary logic in the controller to handle
switch notifications. The key ingredients of sOFTDP design
are: Bidirectional Forwarding Detection (BFD) as port liveness
detection mechanism, asynchronous notifications, topology
memory, FAST-FAILOVER groups, ”drop lldp” rules and
hashed LLDP content. In the following we describe each of
these mechanisms.

1) BFD as Port Liveness Detection mechanism: sOFTDP
uses BFD (Bidirectional Forwarding Detection [17]) as port-
liveness-detection mechanism to quickly detect link events.
Instead of requesting topology information by sending peri-
odic LLDP frames, the controller just listens for link event
notifications from switches to make topology updates. Hence,
the switch needs a mechanism to autonomously and quickly
detect link events and report them to the controller.

BFD is a protocol that provides fast routing-protocol-
independent detection of layer-3 next hop failures. BFD es-
tablishes a session between two preconfigured endpoints over
a particular link, and performs a control and echo message
exchange to detect link liveliness. sOFTDP implements BFD
in asynchronous mode: once a session is set up with a three-
way handshake, neighbor switches exchange periodic control
messages to confirm absence of a failure (presence of link)
between them. Note that sOFTDP only relies on BFD to detect
link removal events. For link addition events, sOFTDP uses
OFPT PORT STATUS messages to update the topology as
we will detail in the next subsection. The reason for using
BFD instead of OFPT PORT STATUS messages in detecting
link removal is to include link failures that do not originate
from administratively shutting down ports, e.g., failure of the
underlying physical link or switch failure, etc.

1We interchangeably use the name sOFTDP for the topology discovery
protocol and for the topology discovery application implementing it

BFD detection time of link events depends on the control
packet transmission interval Ti and the detection multiplier
M [17]. The former defines the frequency of control messages
and the latter defines how many control packets can be lost
before the neighbor end-point is considered unreachable. In
the worst case, failure detection time is given by equation 1

Tdet = M ∗ Ti (1)

The transmit interval Ti is lower-bounded by the RTT of
the link. Note that a transmit interval of Ti = 16.7ms and
a detection multiplier of M = 3 are sufficient to achieve a
detection time of Tdet = 50ms. Also, M = 3 prevents small
packet loss from triggering false positives. Furthermore, a
such session generates only 60 packets per second.

2) Asynchronous notifications: sOFTDP enables the switch
to inform the controller about port connectivity events. In
case of administrative changes to port status (port turned up
or down), the switch reports it via a OFPT PORT STATUS
message defined in OpenFlow switch specifications. But,
in the case of link failure or the remote port going down,
OpenFlow doesn’t provide any mechanism for the switch
to inform the controller. sOFTDP adds this functionality to
the switch by defining a new switch-to-controller message
BFD STATUS.

3) Topology memory: sOFTDP keeps track of topology
events and builds a database of potential backup links
besides the actual link database. When a new link is added,
sOFTDP computes the local topology (relative to the added
link). If the new link forms a shorter path between two
switches and no traffic engineering application decides
otherwise, the new path will be used for forwarding and the
previous one will be saved as potential backup. sOFTDP
installs OpenFlow FAST-FAILOVER groups [18] on the
switches of the new link and marks the link as ’safe to
remove’ since it has at least one potential backup. Note
that potential backup links are not considered backup
links until all traffic engineering applications agree. Traffic
engineering applications must communicate with sOFTDP
to prevent interference in selecting primary paths and backups.

4) FAST-FAILOVER groups: OpenFlow groups enable
OpenFlow to abstract a set of ports as a single forwarding
entity allowing advanced forwarding and monitoring at the
switch level. The group table contains group entries; each
group entry is composed of a set of action buckets with specific
semantics dependent on the group type. When a packet is
sent to a group, the actions in one or more action buckets
are applied to it before forwarding to the egress port. Groups
buckets can also forward to other groups, enabling to chain
groups together.

