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Optimal Orchestration of Virtual Network Functions
Meihui Gao, Bernardetta Addis, Mathieu Bouet, Stefano Secci, Senior Member, IEEE

Abstract—The emergence of Network Functions Virtualization
(NFV) is bringing a set of novel algorithmic challenges in the op-
eration of communication networks. NFV introduces volatility in
the management of network functions, which can be dynamically
orchestrated, i.e., placed, resized, etc. Virtual Network Functions
(VNFs) can belong to VNF chains, where nodes in a chain
can serve multiple demands coming from the network edges. In
this paper, we formally define the VNF placement and routing
(VNF-PR) problem, proposing a versatile linear programming
formulation that is able to accommodate specific features and
constraints of NFV infrastructures, and that is substantially
different from existing virtual network embedding formulations
in the state of the art. We also design a math-heuristic able to
scale with multiple objectives and large instances. By extensive
simulations, we draw conclusions on the trade-off achievable
between classical traffic engineering (TE) and NFV infrastructure
efficiency goals, evaluating both Internet access and Virtual
Private Network (VPN) demands. We do also quantitatively
compare the performance of our VNF-PR heuristic with the
classical Virtual Network Embedding (VNE) approach proposed
for NFV orchestration, showing the computational differences,
and how our approach can provide a more stable and closer-to-
optimum solution.

I. INTRODUCTION

After about ten years of fundamental research on network
virtualization and virtual network embedding, the virtualiza-
tion of network functions is becoming a reality thanks to
huge investments being made by telecommunication providers,
cloud providers and vendors.

The breaking point sits in 2012, when calls for experimen-
tation and deployment of what was coined as “Network Func-
tions Virtualization (NFV)” [2] lead to the creation of an NFV
industry research group at the European Telecommunications
Standards Institute (ETSI) [3]. Since then, applied researches
and developments have accelerated investments, hence prelim-
inary prototypes were demonstrated and deployed (leading to
commercialization in some cases) since late 2014 [4].

With NFV, the attention of network virtualization research is
now focusing on key aspects of NFV systems that were either
not considered relevant or not conceived before industry effort
at Standards Developing Organizations (SDOs). Key aspects
that are worth being mentioned are the:
� NFV service chaining [5] provisioning, i.e., the problem

of allowing a traffic flow passing through a pre-computed
or dynamically computed list of VNF nodes, possibly
accounting for the fact that VNF nodes can be placed at,
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and migrated across, virtualization clusters as a function
of demand assignment to existing VNF chains or sub-
chains;

� ingress/egress bit-rate variations at VNFs, due to specific
VNF operations (such as compression as in coding,
decompression as in tunneling);

� VNF processing and forwarding latency as an orches-
tration parameter. It can indeed be exponential with the
traffic load on the VNF, or constant up to a maximum
board if computation offloading solutions, such as direct
memory access bypassing the hypervisor (as done with
Intel/6WIND Data-Plane Development Kit [6]), or similar
other ‘fastpath’ solutions are present.

We could not identify a work in the state of the art jointly
taking these aspects all together into account. As hereafter
resumed, most of the approaches rely on heuristic algorithms.
A recent study [7] evaluate some of them highlighting that
they may come at a “Revenue/Cost” ratio of 50%, i.e., twice
as many resources were consumed than demands realized by
heuristic approaches, which suggests that there is significant
optimization potential to achieve in the area, despite the high
number of research papers on VNF orchestration. In this paper,
our goal is to fill the cost efficiency gap mentioned in [7] under
reasonable execution time.

ETSI is de-facto the reference SDO for the NFV high-
level functional architecture specification. High-level means
that its identified role is the specification of the main func-
tional blocks, their architecture and inter-relationship, whose
implementation elements could then be precisely addressed
by other SDOs. ETSI specifies three components [8] for the
NFV architecture: Virtual Network Functions (VNFs); NFV
Infrastructure (NFVI), including the elements needed to run
VNFs such as the hypervisor node and the virtualization
clusters; MANagement and Orchestration (MANO), handling
the operations needed to run, migrate, optimize VNF nodes
and chains, possibly in coordination with transport network
orchestrators.

MANO procedures come therefore to support the economies
of scale of NFV, so that physical NFVI virtualization resources
(servers and clusters) dedicated to NFV operations are used
efficiently with respect to both NFVI operators and edge users.
A promising NFV use-case [9] for carrier networks is the
virtual Customer Premises Equipment (vCPE) that simplifies
the CPE equipment by means of virtualized individual network
functions placed at access and aggregation network locations,
as depicted in Fig. I. There are also other promising use-
cases like the virtualization of the Evolved Packet Core
(EPC) cluster in cellular core networks [10], [11], and the
virtualization of cellular base stations [12].

MANO operations are many and range from the placement
and instantiation of VNFs to better meet user’s demands to the



chaining and routing of VNF chains over a transport network
disposing of multiple NFVI locations. Part of the orchestration
decision can also be the configuration of the VNFs to share
them among active demands, while meeting common Traffic
Engineering (TE) objectives in IP transport networks as well
as novel NFV efficiency goals such as the minimization of the
number of VNF instances to install. In this context, the paper
contribution is as follows:
� we define and formulate via mathematical programming

the VNF Placement and Routing (VNF-PR) optimiza-
tion problem, including compression/decompression con-
straints and two forwarding latency regimes (with and
without fastpath), under both TE and NFV objectives.

� we compare the VNF-PR approach to the legacy Virtual
Network Embedding (VNE) approach, qualitatively and
quantitatively;

� we design a math-heuristic approach allowing us to run
experiments also for large instances of the problem within
an acceptable execution time.

� we evaluate our solution by extensive simulations. We
draw considerations on NFV deployment strategies.

The paper is organized as follows. Section II presents the
state of the art on NFV orchestration. Section III describes the
network model and the Mixed Integer Linear Programming
(MILP) formulation. Analysis and discussion of optimization
results are given in Section IV. Section V concludes the paper.

II. BACKGROUND

Network virtualization research was first driven by the
convergence of computation, storage and network in cloud
computing. A large number of works in the literature address
the optimization of Virtual Machines (VM) placement with
respect to, for example, server load balancing or energy sav-
ing [13], [14]. Virtualizing the network between VMs is also a
problem addressed in the area, defined as the Virtual Network
Embedding (VNE) problem of mapping a set of logical graphs
of interconnected VMs on a substrate graph [15].

In NFV, network functions that were once run by hardware-
based middleboxes [16] are now meant to be virtualized as
VNFs. VNFs can be chained together to provide a specific ser-
vice, also known as service/VNF chaining. Service providers
can deploy specific service chains to provide network service
demands that requested by clients.

Preliminary works on NFV orchestration tend to solve the
NFV orchestration problem as a VNE problem, which treats
virtual network requests as logical graphs to be embedded
into a substrate network. This is for example the case of [17].
VNFs are treated as normal VMs, mapped on a network of
VM containers, which are interconnected via physical links
that host logical links of virtual network demands. Similarly,
authors in [18] propose a VNF chain placement that combines
location-routing problems and VNE problems, solving first the
placement and then the chaining. In [19] the authors decouple
the legacy VNE problem into two embedding problems: VM
embedding and service chain embedding, where a service
chain is embedded on VMs, and each VM on physical servers.
Each service chain has specific requirements as notably an
end-to-end latency requirement.

