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Distributed synaptic weights in a LIF neural network

and learning rules

Benôıt Perthame∗ Delphine Salort† Gilles Wainrib‡

June 17, 2017

Abstract

Leaky integrate-and-fire (LIF) models are mean-field limits, with a large number of neurons,
used to describe neural networks. We consider inhomogeneous networks structured by a connec-
tivity parameter (strengths of the synaptic weights) with the effect of processing the input current
with different intensities.

We first study the properties of the network activity depending on the distribution of synaptic
weights and in particular its discrimination capacity. Then, we consider simple learning rules and
determine the synaptic weight distribution it generates. We outline the role of noise as a selection
principle and the capacity to memorized a learned signal.

Key words: Neural networks; Learning rules; Fokker-Planck equation; Integrate and Fire;
Mathematics Subject Classification (2010): 35Q84; 68T05; 82C32; 92B20;

1 Introduction

Learning and memory are essential cognitive functions which are supported by the subtle mechanisms
of synaptic plasticity [26]. Since the seminal work of Hebb [22], one of the key challenges in theoretical
neuroscience and artificial intelligence is to understand the consequences of various learning rules on
the organization of neural networks and on the way they process and memorize information.

Despite several theoretical works on this topic [21, 15, 20, 19, 18] it remains difficult to investigate
learning processes using macroscopic models with infinite number of neurons because these usually
assume a form of homogeneity, either under uniform synaptic weights assumptions leading to McKean-
Vlasov limits [13, 2, 16, 17, 3] or under random connectivity models leading to dynamical spin-glass
limits [28, 1]. In contrast, when studying synaptic plasticity and learning, one needs to describe all
the connections between each pair of neurons, hence breaking the homogeneity usually necessary to
derive such macroscopic limits.
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Email: gilles.wainrib@ens.fr

1



In this article, we propose a way to circumvent this difficulty by introducing a mathematical model
describing a macroscopic population of leaky integrate-and-fire neurons (LIF in short), which are
interacting through a mean-field variable and where learning rules are governed by the mean activity
of the network. More precisely, in contrast with previous works on such questions, we consider a model
where neuronal subpopulations interact with the mean-field through a heterogeneous distribution of
synaptic weights values: in other words, each subpopulation sees the mean-field through a different
lens. Instead of considering activity-dependent changes in the pairwise synaptic weights between
neurons, we consider that each subpopulation receives a weighed version of the overall network activity,
and that the associated weights can be dynamically modified according to a specific rule. Based on
this heterogeneous model, we are therefore able to integrate a learning rule term in the equation, for
the first time in the class of macroscopic LIF equations. One particular instance of such learning
rule corresponds to the idea of Hebbian learning, in the sense that the connection between a given
subpopulation and the mean-field is strengthen if both have a correlated activity and is weakened
otherwise.

The introduction of this mathematical framework supports the investigation of several questions
inspired by the seminal work of Hopfield [23], which are answered, at least partially, in this article:

1. For a given pattern of steady-state neural activity, can we always find a heterogeneous synaptic
weight distribution that generates such activity?

2. What is the equilibrium synaptic weight distribution according to the learning rule and to the
external signal?

3. Is the system able to remember which external signal was presented during the learning phase?

We present in Section 2 the different mathematical models that we consider in order to study the
effect of a mean field learning rule on coupled neural networks governed by Noisy LIF models structured
by a connectivity parameter. In Section 3, we introduce some material about the possible stationary
solutions of these models without learning rule, in particular we study existence and uniqueness. This
material will be use throughout the paper. Next, we focus our study on qualitative properties on the
input-output map and on the learning rules. In Section 4, we prove that our model can produce a
large class of output signals by an appropriate choice of the distribution of connectivity. In Section 5,
we show the ability of our model to differentiate different inputs via a discrimination property: we
prove that we cannot obtain the same output signal considering two different input signals and, given
two different inputs, we give an estimate of the difference between the two possible output signals
associated to two different inputs. The last sections are devoted to the study with the learning rule.
In Section 6, we address the full system with learning and we describe possible equilibrium connectivity
distributions and prove non-uniqueness. We propose in Section 7 a selection principle by adding noise
in the learning stage. In Section 8, we describe the ability of such system to memorize learned signals
by discriminating easily new incoming inputs after learning.