The following four types of group tables are provided:
• All: used for multicast and flooding
• Select: used for multipath
• Indirect: simple indirection
• Fast Failover: use first live port



Different types of group tables are associated with different
abstractions such as multicasting or multipathing. In particular,
the Fast Failover Group Table monitors the status of ports and
applies forwarding actions accordingly. When the monitored
port goes down, the Fast Failover Group Table switches to the
first port alive without consulting the controller [18].

sOFTDP enables seamless removal of switches and links
while preserving connectivity. In order to accomplish that,
when a link removal event occurs, sOFTDP uses OpenFlow
FAST-FAILOVER groups (optional in OpenFlow 1.1+) to
watch switch ports and perform fast switchover to backup
links. Hence, switches concerned by the link removal start
forwarding flows through the backup link and do not have
to wait until the controller receives the topology event and
installs new rules.

5) ”drop lldp” rules: The switch has a rule ”drop lldp” to
drop every LLDP packet to prevent LLDP flooding attacks
(see figure 2c). In a SDN running OFDP, traditional Denial
of Service (DoS) mitigating methods like placing firewalls or
Intrusion Detection Systems (IDSs) to filter out LLDP packets
are not effective because it is hard to distinguish between
legitimate LLDP packets (generated by the controller and
forwarded by switches) from the fake ones (generated by the
attacker and also forwarded by switches to the controller). By
removing periodically broadcasted LLDP packets, sOFTDP
eliminates the possibility that malicious LLDP packets get
forwarded to the controller and hence prevents it from being
flooded.

6) Hashed LLDP content: The controller sends encrypted
LLDP packets only when it receives a OFPT PORT STATUS
with the flag PORT UP set to 1 indicating the port went
from down to up status. The LLDP packets are sent only to
the concerned switches along with OpenFlow rules to forward
them to the controller. These rules must have a higher priority
than ”drop lldp” rules and their hardtimeout values are set
to 500ms. The purpose of the LLDP packets here is to learn
added links as shown in figure 3b and detailed in subsection
III-C. Finally, 500ms is a small arbitrary value to ensure that
potential malicious LLDP packets generated exactly during
this time window will not significantly affect the controller.

C. How sOFTDP works

Figure 3 shows how sOFTDP works. To bootstrap, the
controller sends LLDP packets to all connected switches like
in traditional OFDP (figure 3a). The main difference is that we
do not use clear MAC addresses as switch DPIDs. Instead, we
use hash values of them to prevent all information discloser
and switch spoofing attacks. We also hash system description
field value to prevent controller fingerprinting [15].

When a new switch joins the network, it starts by es-
tablishing a connection with the controller: The switch and
the controller exchange hello (OFPT HELLO) messages
that specify the latest OpenFlow protocol version supported
by the sender. Then, the controller sends the switch a
feature request message asking its capabilities. The switch

(a) Bootstrap (b) s4 joins the network

(c) s2 leaves the network (d) Addition of link s1 ↔ s3

(e) Removal of link s3 ↔ s4

Fig. 3: How sOFTDP works

responds with a feature reply message, which includes the
local MAC address (that corresponds to the internal port
of the switch) in the switch datapath ID field and that’s
how the controller keeps track of connected switches. The
feature reply message also includes ports status which are
all down initially. In figure 3b, when switch s4 joins the
network and new links are established, switches s1, s3 and
s4 send PORT STATUS messages to inform the controller
that involved ports s1.p2, s4.p1, s4.p2 and s3.p2 went up and
are connected. The controller ’c’ then sends LLDP packets to
be forwarded only through those ports: c→ s1.i→ s1.p2→
s4.p1 → s4.i → c, c → s4.i → s4.p2 → s3.p2 → s3.i → c,
c → s3.i → s3.p2 → s4.p2 → s4.i → c and c → s4.i →
s4.p1→ s1.p2→ s1.i→ c. With i indicates internal port.

Once all LLDP packets are received, the controller identifies
the new links and store them in the Topology Map. Note
that by using PORT STATUS messages as trigger to learn
new links, the controller doesn’t need to periodically send
discovery packets and switches do not need to be too smart to
determine the new links (as in [19]) or to store them locally.

Once the new topology is computed, the controller detects
multiple paths between pairs of switches. Independently of
traffic engineering applications running on the same controller,
the sOFTDP topology module tags shortest paths as primary
paths and longer paths as secondary paths or potential backups
(e.g., s1 ↔ s2 is a primary path and s1 ↔ s4 ↔ s3 ↔
s2 is a secondary path). Then, if not specified otherwise by



any traffic engineering application, the controller installs fast-
failover group rules on the switches of the shortest path. This
ensures continuity of connectivity in case of topology events.
In the example shown in figure 3b, there are two similar paths,
in term of number of hops, between s1 and s3. The controller
arbitrary tags s1 ↔ s4 ↔ s3 as primary path and installs
fast-failover group rules on switches s1 and s3 to watch ports
s1.p1, s1.p2, s3.p1 and s3.p2.