(a) Traditional CPE

(b) vCPE

Fig. 1. Traditional Customer Premises Equipment (CPE) compared to
virtualized CPE (vCPE) with VNF chaining.

The placement and routing of VNFs is a problem fun-
damentally different from the VNE problem. As in VNE,
virtual network nodes need to be placed in an underly-
ing physical infrastructure. However, differently from VNE,
in VNF placement and routing: (i) the demand is not a
multipoint-to-multipoint network connection request, but a
point-to-point source-destination flow routing demand, and (ii)
specific aspects of NFV such as forwarding latency behavior,
ingress/egress bit-rate changes, and chaining are not addressed
in VNE. Their inclusion would further increase the VNE time
complexity (for instance, in [20] forwarding latency is con-
sidered by adding ‘hidden nodes’hence largely increasing the
spatial and time complexities). In this sense VNF placement
and routing problem is closer to a facility location problem,
whereas VNE is closer to a mapping problem.

We argue in this paper that the appropriate way to deal with
NFV MANO decision problems [21], [22] is to define the VNF
Placement and Routing (VNF-PR) problem directly tailored



to the NFV environment, for the sake of time complexity,
modeling precision and practical usability. This is also the
approach adopted by a few papers in the literature [23], [24],
[25]. In [23] the authors consider the online orchestration of
VNFs, modeling it as a scheduling problem of VNFs and
proposing heuristics to scale with the online nature of the
framework. In [24] the authors study a bi-criteria approxi-
mation algorithm for the cost minimization objective function
as well as for the nodes size constraints. In [25] the authors
propose a formulation of the VNF placement and chaining
problem and an Integer Linear Programming (ILP) model to
solve it. Additionally, to cope with large infrastructures, they
introduce a binary search procedure for efficiently guiding the
ILP solver towards feasible, near-optimal solutions. Different
to [23], [24], [25], in this paper, we focus on providing a
more generic formulation to the VNF placement and routing
problem. Apart from chaining with VNF ordering guarantees,
we also capture and investigate the practical feature of traffic
flow compression and decompression that could be imposed
by the VNFs along the traffic route.

A common approach is to rely on graph properties to find a
better utilization of the limited resources while serving a larger
set of demands. In [26] the specific Deep Packet Inspection
(DPI) VNF node placement problem (without chaining) is
targeted, with a formal definition of the problem and a greedy
heuristic algorithm to solve it. In [27] the authors propose
a heuristic to place and chain a maximum number of VNFs
under capacity limitation; a linear programming approach is
formulated to iterate the k-shortest paths computation for each
VNF chain and choose the one that satisfies the maximal
length and number of reused VNFs. In comparison, our pro-
posal considers not only the efficiency of resources utilization,
but also the quality of service provisioning (for instance, the
traffic forwarding latency). Moreover, we discuss the trade-
off between resources efficiency goals and network traffic
engineering goals.

Recently, game theoretic approaches are also considered:
in [28] authors propose a heuristic based on routing games;
in [29] authors propose a distributed dynamic pricing approach
to allocate demands to already placed VNF instances, with
convex congestion functions for both links and VNFs to
control congestion.

Finally, the VNF placement and routing problem has also
been addressed in specific contexts: wireless local area net-
works [30] and optical networks [31]. A comprehensive sur-
vey on NFV resource allocation and chaining was recently
published in [32].

Our paper takes inspiration from these early works, yet
goes beyond being more generic and integrating the specific
features of NFV environments mentioned in the introduction
and formalized in the following.

III. NETWORK MODEL

We provide in the following a problem statement, its math-
ematical programming formulation, and a description of its
possible customization alternatives.

A. Problem statement

Definition Virtual Network Function Placement and Routing
(VNF-PR) Problem
The network is represented by a graph G(N;A), where N is
the set of switching nodes, A represents the possible direc-
tional connections between nodes. The router i 2 N and its
associated NFVI cluster are represented by the same node; this
choice allows to keep the size of the graph limited and reduces
the computational effort. We represent with Nv � N the set
of nodes N disposing of NFVI server clusters. We consider
a set of demands D, each demand k 2 D is characterized
by a source ok, a destination tk, a nominal bandwidth bk
(statistically representative for demand k), and a sequence of
VNFs of different types, that must serve the demand (and
therefore must be traversed by the demand). For each VNF a
single VM is reserved, therefore we can equivalently speak of
allocating a VM or a VNF on a NFVI cluster, meaning that
we are reserving the necessary resources (e.g., CPU, RAM) to
host a VM running a VNF. The VNF-PR optimization problem
is to find:
� the optimal placement of VNF nodes over NFVI clusters;
� the optimal routing for demands and their assignment to

VNF node chains.
subject to:
� link capacity constraints;
� NFVI cluster capacity constraints;
� VNF flow compression/decompression constraints;
� VNF forwarding latency constraints;
� VNF node sharing constraints;
� VNF chain (total or partial) order for each demand.

The optimization objective should contain both network-
level and NFVI-level performance metrics. In our network
model, we propose as network-level metric a classical TE met-
ric, i.e., the minimization of the maximum link utilization. As
NFVI-level metric we propose the minimization of allocated
computing resources. Furthermore, we assume that:
� Multiple VNFs of the same type (i.e., same functionality)

can be allocated on the same node, but each demand
cannot split its flow on multiple VNFs of the same type.

� The VNF computing resource consumption can be ex-
pressed in terms of live memory (e.g., RAM) and Com-
puting Processing Units (CPUs), yet the model shall be
versatile enough to integrate other computing resources.

� Latency introduced by a VNF can follow one among the
two following regimes (as represented in Fig. 2):

– Standard: VNFs bufferize traffic at input and output
virtual and physical network interfaces such that the
forwarding latency can be considered as a convex
piece-wise linear function of the aggregate bit-rate
at the VNF, due to increased buffer utilization and
packet loss as the bitrate grows as shown in [6], [33].
This is the case of default VNFs functioning with
standard kernel and hypervisor buffers and sockets.

– Fastpath: VNFs use optimally dimensioned and rel-
atively small buffers, and decrease the number of
times packets are copied in memory, so that the



Fig. 2. Example of VNF forwarding latency profiles.

forwarding latency is constant up to a maximum
aggregate bit-rate after which packets are dropped
(e.g., this happens for Intel/6WIND DPDK fastpath
solutions [6]).

Fig. 2 gives examples of forwarding latency profiles for
the two cases.

� For each demand and NFVI cluster, only one compres-
sion/decompression VNF can be installed. This allows us
to keep the execution time at acceptable levels, without
reducing excessively the VNF placement alternatives.
This assumption can be relaxed at the cost of working
on an extended graph, and therefore increasing the com-
putational time of the algorithm.