2 Mathematical models of a mean field learning rule

It is standard to describe homogeneous neural networks by LIF models. In order to study the impact of
heterogeneity and of mean field learning rules, we introduce a mathematical model for coupled neural
networks. To this end, we firstly explain the equations which describe the activity of a macroscopic
population of LIF neural networks when they interact through they mean activity. Secondly, we
present how mean field learning rules may be included in these equations.
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2.1 Structured Noisy LIF model

We consider a heterogeneous population of homogeneous neural networks structured by their synaptic
weights w ∈ (−∞,+∞), negative sign stands for inhibitory neurons and positive sign for excitatory
neurons. We have chosen to use a signed parameter σ, instead of a system of two equations for
excitatory and inhibitory neurones, because this leads to a simpler formalism and avoids boundary
conditions in w = 0. We assume that each homogeneous subpopulation, with synaptic weight w,
is governed by the classical mean field noisy integrate and fire equation, widely used for large neural
networks [7, 6, 5]. Moreover, we assume that the subpopulations interact via the total firing rate N̄(t)
defined as the mean activity for all the subpopulations. Setting v the value of the action potential,
VF > VR the values of the firing and reset potentials, we consider the classical equation

∂p

∂t
+

∂

∂v

[(
− v + I(t, w) + wσ(N̄(t))

)
p
]
− a∂

2p

∂v2
= N(w, t)δ(v − VR), (1)

with the boundary and initial conditions

p(VF , w, t) = 0, p(−∞, w, t) = 0, p(v, w, 0) = p0(v, w). (2)

The solution p(v, w, t) defines the probability to find a neuron at potential v with a synaptic weight
w, the coefficient a represents the synaptic noise which we assume to be constant and I(t, w) is the
input signal which strength is possibly modulated by the synaptic weights. The subnetwork activity
N(w, t) and total activity N̄(t) are defined as

N(w, t) := −a∂p
∂v

(VF , w, t) ≥ 0, N̄(t) =

∫ ∞
−∞

N(w, t)dw. (3)

The function σ(·) represents the response of the network to the total activity. We use either σ(N) = N ,
or the following class with saturation

σ ∈ C2(R+;R+), σM = maxσ(·) <∞, σ′ ≥ 0. (4)

We recall some mathematical properties of distributional solutions of Equation (1)–(3) which were
studied in [8, 10, 11]. There, some existence, uniqueness and long time behaviour results are established
for distributional solutions. For excitatory networks, solutions can blow-up in finite time, as discovered
in [8], when σ(N) = N . The saturation assumption (4) prevents blow-up, a phenomena which also
appears if one uses the activity dependent noise a := a0 + a1N, (see [11]), or if a refractory state is
included [9]. In the inhibitory case, blow-up never occurs when noise is independent of the activity [10,
11] and solutions are globally bounded. This holds even for σ(N) = N and assumption (4) is not
fundamental in the inhibitory case. Then, the main open problem which remains is to prove the long
time convergence; only small perturbations of the linear case are treated so far.

The initial data p0(v, w) ≥ 0 is a probability density and a basic property of the above LIF model
is that ∫ ∞

−∞

∫ VF

−∞
p(v, w, t) dvdw =

∫ ∞
−∞

∫ VF

−∞
p0(v, w) dvdw = 1. (5)

We finally define the probability density of neural subnetworks with synaptic weight w by

H(w, t) =

∫ VF

−∞
p(v, w, t) dv,

∫ ∞
−∞

H(w, t)dw = 1. (6)
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Let us mention that, so far, the function H is independent of time because in Equation (1), the
distribution of synaptic weights is fixed. Moreover, with this distribution H, an input signal I(w) is
stored as a normalized output signal which we define thanks to the network activity as

S(w) =
N(w)

N̄
≥ 0,

∫ +∞

−∞
S(w)dw = 1. (7)

The normalization is due to the size of the network normalized by
∫
H(w)dw = 1 which induces a

limitation of possible outputs.
Let us now include some learning rules that may modify this distribution.

2.2 Models with mean field learning rules.

Next, we introduce some learning rules in order to modulate the distribution of synaptic weights H
and allow the network to recognize some given input signals I by choosing an appropriate heteroge-
neous synaptic weight distribution H adapted to the signal I. To this end, we have chosen learning
rules inspired from the seminal Hebbian rule which essentially consists in assuming that the strength
of weights wij between two neurons i and j increases when the two neurons have high activity simul-
taneously. For M neurons in interactions, the classical Hebbian rule relates the weights to the activity
Ni of the neuron i

d

dt
wij = kijNiNj − wij , 1 ≤ i, j ≤M.