When a switch leaves the network (s2 in figure 3c), neighbor
switches detect and report link events to the controller: BFD
session on s1.p1 detects the link s1.p1 ↔ s2.p1 failure and
sends a BFD STATUS message to the controller. In the case
of link removal, the controller doesn’t need to send LLDP
packets and just removes the link from the topology map. The
same process applies to link s2.p2↔ s3.p1. Switches s1 and
s3 automatically switch traffic through the path s1 ↔ s4 ↔
s3 using the fast-failover group rules installed previously.

When a link is added between two existing switches
(s1 ↔ s3 in figure 3d), the involved ports s1.p1 and
s3.p1 send PORT STATUS messages to the controller
with ”port up” flags set. The controller then sends LLDP
packets to be forwarded only through s1.p1 and s3.p1:
controller → s1.internal → s1.p1 → s3.p1 → controller
and controller → s3.internal → s3.p1 → s1.p1 →
controller. After the new topology is computed, the controller
tags s1 ↔ s3 as the shortest path and s1 ↔ s4 ↔ s3 as a
potential backup path and installs fast-failover group rules on
s1 and s3 (in this particular example, the same rules already
exist)

When an existing link is removed (s3 ↔ s4 in figure 3e),
the involved ports s3.p2 and s4.p2 detect loss of connectivity
very quickly using BFD and report it to the controller via
BFD STATUS messages. The controller then drops the link
s3 ↔ s4 from its topology map without the need to send
LLDP packets. Finally, the controller removes the tag from
the remaining path.

IV. EVALUATION

A. Emulation Testbed

To evaluate sOFTDP, we implemented sOFTDP topology
module on Floodlight. We conducted experiments on an em-
ulated testbed using Mininet [20]. The emulated testbed is
composed of four virtual bridges based on Open vSwitch
[21] and controlled by Floodlight controller from a different
physical machine. We upgraded existing Open vSwitch (of
mininet v2.2.1) to the newer version 2.3.1 that supports the
BFD protocol and fast failover groups. Then we added a
simple patch to Open vSwitch to send BFD STATUS to
the controller upon BFD events (see section III-B2). BFD
detection time is set to 1ms.

B. Experiments and results

As previously explained, to handle link removal, sOFTDP
uses BFD protocol to detect port events at the switch level,
then the switch triggers a notification the the controller
(BFD STATUS message) and finally the controller removes

the link from the topology map. To handle link addition,
sOFTDP listens for OFPT PORT STATUS messages trig-
gered by the ports going up then the controller sends a LLDP
message to the concerned switches to confirm the added link
and finally adds it to the topology map. Accordingly, two
scenarios are implemented and evaluated:

Scenario one: Link s1.p1 ↔ s3.p1 is added (figure 3d).
We measure the learning time the controller takes to know
about the added link as given in equation 2.

Tlearn(i, j) = maxd∈{i,j}(Tpstatus(d)) +RTTLLDP (i, j)
(2)

RTTLLDP (i, j) = Tdelv(c, i) + Tdelv(i, j) + Tdelv(j, c) (3)

Tlearn({i, j}) = max(Tlearn(i, j), Tlearn(j, i)) (4)

Where: Tlearn(i, j) is the time necessary to learn unidi-
rectional link (i, j) Tpstatus(i) = Ttrsm(i, c) is the time
OFPT PORT STATUS message takes from switch i to the
controller. RTTLLDP (i, j) is the round trip time that a LLDP
packet sent from the controller takes to go through switch
i then switch j and back to the controller. Tlearn({i, j}) is
the time necessary to learn bidirectional link {(i, j), (j, i)}
and finally Tdelv(x, y) is the packet delivery time from node
x to node y. Figure 4a shows the average of 50 performed
experiments and 95% confidence interval yielding learning
times of 5.68± 0.85ms

To further demonstrate sOFTDP performance, we also mea-
sure the overall adaptation time when a new link is added
(see figure 3d) to the network. adaptation time includes
learning the new link, installing fast-failover group rules in the
switches and the actual switchover time. Figure 4b depicts the
result averaged from 50 conducted experiments. The average
and 95% confidence interval are of 6.12± 0.7ms.