B. Mathematical formulation

We first introduce a basic model that does not take into
account latency limitations and compression/decompression
features. The reason of this choice is twofold. First, it allows
a clearer explanation of the model and a step by step intro-
duction of the technicalities that allow us to keep the model
linear; we recall that already without these two features, the
model is a combination of a network design and a facility
location. Second, in the algorithmic phase we used for solving
(exactly) the model, we solve a sequence of models with
increasing complexity (basic model, with latency, with com-
pression/decompression), therefore, this presentation allows to
put in evidence the peculiarities of each model.

1) Basic VNF-PR model: Table I reports the mathematical
notations used in the following Mixed Integer Linear Pro-
gramming (MILP) that represents the basic formulation of the
VNF-PR problem. We use four families of binary variables:
xkij represents the per-demand link utilization, hence the path
used by the demand; yfni represents the allocation of copy
n of a VNF of type f on a given node; wfik represents the
assignment of a given demand to a VNF and zfnik represents
the assignment of a given demand to a specific copy of a VNF.
The continuous variable �ik is used to represent the position
of node i in the path used to route demand k. This family of
variables is necessary to impose (total or partial) order in the

TABLE I
GENERAL MATHEMATICAL NOTATIONS

Sets
N all nodes

Nv � N nodes equipped with a NFVI cluster
A � N �N all arcs (links)

D demands
R resource types (CPU, RAM, ...)
F VNF types

Parameters
network parameters

ij link capacity
�ir capacity of node i 2 Nv in terms of resource r 2 R

demand parameters
ok origin of demand k 2 D
tk destination of demand k 2 D
bk nominal bandwidth of demand k 2 D
mf
k 1 if demand k 2 D requests VNF of type f 2 F

sfk order coefficient for VNF f requested by demand k
VNF/VM parameters

rrr demand of resource r 2 R for a VM
cfi maximum number of copies of VNF f on node i

Variables
binary variables

xkij 1 if arc (i; j) is used by demand k 2 D
zfnik 1 if demand k 2 D uses copy n-th of VNF

of type f 2 F placed on node i 2 Nv
yfni 1 if n-th copy of a VNF f is assigned

to node i 2 Nv
wfik 1 if demand k uses VNF f on node i 2 Nv

continuous variables
U � 0 maximum link utilization
�ik � 0 position of node i in the path used by demand k

VNF chain. As mentioned before, we consider two objective
functions:
� TE goal: minimize the maximum network link utilization:

minU (1)

� NFV goal: minimize number of cores (CPU) used by the
instantiated VNFs:

min
X
i2Nv

X
f2F

X
n21::cf

i

rrCPU yfni (2)

The former objective allows taking into consideration the
inherent fluctuations related to Internet traffic and therefore
minimizing the risk of sudden bottleneck on network links.
The latter assumes the fact that today the first modular
cost in virtualization servers, especially in terms of energy
consumption, is the CPU. We now present the constraints.

Single path flow balance constraints:

X
j:(i;j)2A

xkij�
X

j:(j;i)2A

xkji =

8<: 1 if i = ok
�1 if i = tk
0 otherwise

8k 2 D;8i 2 N

(3)
Utilization rate constraints:X

k2D

bkx
k
ij � Uij 8(i; j) 2 A (4)

Node resource capacity (VNF utilization) constraints:X
f2F

X
n21::cf

i

rrry
fn
i � �ir 8i 2 Nv (5)



Each demand uses exactly one VNF of each required type:X
i2Nv

X
n21::cf

i

zfnik = 1 8k 2 D; f 2 F : mf
k = 1 (6)

Constraints (7)-(9) are consistency constraints among binary
variables. A VNF can be used only if present, for a given node:

zfnik � y
fn
i 8k 2 D; i 2 Nv; f 2 F; n 2 1::cfi (7)

If a demand does not pass by a VNF, it cannot use it:

zfnik �
X

j:(j;i)2A

xkji 8k 2 D; i 2 Nv; f 2 F : mf
k = 1 (8)

Auxiliary variables for ensuring consistency:X
n21::cf

i

zfnik = wfik; 8k 2 D; i 2 Nv; f 2 F (9)

Finally, we introduce constraints to avoid unfeasible routing
and to impose the VNF chain order:

Preventing the formation of isolated cycles:

�jk � �ik + xkij � jNvj(1� xkij) 8k 2 D; (i; j) 2 A (10)

Imposing an order for virtual functions:

�jk � �ik � (jNvj+ 1)(2� wf1

ik � w
f2

ik ) 8k 2 D;
8i; j 2 Nv; f1; f2 2 F : sf2

k � s
f1

k (11)

If we consider flow balance constraints (3) and link capacity
constraints (4), for each demand, a selection of arcs forming a
path plus an isolated cycle can be a feasible solution. In pure
routing problems, these solutions are equivalent to the solution
where routing variables along the cycle are removed and only
the one along the path are kept. In fact, both constraints (3) and
constraints (4) will be valid for this new solution. Our problem
integrates routing features within a facility location problem,
therefore such solutions cannot always be transformed in a
simple path simply removing the cycle. In fact, if a facility
(VNF) used by the demand is located on the cycle, removing
the cycle will produce an unfeasible solution. Therefore, it is
necessary to remove such solutions directly in the model, to
this aim we introduced constraints (10), inspired by traveling
salesman problems tour elimination constraints [34]. Variable
�ik represents the order of node i along the path serving
demand k, therefore if arc (i; j) exists, then �jk will be at
least �ik plus 1. On the other side, if arc (i; j) does not
exist (xkij = 0) then the constraint is not active: �ik is always
smaller than jNvj, as a path can contain at most all the nodes in
the graph. In this way, only solutions containing simple paths
are allowed. These variables are also used in Equation (11) to
allow imposing an order on VNFs along the route of a demand
k. They impose that if demand k uses VNF f1 located on node
i and its VNF successor f2 (sf2

k � s
f1

k ) that is located on node
j, then in the routing path of demand k node i must be precede
node j.

TABLE II
NOTATIONS TO MODEL FORWARDING LATENCY

Parameters
L maximum allowed latency for a demand
�ij latency introduced by link (i; j) 2 A

standard latency model
gfj (b) j-th component of the linearized latency function

for VNF f and aggregated bandwidth b
ng number of piece-wise components of lin. latency function

fastpath latency model
�lf latency introduced by VNF f

Bfmax maximum allowed bandwidth to traverse VNF f

Variables
lfik � 0 latency that demand k 2 D incurs using VNF f

on node i of type f 2 F hosted by node i 2 Nv

2) VNF forwarding latency: We impose that for each
demand k 2 D a maximum latency L is allowed, to guarantee
some level of QoS. Latency depends on two components: link
latency, represented by a parameter �ij for each arc (i; j),
and VNF latency. VNF latency depends on the used model of
latency (standard or fastpath). To keep the notation as uniform
as possible, we introduce an additional variable lfik to represent
the latency experienced by demand k traversing VNF f located
on node i. Therefore we get a set of constraints common to
both models limiting the overall latency:X

(i;j)2A

�ijx
k
ij +

X
i2Nv

X
f2F

lfik � L 8k 2 D (12)

A set of constraints depending on the chosen latency model
allows to calculate the value of variable lfik.
� Standard: the latency introduced on demand k for using

VNF f depends on the overall traffic traversing the VNF
(its own and the one of others demands). Let call gfj (�)
the j-th component of of the piece-wise linearization of
the latency function for VNF of type f , then we get:

lfik � g
f
j (

X
d2D

bkz
fn
id )� L(1� zfnik )

8k 2 D; i 2 Nv; f 2 F; n 2 1::cfi ; j 2 1::ng (13)

We can observe that constraint (13) is active only when
the demand uses copy n of VNF f on node i (zfnik = 1).
Otherwise, as overall latency is limited by L (con-
straint (12)), any term gfj (�) must be smaller than L,
and therefore, the constraint is a redundant constraint
(lik � 0). We can observe that, even if in the standard
latency model there is no limit on the allowed bandwidth,
constraint (12), limiting the overall latency, and as a
consequence latency on VNFs, imposes an implicit limit
on the allowed bandwidth.