Scenario two: Link s3.p2↔ s4.p2 is removed (figure 3e).
We measure the learning time the controller takes to learn
the change in the topology. The link is brought down upon
the first BFD STATUS message of either of its endpoints.

The learning time in this case is:

Tlearn(i, j) = min(Tbfd(i), Tbfd(j)) (5)

Where Tbfd(x) is the BFD detection time on the involved
port of node x. Computed as follows:

Tbfd(x) = T x
det + Tdelv(x, c) (6)

Where T x
det is BFD detection time given in equation 1

and Tdelv(x, c) is packet delivery time from node x to the
controller.

Figure 4c shows sOFTDP learning time average (taken over
50 performed experiments) and the 95% confidence interval
resulting in 3.25± 0.008ms

sOFTDP learning time is independent of the size of the
network and depends only on the inter-switch RTT and the
RTT between switches and the controller. Figure 5 compares
sOFTDP to OFDP and OFDPv2 [7] in term of CPU time.



(a) New link detection time in ms (b) Adaptation time in ms (c) Link removal detection time in ms

Fig. 4: Evaluation of sOFTDP

Fig. 5: CPU time (in ms) over number of switches

Each experiment is performed over 200s period during which
one topology event is generated every second.

V. RELATED WORK

Unlike our proposal, most of previous work focus either on
security problems or on performance problems in OFDP. In
[4], authors identified link fabrication attacks on OFDP and
proposed to authenticate LLDP packets by adding an optional
TLV ”HMAC” to ensure their origin and integrity.

The average overhead introduced by this approach differs
between the first discovery round and the following rounds,
because the HMAC value is computed once and cached
for the future construction and validation of LLDP packets.
The average overhead accounts for 80.4% of overall LLDP
construction time in the first round and accounts for 2.92%
in the following rounds. Although this approach prevents link
fabrication by fake LLDP injection, it does not defend against
link fabrication in a relay manner as discussed in section II.
The authors argue that a solution to the link fabrication by
a relay could be that the controller monitors ports to detect
whether the connected machine is a host or a switch. If the
connected machine is a host generating LLDP packets then
an alert is triggered. However, a host can easily behave like a
switch making this solution unpractical.

A similar approach was proposed in [6] but using HMAC
with a dynamic key which is randomly generated for every
single LLDP packet. This approach adds an extra 8% of in
CPU load.

OFDPv2 [7] reduces the number of OFDP-related packet-
out messages by rewriting LLDP packet headers in the switch.

In the traditional OFDP, the controller sends
∑n

i=1 pi packet-
out messages every discovery round, where n is the number of
switches and pi the number of ports in switch i. The number
of packet-out messages shrinks to n by sending only one
packet per switch and rewriting copies for different ports at
level of the switch. OFDPv2 achieves 50% reduction in CPU
load compared to OFDP but obviously requires more logic to
be added to the switch. Also, OFDPv2 does not reduce the
number of packet-in messages that the controller periodically
receives from switches.

In [19] authors implemented the ForCES [22] protocol to
communicate the topology information between switches and
the controller. Switches acquire neighbor topology information
by exchanging LLDP packets as in traditional networks and
store it in their device maps. The acquired information is
updated periodically as LLDP frames are exchanged. Then,
upon receiving a topology change notification from a switch,
the controller needs to query the connected switches in order
to learn their respective neighbors. The authors measured an
average learning time of 12ms without considering the LLDP
exchange time. In other words, the LLDP time exchange time
is not included and it takes 12ms for the switch to detect the
topology change, send a notification to the controller and then
answer the controller’s request for the topology information.

VI. CONCLUSION

In this work, we extended our previous paper on OFDP
limitations by introducing and detailing a novel topology dis-
covery protocol for OpenFlow (sOFTDP). We argue that this
is the first time major security and performance issues related
to the topology discovery process in current SDN controllers,
are tackled. Our proposal requires minimal changes to the
OpenFlow switch design and is shown to be more secure
(by design) than previous workarounds on traditional OFDP.
Also, our proposal outperforms OFDP and OFDPv2 by several
orders of magnitude which we confirmed by proof of concept
experiments. Further experiments on larger physical testbeds
are being conducted ad will be included in future work.

REFERENCES

[1] McKeown, Nick, et al. ”OpenFlow: enabling innovation in campus
networks.” ACM SIGCOMM Computer Communication Review 38.2
(2008): 69-74.

[2] GENI Wiki. http://groups.geni.net/geni/wiki/OpenFlowDiscoveryProtocol



[3] Azzouni, Abdelhadi, et al. ”Limitations of OpenFlow Topology Discovery
Protocol.” arXiv preprint arXiv:1705.00706 (2017).

[4] Hong, Sungmin, et al. ”Poisoning Network Visibility in Software-Defined
Networks: New Attacks and Countermeasures.” NDSS. 2015.

[5] Congdon, P. (2002). Link layer discovery protocol and MIB. V1. 0 May
20. 2002, http://www. IEEE802.

[6] Alharbi, Talal, Marius Portmann, and Farzaneh Pakzad. ”The (In) Security
of Topology Discovery in Software Defined Networks. ” Local Computer
Networks (LCN), 2015 IEEE 40th Conference on. IEEE, 2015.

[7] Pakzad, Farzaneh, et al. ”Efficient topology discovery in software defined
networks.” Signal Processing and Communication Systems (ICSPCS),
2014 8th International Conference on. IEEE, 2014.

[8] Berde, Pankaj, et al. ”ONOS: towards an open, distributed SDN OS.”
Proceedings of the third workshop on Hot topics in software defined
networking. ACM, 2014.

[9] Linux Foundation. ”OpenDaylight”. https://www.opendaylight.org/.
[10] Project Floodlight. https://floodlight.atlassian.net/wiki/display/floodlight-

controller/Supported+Topologies
[11] Gude, Natasha, et al. NOX: towards an operating system for networks.

ACM SIGCOMM Computer Communication Review 38.3 (2008): 105-
110.

[12] Erickson, David. ”The beacon openflow controller.” In Proceedings of
the second ACM SIGCOMM workshop on Hot topics in software defined
networking, pp. 13-18. ACM, 2013.

[13] Ryu. http://osrg.github.com/ryu/
[14] Cisco. ”Cisco Open SDN Controller”.

http://www.cisco.com/c/en/us/products/cloud-systems-management/open-
sdn-controller/index.html

[15] Azzouni, A et al. ”Fingerprinting OpenFlow controllers: The first step
to attack an SDN control plane”. GLOBECOM. 2016.

[16] IXIA and NEC. ”White paper: SDN Controller Testing, Part
1”. https://www.necam.com/docs/?id=2709888a-ecfd-4157-8849-
1d18144a6dda

[17] IETF, Bidirectional Forwarding Detection (BFD),
https://tools.ietf.org/html/rfc5880

[18] Open Networking Foundation. ”OpenFlow Switch Specification”, Ver-
sion 1.5.0 (Wire Protocol 0x06). December 19, 2014.

[19] Tarnaras, George, Evangelos Haleplidis, and Spyros Denazis. ”SDN
and ForCES based optimal network topology discovery. ” Network
Softwarization (NetSoft), 2015 1st IEEE Conference on. IEEE, 2015.

[20] Antonenko, Vitaly, and Ruslan Smelyanskiy. ”Global network modelling
based on mininet approach.” Proceedings of the second ACM SIGCOMM
workshop on Hot topics in software defined networking. ACM, 2013.

[21] Pfaff, Ben, et al. ”The design and implementation of open vswitch.” 12th
USENIX symposium on networked systems design and implementation
(NSDI 15). 2015.

[22] Yang, Lily, et al. Forwarding and control element separation (ForCES)
framework. No. RFC 3746. 2004.


	Introduction
	Why OFDP shouldn't be implemented in production networks
	OFDP is not secure
	OFDP is not efficient
	OFDP is not scalable

	Introducing sOFTDP: Secure OpenFlow Topology Discovery Protocol
	Fundamental requirements for topology discovery
	sOFTDP design
	BFD as Port Liveness Detection mechanism
	Asynchronous notifications
	Topology memory
	FAST-FAILOVER groups
	"drop lldp" rules
	Hashed LLDP content

	How sOFTDP works

	Evaluation
	Emulation Testbed
	Experiments and results

	Related work
	Conclusion
	References