� Fastpath: the latency is fixed, but a limit in the total traffic
that a VNF can support is imposed. Therefore we get the
following two sets of constraints:

lfik = �lf 8k 2 D; i 2 Nv; f 2 F (14)X
d2D

bdz
fn
id � B

f
max 8i 2 Nv; f 2 F; n 2 1::cfi (15)



TABLE III
NOTATIONS TO MODEL BIT-RATE VARIATIONS

Sets
Na access nodes
N 0a duplication of access nodes, where demands are located

Parameters
�f compression/decompression factor for VNF f 2 F
bmink minimal bandwidth of demand k 2 D
bmaxk maximal bandwidth of demand k 2 D
Mi maximum traffic volume that can be switched by node i

Variables
�kij � 0 flow for demand k 2 D on arc (i; j)

 fnik � 0 flow for demand k 2 D entering node i
and using copy n of VNF f 2 F

We can observe that constraints (14) can be substituted
directly in constraints (12).

3) Bit-rate compression/decompression: To introduce the
possibility of compressing/decompressing flows for some
VNFs, we need some modifications to our model description.
We introduce a compression/decompression parameter �f for
each type of VNFs, �f > 1 means that a decompression
is performed by VNF f . When a demand pass through a
VNF with �f 6= 1, its bandwidth changes, therefore knowing
just the routing (x variables) is not enough to determine
the overall flow along an arc. For this reason we introduce
variable �kij that represents explicitly the flow on arc (i; j)
for demand k. Another consequence is that the classical flow
balance equations are not anymore valid. To extend the model
without introducing an excess of complexity, we work under
the assumption that given a node i, and a demand k, such
demand uses at most a VNF f with a factor of compres-
sion/decompression (�f 6= 1). We work on an extended
graph to distinguish between access nodes (origin/destination
nodes) and NFVI nodes (remind that with the basic model we
collapsed NFVI nodes on router nodes). Each access node i
is duplicated in a node i0. Arc (i; i0) will be added and all
arcs (i; j) originating from access node i will be transformed
in arcs (i0; j). Therefore, the routing functionality is on node
i and the NFVI functionality can be allocated on node i0.
Furthermore, we add variable �fnik , that represents the flow of
demand k entering node i and using the copy n of the VNF
of type f . If a demand passes through a VNF with a factor of
compression/decompression �f , then the out-flow of the node
is proportional to the in-flow:X

j2N :(i;j)2A

�kij = �f
X

j2N :(j;i)2A

�kji

or equivalently:X
j2N :(i;j)2A

�kij �
X

j2N :(j;i)2A

�kji =
X

j2N :(j;i)2A

(�f � 1)�kji

This equation is valid only if demand k uses a copy n of
VNF f on given node i (remind that latency depends on the

bandwidth passing throw a single copy). Therefore, to obtain
a valid equation, we have to write:X

j2N :(i;j)2A

�kij �
X

j2N :(j;i)2A

�kji =

X
j2N :(j;i)2A

�kji
X

n21::cf
i

(�f � 1)zfnik

when
P
n21::cf

i
(�f � 1)zfnik = 0 the constraint states that

the in-flow and out-flow are the same, that is, if no VNF
is traversed, the flow remains unchanged. The same result
is obtained for all VNF f such that �f = 1 (no compres-
sion/decompression). To the aim of linearizing this constraint,
we introduced variable  fnik (still non-linear representation):

 fnik = (
X

j2N :(j;i)2A

�kji)z
fn
ik

The constraints can be linearized using Equations (20)-(22),
with the parameter Mi equal to

P
(j;i)2A ji, which rep-

resents the maximum quantity of flow entering node i. If
(�f � 1)zfnik = 1 then  fnik representing the flow of demand
k entering node i and passing through the copy n of the VNF
f (constraint (20)-(21)), otherwise it is zero (constraint (22)).
It is now possible to present the new constraints that must be
added to the basic VNF-PR model: Flow balance for access
nodes: P

j2N :(i;j)2A
�kij �

P
j2N :(j;i)2A

�kji =

=

8>><>>:
bk if i = ok
0 otherwise

�bk
Q

f2F :mf
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�f if i = tk
8k 2 D; i 2 Na

(16)

Flow and compression/decompression balance for NFVI nodes
and for each demand:X

j2N :(i;j)2A

�kij �
X

j2N :(j;i)2A

�kji =

X
f2F;n21::cf

i

(�f � 1) fnik 8k 2 D; i 2 Nv (17)

Coherence between path and flow variables:

�kij � bmaxk xkij 8k 2 D; (i; j) 2 A (18)

�kij � bmink xkij 8k 2 D; (i; j) 2 A (19)

VNF compression/decompression linearization constraints:

 fnik �
P

j2N :(j;i)2A
�kji +Mi(1� zfnik )

8k 2 D; i 2 Nv; f 2 F; n 2 1::cfi (20)

 fnik �
P

j2N :(j;i)2A
�kji +Mi(1� zfnik )

8k 2 D; i 2 Nv; f 2 F; n 2 1::cfi (21)

 fnik �Miz
fn
ik

8k 2 D; i 2 Nv; f 2 F; n 2 1::cfi (22)



TABLE IV
APPLICABLE CONSTRAINTS TO VNF-PR PROBLEM VARIATIONS

Constraints
Features routing/location latency profile bit-rate

basic (3), (4), (5)-(11)
basic-lat (3), (4), (5)-(11) (12), [(13) vs (14)-(15)]
basic-cd (3), (24), (5)-(11) (16)-(23)

basic-lat-cd (3), (24), (5)-(11) (12), [(13) vs (14)-(15)] (16)-(23)

One compression/decompression VNF per node and demand:X
f2F

X
n21::cf

i :�f 6=1

zfnik � 1 8k 2 D;8i 2 Nv (23)

Eq. (16) represents the flow balance for the access nodes.
At destination node the quantity of flows is set equal to the
demand multiplied for all factors of compression of all the
demanded VNFs. Eq. (17) represents the flow balance for a
given node that has the possibility of hosting VNFs (NFVI).
Eq. (18)-(19) allow to connect variables x and �, in such a
way that only and only if arc (i; j) is used by demand k,
that is xkij = 1, then variable � can be different from zero.
As the demand passes through VNF that can compress or
decompress the flow, then we can determine upper and lower
bound for the demand that are: bmaxk = bk

Q
f2F :�f�1 and

bmink = bk
Q
f2F :�f�1

1. Variables x are still necessary to
impose the isolated cycles elimination and the order in the
VNF chain. The utilization rate constraints must be modified
as follows: X

k2D

�kij � Uij 8(i; j) 2 A (24)

To take into account the combined effect of compres-
sion/decompression and VNF latency some modification are
needed.

For the standard model, constraints (13) are modified as
follows:

lfik � g
f
j (

P
d2D

 fnid )� L(1� zfnik )

8k 2 D; i 2 Nv; f 2 F; n 2 1::cfi ; j 2 1::ng (25)

For the fastpath model, constraints (15) are modified as
follows:X

d2D

 fnid � B
f
max 8i 2 Nv; f 2 F; n 2 1::cfi (26)

In Table IV we summarize the different models. In the first
column a short name is used to refer to each model, in the
second column constraints necessary to model routing, loca-
tion and resource capacity are reported. In the third and forth
columns we report latency and compression/decompression
constraints.

1To avoid these parameters being zero when does not exist any VNF with
�f � 1 (only decompression), and �f � 1, respectively, the calculation of
the parameter can be modified in bmaxk = bk maxf1;

Q
f2F :�f�1g and

bmink = bk minf1;maxf0;
Q
f2F :�f�1gg, respectively.

C. Multi-objective math-heuristic resolution

We face a multi-objective problem: minimizing the maxi-
mum link utilization, which reflects the ISP-oriented vision to
improve the user quality of experience (strictly related to link
congestion, especially for real-time services) and minimizing
the total virtualization infrastructure cost at the NFVI level,
which reflects the aims of the NFVI provider. Such a multi-
objective approach makes especially sense when the NFVI
provider is a different entity than the ISP. These two objectives
are in competition; in fact, to obtain a low utilization, a large
number of VNFs must be allocated.

We decided to prioritize the objectives: first we minimize
the maximal link utilization (U ), and then the NFV cost
(total number of used CPU). We refer to this as the TE-NFV
objective. In practice, we perform a first optimization step to
find the best solution accordingly to maximal link utilization
(U?), and then, keeping the best value found in the first step as
a parameter (i.e. adding the constraint U � U?), we minimize
the second objective (NFV cost). In fact, for a given optimal
value of the first step, different possible configurations are
available to the second step, and a large primary cost reduction
can be achieved by this second step without losing with respect
to the primary objective (maximum link utilization).

In order to understand the impact of imposing a maximal
link utilization on the NFV cost, we decided to study the
sensitivity of the second step of optimization on the optimal
value U?. Therefore, we re-optimize the second objective
relaxing the constraint on the maximum link utilization by
a parameter �, i.e. we used constraint U � �+U? instead of
U � U?. We increase � step by step, until the value of the
NFV cost does not reduce anymore. This value corresponds
to first minimize the NFV cost and then the maximum link
utilization cost (NFV-TE).

From preliminary tests, we observed that optimizing the
complete model is very expensive, and that computational
time can be significantly reduced performing a sequence of
optimization starting from a basic model to the complete
one. The result of each step is used as a starting point
for the following one, a so-called warm-start, that allows
to reduce computational time and/or produce better solutions
or gaps (when optimization is stopped before reaching the
optimal solution). To be more precise, the sequence of models
we optimize is first the basic one (only demand routing,
VNF location and capacities are considered), then basic-
lat (latency is added) and finally basic-lat-cd (latency and
compression/decompression are added), see Section III and
Table IV for the complete description of the models and
equations involved.

The most challenging model from an optimization point
of view is the last one, basic-lat-cd. For this reason, we
need to provide a feasible starting solution (warm start) for
this step. To this aim, the previous step, optimizing basic-lat
model, must be done with some slightly modification. The
compression/decompression feature changes the quantity of
flow that traverses the graph, therefore to guarantee that the
solution of the second step is feasible for the last one, it is
necessary to route a worst case quantity of flow, given by the



case that all the VNFs with decompression are already applied
to the demand flow2.

The NFV objective function results to be computationally
more challenging than the TE one. Therefore, for obtaining
the optimal solution of the NFV goal, a bisection procedure
is used on the number of allocated VNFs/VMs to guarantee
solution optimality, even when in a single step the solver is not
able to guarantee it: that is, at each bisection step, if a feasible
solution is found, the number of VNF/VM is divided by two,
and if no feasible solution exists (proving that the problem is
unfeasible results in an easier computational task than finding
an optimal solution) then it is doubled.

D. Further model refinements

The model we provided above can be possibly refined
and customized to meet specific requirements. We list in the
following the possible variants as well as the corresponding
modeling variations.
� VNF affinity and anti-affinity rules: due to the privacy,

reliability or other reasons, a provider may want impose
rules on the placement of certain types of VNF: be
placed or not placed on certain servers, be grouped or not
grouped together, etc. Such specific VNF placement rules
are called affinity and/or anti-affinity rules [35]. To extend
our model to take them into account, the simplest way is
to introduce a new variable representing the presence of
a certain type of VNF f on a given node i (we remind
the reader that our model allows to have multiple copies
of the same type of VNF on the same node). Let call this
variable vfi , it will be equal to one if a VNF of type f
is located on node i. To make these variables consistent
with already defined variables yfni , we need to add:X

n21::cf
i

ynfi � c
f
i v
f
i 8i 2 Nv; f 2 F

More precisely, common affinity/anti-affinity rules are:
– VNF-VNF affinity rules: if two VNFs communicate

frequently and should share a host node, we may
want to keep the VNFs together in order to reduce
traffic across the networks and improve the traffic
efficiency. Let AffVVf1f2 be a parameter equal to
one if f1 and f2 should share the same node. Then:

vf1

i = vf2

i 8(f1; f2) : AffVVf1f2 = 1

– VNF-Server affinity rules: certain intrusion preven-
tion VNFs should reside in the network edges
to guard against worms, viruses, denial-of-service
(DoS) traffic and directed attacks. Let AffVSfi be
a parameter equal to one if f should be installed on
i. Then:

vfi = 1 8(i; f) : AffVSfi = 1

or restricted to a subset of nodes S 2 Nv:X
i2S

vfi = 1 8(i; f) : AffVSfi = 1

2Of course, this worst case can be improved considering the order of VNFs,
when it is known in advance.

– VNF-VNF anti-affinity rules: it may be required
to install multiple instances of a same VNF onto
multiple servers in order to improve VNF reliability
against failures. Let AAfff be the anti-affinity pa-
rameter; we then impose that at least nbMin nodes
host the VNF:X

n2Ns

vfi � nbMin 8f : AAfff = 1

if different VNFs cannot be co-located, let
AAffVVf1f2 be the anti-affinity parameter and im-
pose:

vf1

i + vf2

i � 1 8(f1; f2) : AAffVVf1f2 = 1

– VNF-Server anti-affinity rules: it may be required
to avoid resource-hungry VNFs residing in certain
cost-critical servers. Let AAffVSfi be the anti-affinity
parameter and impose:

vfi = 0 8(i; f) : AAffVSfi = 1

We can observe that all the constraints that set some
variables to one or zero, just reduce the number of
variables; therefore we can expect that such constraints
do not increase the computing time. A slightly different
condition can be imposed for sharing a VNF among
different demands; we refer to that as VNF isolation.

� VNF isolation: if the same VNF cannot be shared between
two specific demands, we can add constraints to impose
this condition. It is sufficient to introduce an incompati-
bility parameter inck1k2 , equal to one if demand k1 must
be isolated from demand k2; then we need to add:

zfnik1
+ zfnik2

� 1 8i 2 Nv; f 2 F;
n 2 1::cfi ; k1; k2 2 D

� Multiple comp./dec. VNFs per NFVI node: to make the
presentation simpler, we assumed that in each NFVI node
there is at most one VNF that can compress/decompress
a flow, i.e. with a factor of compression �f 6= 1. This
assumption can be relaxed using an extended graph in
which each node that can host a VNF (Nv) is expanded
in multiple copies, one for each type of VNF that can
be allocated in the node. Otherwise, we can represent
all possible combinations of different VNFs allocated to
the same node, and adding additional binary variables to
represent which combination is chosen.

� VNF partial chain ordering: we can observe that partial
order can be imposed with a the same form of constraints
used for total ordering (11), just limiting their number
to existing precedence conditions. It is sufficient to in-
troduce a constraint for each couple of VNFs that has
a precedence relation. More formally, for each demand
k, we can introduce a directed acyclic graph Ok(Vk; Pk),
where nodes V represent the set of VNFs that must serve
the demand (V = fi 2 F : mf

k = 1g), and arcs P
represent the order relation between such VNFs, that is



an arc (i; j) 2 P if VNF j must be used after VNF i.
Then, constraints (11) can be rewritten as:

�jk � �ik � (jNvj+ 1)(2� wf1

ik � w
f2

ik )

8k 2 D;8i; j 2 Nv; f1; f2 2 Vk : (f1; f2) 2 Pk

� Additional computing constraints: it can be easily in-
cluded by tuning existing parameters, as far as computing
resource requests can be expressed in an additive way
(e.g., for storage).

� Load balancing: in the current model, each demand
can use a single VNF for each type. The model can
be extended to allow per-VNF load balancing. If the
load balancing is local to a NFVI cluster, the change
in the model is small, in fact it is simply necessary to
have some continuous variables taking into account the
quantity of demand associated to each VNF. If the load
balancing can be between different clusters, then it is
necessary to extend the model allowing multiple paths
for each demand. However such an extension is expected
to largely increase the execution time.

� Different VM templates: for the sake of simplicity, differ-
ently from [1], we presented the model considering a one-
to-one correspondence between VNF and VM templates
(single template). Nevertheless, multiple VM templates
can be considered in the model at the price of increasing
of one dimension/index all variables indexed on the VNF
identifiers.

� Core router as a VNF: if the core routing function is
also virtualized, i.e., if the NFVI node and the network
router can be considered as a single physical node that
runs the core routing function, processing the aggregate
traffic independently of the demand, as a VNF, then we
need to add a term proportional to InFlow plus OutFlow
to (5):X
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If bit-rate compression/decompression is considered, con-
straint (5) must be modified as follows:
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IV. RESULTS

Computational results are divided in two main parts: first, in
Section IV-A, we show results using our VNF-PR algorithm

Fig. 3. Adopted network topology and VNF-PR solution example.

under different case-study choices of demand distribution and
different VNF forwarding latency models and values; then,
in Section IV-B, we present comparison results between our
VNF-PR algorithm and a VNE algorithm.

We adopted the three-tier topology represented in Fig. 3 for
computational results. Each edge node is connected to two
aggregation nodes, each aggregation node is connected to two
core nodes, and core nodes are fully meshed. We consider all
the nodes as NFVI nodes that can host VNFs.

We run our tests using two different case-studies for the
demand distribution: Internet and Virtual Private Network
(VPN). In the Internet case-study (e.g., the flow in red on
Fig. 3), the traffic demands are sent by each edge node (e.g.,
end user) to each core node (e.g., data center), and from each
core node to reach each edge node, which means that in this
case both edge nodes and core nodes are access nodes (i.e.,
where demands are generated); while under VPN case-study
(e.g., the flow in blue on Fig. 3), the edge nodes send traffic
requests to each other, which means that the set of edge nodes
corresponds to the set of access nodes. The total number of
traffic demands is different for the two case-studies (36 for
Internet and 30 for VPN), but we kept constant the total
traffic volume (sum of demands) in the network for the sake
of comparison. This is done adjusting the interval of random
demand generation [a; b]: indeed, the demands are randomly
generated with uniform distribution in a given interval [a; b], in
such a way that edge demands cannot create any bottleneck at
the edge links, i.e., a = 0:1 and b = 0:14 in the Internet case-
study, a = 0:13 and b = 0:17 in the VPN case-study. These
values allow us to keep the total traffic volume at the same
level for the two cases. For each case, 10 random demand
matrices are considered.

The aggregation links are dimensioned so that there is a risk
of link saturation (i.e. link utilization higher than 100%) if the
traffic distribution is not optimized. The core links are such
that there is a very low bottleneck risk. Link latencies are set
as follows to cope for the different geographical scopes: 1ms
for edge links, 3ms for aggregation links, and 5ms for core
links. We use one single VM template requiring 1 CPU and 16
GB of RAM. We run tests setting for the end-to-end latency
bound (L) with strict and loose values (15ms and 20ms,
resp.). We consider three VNF types per demand: a Firewall
VNF (compression, because it blocks traffic), a Deep Packet



(a) TE objective. (b) TE-NFV objective.

Fig. 4. VNF node distribution across NFVI levels (standard case).

Inspection (DPI) VNF and a Tunnelling VNF (decompression),
with a strict order: Firewall VNF first, then DPI VNF, and
finally Tunnelling VNF. NFVI nodes are dimensioned with an
increasing capacity from edge to core: 3 CPUs and 40 GB
RAM at each edge node, 5 CPUs and 80 GB RAM at each
aggregation node and 10 CPUs and 160 GB RAM at core
nodes. We implemented our VNF-PR algorithm using AMPL
and CPLEX 12.6.3.0.

A. General Results

We tested both Internet and VPN case-studies under stan-
dard as well as fastpath latency profiles, VNF processing
latencies being set as in Fig. 2. We limited the execution time
to 600s for each basic TE optimization phase and 800s for the
complete TE and NFV optimization phase.

First, we introduce general considerations from a compu-
tational point of view, discussing the quality of the results
in terms of optimality and gap of the solutions. Then, we
provide a detailed analysis of the structure and properties of
the solution in terms of network and system indicators.

In all tests, the worst-case optimality gap with the TE
objective is 25%. Some solutions were proved optimal within
800s (i.e., the limit execution time of the TE optimization
phase), others were with an average optimality gap of 15%.
However, these sub-optimal solutions were quickly found
(within a few seconds) and could be proved optimal if given
more time (around 1 or 2 hours) for almost all the tests.
For the NFV objective, it was hard to reach the optimum
within the time limit of 800s. The results depend on the case-
study: with VPN demands, under both standard and fastpath
latency profiles, we obtained a lower optimality gap and a
smaller variation of it than with Internet demands. A possible
explanation is the increased number of traffic demands with
the Internet case-study, which seems to significantly impact
on the computational effort.

In the following, we start the analysis of the solutions
behavior. We compare the two different demand case-studies

(i.e. Internet and VPN) with two points of view: i) what
happens when we consider the NFV cost in the objective
function instead of TE, and ii) what happens when we make
stronger the bound on the end-to-end latency. Then we also
compare the behavior with respect to the latency profiles.

Fig. 5. Link utilization empirical CDFs (standard case).

1) TE vs. TE-NFV objective: We analyze the difference
between the results with the TE objective and the results with
the composite TE-NFV objective.
� NFVI cost (Fig. 4): it is significantly reduced under the

TE-NFV objective, and the cost reduction with VPN
demands is more significant than with Internet demands,
especially with a loose bound on the end-to-end latency
(L = 20ms).

� Link utilization (Fig. 5): it is not significantly affected by
including the NFVI cost minimization in the optimization
goal.

� VNF forwarding latency (Fig. 6): with both Internet and
VPN demands, it increases passing from the TE goal to



Fig. 6. Empirical CDFs of latency components (standard case).

the TE-NFV one. This suggests that adopting the TE-
NFV goal allows a higher level of VNF sharing for both
latency bound situations.

2) Relaxing the TE constraint - sensitivity to maximum
link utilization: We perform a sensitivity analysis to put in
evidence the effect of relaxing the TE objective with respect to
the NFV optimal cost, with the goal to further put in evidence
the tradeoff between the two objectives. With the TE-NFV
objective, even if the VNF allocation cost is minimized, a
minimum maximum link utilization is guaranteed. What we
want to analyze is the impact of the TE bound on the NFV
cost objective optimization. To this aim, starting from the TE
optimal value, we perform a series of optimization steps of
the NFV cost objective function, allowing this bound to be
relaxed, increasingly.

Table V shows the NFV cost (average of 10 executions)
under different limit of maximal link utilization (U ). We
calculate the NFV cost under U = U? + �, with � varying
from 0 to 0.4. For both Internet and VPN cases, when � = 0,
the TE bound (U ) used for the TE-NFV phase is the U? found
in TE phase; when � = 0:4, the U used for the TE-NFV phase
is around 1 (i.e., link saturation reached). The results show that
a loose TE bound (link utilization) allows a better TE-NFV
solution. For most cases, there is almost no reduction (or no
reduction at all) from � = 0:2 to � = 0:4, which suggests
that there exists a ceiling between the TE objective and TE-
NFV objective: we can get better utilization of NFV resources
(i.e., TE-NFV objective) by allowing relaxed link utilization
limit (i.e., TE objective), however this is not always true when
we reach the ceiling (e.g., other limits like VM capacity also
impact NFV cost). While for case Fastpath Internet L = 20ms,
there is a reduction of NFVI cost with � increasing from 0:2 to
0:4. We can observe that for the same case-study with L = 15
the best objective found is 31 (both for � = 0:2 and 0:4),
therefore we can attribute this change in behavior to the not
optimality of the solution in the case L = 20, rather than to a
different behavior of the system (we remind the reader that the
problem is computationally very challenging, and we imposed

TABLE V
NFV COST FOR DIFFERENT TE GOAL RELAXATION LEVELS, WITH

TE-NFV OPTIMIZATION.

Instance � = 0 � = 0:2 � = 0:4
L=15ms

Standard Internet 48.2 25.8 24.9
Fastpath Internet 37.125 31 31
Standard VPN 31 28.8 28.6
Fastpath VPN 39.1 37.7 37.7

L=20ms
Standard Internet 52 23.7 23.1
Fastpath Internet 38.7 34.8 31.2
Standard VPN 20.9 20.4 20
Fastpath VPN 34.9 34.8 33.8

a short time limit).

3) Sensitivity to the latency bound: We analyze the impact
of the VNF chain latency bound (L) on the results.

� NFV cost (Fig. 4): the global NFV cost remains almost
constant passing from the weak to the strong latency
bound. The total cost is reduced with VPN demands
under both optimization goals with a loose latency bound,
especially with the TE-NFV goal. This happens because,
with a loose latency bound, the traffic can pass by the
links with high latency (e.g. core links) to share more
VNFs. On the contrary, there is a small cost increase
with Internet demands under TE-NFV goal. Analyzing
in a more detailed way the results, we observe that for
the Internet case-study, the solver (CPLEX) has more
difficulties to reduce the gap. We can deduce that making
the latency bound weaker makes the location problem
component (locating VNF and NFV goal) predominant
with respect to the routing one, and therefore the problem
becomes computationally more challenging. This is also
confirmed by a noticeable variability in the results, with
a larger confidence interval in the number of VNFs with
Internet demands passing from strict latency to loose
latency bounds. Moreover, we can see that with VPN
demands, there is a higher dependency to the latency
bound than with Internet demands; this happens because
in general it is farther to send traffic demands from
edge node to edge node than from edge (core) node to
core (edge) node, i.e. the end-to-end forwarding path of
VPN demands is in general longer than that of Internet
demands, which leads to a higher dependency to the
latency bound.

� Link utilization (Fig. 5): in support of the above-
mentioned analysis, we can remark that under the loose
latency bound, the core links get more utilized with VPN
demands.

� VNF forwarding latency (Fig. 6): the same observation
can be obtained by looking at end-to-end latency com-
ponents, the latency of each VNF and the total latency
become obviously longer with VPN demands with loose
latency bound.

These observations confirm the importance of the bound for
VNF chaining and placement decisions.



(a) TE objective. (b) TE-NFV objective.

Fig. 7. VNF node distribution across NFVI levels (fastpath case).

Fig. 8. Link utilization empirical CDFs (fastpath case).

4) Standard vs. fastpath VNF switching: We now compare
the results with the standard VNF forwarding latency profile
to those with the fastpath profile.

� NFV cost (Fig. 4 vs. Fig. 7): under TE-NFV goal,
fastpath VNF forwarding is more expensive than standard
forwarding with VPN demands, especially with a loose
bound on the end-to-end latency (L = 20ms), while
it is the opposite with Internet demands. This happens
because of the maximum traffic bound that is set under
the fastpath case and that is not set for the standard case
(which however brings to a higher end-to-end latency as
confirmed in the last item hereafter).

� Link utilization (Fig. 5 vs. Fig. 8): no noticeable differ-
ences can be mentioned among the two latency profiles.

� VNF forwarding latency (Fig. 6 vs. Fig. 9): VNFs are
better shared under standard case, this is because of the
maximum traffic bound set under the fastpath case.

Fig. 9. Empirical CDFs of latency components (fastpath case).

These observations suggest that, performing the optimiza-
tion in two steps (before TE, and then NFV cost minimization),
can allow to reduce significantly the NFVI cost without
affecting the link utilization distribution.

B. VNF-PR vs. VNE based approaches

In this section, we compare our VNF-PR approach with
the VNE Based (‘VNE-B’) approach, already discussed in
the beginning, using the algorithm from [36], which is open
sourced by the authors3.

In [36], a VNE-B modeling approach is proposed for a
generic VNF orchestration problem: each traffic demand is
considered as a virtual graph (i.e., G(N;L) in [36], where
N is the set of traffic nodes, i.e., switches or VNFs, and
L denotes the links between them) to be embedded in the

3The source code is at https://github.com/srcvirus/middlebox-placement.



substrate graph represented by switches/routers and NFVI
clusters. The mapping of virtualized traffic demands’ path
onto a physical network is realized by embedding VNFs on
physical servers and establishing path for virtual links. The
objective considered is the minimization of the overall OPEX
(Operational Expenditure) cost: VNF deployment cost, energy
cost, traffic forwarding cost and an additional penalty to take
into account Service Level Objective (SLO) violations. A
weighted sum of the four aforementioned costs is considered
as optimization objective. Authors proposed an ILP model,
and they presents two different problems, a static one - where
demands are know in advance - and a dynamic one - where
demands arrive in an online fashion. In our comparison, we
focus on the static version of the problem and its proposed
solution approach; it is based on a procedure that solves a
sequence of ILPs, where, for each iteration, the number of
VNFs is limited and the execution time is limited as well. ILP
executions are solved with CPLEX (using the callable library).

Similarly to the NFV cost optimization phase of our VNF-
PR approach described in Sect. III-C, authors in [36] use a
dichotomy on the number of VNFs. For the sake of compar-
ison, we adapt our original VNF-PR model to the hypothesis
used in [36]: we integrate our adapted VNF-PR ILP model
into the same procedure used in [36] (i.e., replacing their ILP
model by ours in the procedure) - we refer to this solution
as ‘VNF-PR-D’. We list the simplifications and adaptations to
our model in order to use the same parameters used in the
VNE-B approach:

� We reduced our objective to a single objective: minimiz-
ing the overall network operational cost, using the same
parameters of the VNE-B approach.

� We considered only the fastpath latency regime, i.e., we
fixed the VNF forwarding latency.

� We discarded compression/decompression aspects, i.e.,
we adopt our ‘basic-lat’ model.

� As the VNE-B approach uses VNF templates, we associ-
ated a VNE template to each VNF type according to VNF
requested number of vCPUs; for example, a template with
capacity of 4 CPU is associated to the VNF requesting 4
CPU.

� We added the penalty parameter for each traffic request
to take into account SLO violations.

As for the test data, they were set according to the simula-
tion setup of [36], adopting the Internet2 topology (12 switches
and 15 links), setting the same physical link and NFVI server
capacities, using the same VNF specification, VNF requests
sequence, etc, and adopting the same cost data. As for the
traffic data, we created 5 groups of tests with different sets
of traffic requests (6, 12, 18, 24 and 30); for each group,
we randomly selected from the traffic matrix set of [36] 10
matrices. Then we tested theses groups of data with the three
methods (i.e., VNE-B, VNF-PR and VNF-PR-D). Our algo-
rithms are implemented in AMPL, and the VNE-B algorithm is
implemented in C++ using CPLEX for ILP resolution. CPLEX
12.5.1 was used for these tests Fig. 10 reports a comparison
between our VNF-PR solution and the VNE-B solution in
terms of global cost, as a function of the amount of considered

Fig. 10. Comparison between VNE-PR and VNE based algorithms in terms
of objective function.

demands. As the dichotomy process could provide a set of
feasible solutions found, we report the best solution as well as
the average value of the feasible solution for VNE-B algorithm
and VNF-PR-D algorithm. We can notice that the VNF-PR-
D is able to find better solutions compared to the VNE-B
algorithm, especially when the amount of traffic demands is
small: it can always find optimal solutions. While the VNE-B
algorithm is always able to find a feasible solution very fast
(i.e., within 10 seconds), the result can be much worse, and
it does not provide optimal solutions even for 6 demands. As
for the VNF-PR, it is an exact method to find the optimal
solution, therefore, it is in general slow; we run it to find
the optimal solution in order to show the gap between the
optimal solutions and the feasible solutions. Fig. 10 shows that
the gap of feasible solutions becomes very important as the
traffic requests increase. However, the gap of feasible solutions
that was found by VNF-PR-D is smaller than that of VNE-B,
which suggests that better problem formulations are needed
in order to achieve a trade-off on the execution time and the
solution optimality.

V. CONCLUSION

In this paper we proposed a VNF chaining and placement
model, including an algorithm formulated as a mixed integer
linear program, which goes beyond recent work in the state
of the art. Our model took into consideration specific VNF
forwarding modes (standard and fastpath modes), VNF chain
ordering constraints, as well as flow bitrate variations; these
constraints make the allocation of edge demands over VNF
chains unique yet complex. We also mentioned how additional
properties being discussed for NFV systems can be integrated
in the proposed formulation. In order to master the time
complexity of the resolution algorithm, while considering two
different optimization goals – traffic engineering (TE) goal
alone and TE goal combined with NFV infrastructure cost
minimization goal (TE-NFV) – we designed and evaluated a
math-heuristic resolution method. Additionally, we compared



our VNF-PR approach to the classical VNE approach often
proposed in the literature for NFV orchestration.

We run extensive tests to evaluate our algorithm on a
three-tier topology representing an ISP topology. The results
showed that the combined TE-NFV objective significantly
reduces the number of VNFs in the network compared to the
TE objective with almost no impact on the link utilization
and on the latency. Moreover we observed that, in addition
of different optimization objectives (TE and TE-NFV), the
different distributions of traffic demand (Internet and VPN
case-studies) and the different VNF types (in terms of function
on the bitrate) could lead to different placements of VNF nodes
and different VNF chaining paths.

We also quantitatively compared our VNF-PR model to
legacy VNE model. The experimental results showed that our
VNF-PR algorithm was more stable and close-to-optimum
than the VNE solution. The study also showed that the penalty
for SLO violation was 0 in almost all the tests performed with
VNF-PR approach, while the SLO violation penalty always
existed for all the tests with VNE approach; this proved that
our VNF-PR algorithm better defines the end-to-end service
provisioning (point-to-point source-destination flow routing)
problem. Furthermore, the average forwarding cost of all the
tests solved with VNE algorithm was about 4 times more
expensive than that of VNF-PR algorithm, which indicated
that, compared to the VNE solution, there were significantly
less redundant traffic forwarding paths when chaining VNFs
with VNF-PR approach.

Our future work is to propose new solution algorithms to
solve the NFV orchestration problem even more efficiently,
taking into account the facility location structure of the prob-
lem, which seems to be the most challenging part in the model.
Moreover, we envision to adapt our VNF-PR model to be able
to meet more specific requirements such as VNF isolation,
dynamic VNF orchestration, and the required extension to be
run in a batch mode (on a per-demand basis or per groups of
demands).
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