In our context, we assume that the subnetworks interact only via the total firing rate N̄ , with
synaptic weights described with a single parameter w, not a matrix. Hence, we cannot generalize
directly the Hebbian learning rule and we give the following interpretation. All the subnetworks
parametrized by w may modulate their intrinsic synaptic weight w with respect to a function Φ which
depends on the intrinsic activity N(w) of the network parametrized by w and of the total activity of
the network N̄ . Then, the proposed generalization of the Hebbian rule consists in choosing

Φ(N(w), N̄) = N̄N(w)K(w), (8)

where K(·) represents the learning strength of the subnetwork with synaptic weight w.
Adding the above choice of learning rule, we obtain the following equation

∂p
∂t + ∂

∂v

[(
− v + I(w) + wσ(N̄(t))

)
p
]

+ ε ∂
∂w

[(
Φ− w

)
p
]
− a∂

2p
∂v2 = N(w, t)δ(v − VR),

N(w, t) := −a∂p∂v (VF , w, t) ≥ 0, N̄(t) =

∫ ∞
−∞

N(w, t)dw,
(9)

with the boundary and initial conditions

p(VF , w, t) = 0, p(−∞, w, t) = 0, p(v,±∞, t) = 0, p(v, w, 0) = p0(v, w).

Here, ε stands for a time scale which takes into account that learning is slower than the normal activity
of the network, and Φ = Φ

(
N(w, t), N̄(t)

)
represents the learning rule. Notice that a desirable property

is that the flus Φ−w is inward which occurs for instance when Φ is bounded or sub-linear at infinity.
Several direct extensions of the Hebbian rule are possible for example

Φ = N(w, t)

∫
K(w,w′)N(w′, t)dw′,
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or inspired from STDP rule (spike timing dependent plasticity, see [21] for instance), where post- and
pre-synaptic spike times are compared, we may choose

Φ
(
N(w, t), N̄(t)

)
= Φ

((
N(w, t) ∗t gN̄(t)−N(w, t)N̄(t) ∗t g

)
.

Here g(t) = 0 for t < 0 and g(t) = e−t/τ for t > 0.

3 Stationary solution of the nonlinear problem without learning
rule

Throughout this paper we use some material about the possible stationary solutions of Equations (1)–
(3) submitted to a given input signal I(w). These stationary states are defined through the equation

∂

∂v

[(
− v + I(w) + wσ(N̄)

)
P (v, w)

]
− a∂

2P (v, w)

∂v2
= N(w)δ(v − VR), (10)

with the boundary conditions

P (VF , w) = 0, P (−∞, w) = 0, and N(w) = −a∂P
∂v

(VF , w) ≥ 0. (11)

We recall that the nonlinearity is driven by the network total activity defined as

N̄ =

∫
N(w)dw, (12)

and that we assume a normalization (5) which is written∫ VF

−∞
P (v, w)dv = H(w),

∫
H(w)dw = 1. (13)

Our first result is the

Theorem 3.1 (Existence of stationary states) We assume (4), give the input signal I ∈ L∞(R)
and the synaptic weight distribution H(w) normalized to 1 such that there exists ε > 0 with∫ ∞

0
w2H(w)dw <∞. (14)

Then, there is at least one solution of (10)–(13).
In the case of inhibitory network, that is supp(H) ⊂ (−∞, 0], for all σ ∈ C2, the solution is unique.

Let us mention that for a single w, semi-explicit formula are available, see [8] for instance, and the
stationary states are not necessarily unique in the excitatory case.

Proof. Our approach is to solve the nonlinear problem using a fixed point argument on the value N̄ .
Being given N̄ , I(w) and H(w), we consider the linear problem where w is a parameter (we do not
repeat the boundary conditions)

∂
∂v

[(
− v + I(w) + wσ

(
N̄
))
QN̄,I

]
− a∂

2QN̄,I
∂v2 = NN̄,I(w)δ(v − VR),

QN̄,I(VF , w) = 0, NN̄,I(w) = −a∂QN̄,I(VF ,w)

∂v ,
∫ VF
−∞QN̄,I(v, w)dv = 1.

(15)
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Let ψ : R+ → R+ defined by

ψ(N̄) =

∫ +∞

−∞
NN̄,I(w)H(w)dw.

Then, we obtain a solution of (10)–(12) if and only if N̄ is a fixed point of the application Ψ, that is∫ +∞

−∞
NN̄,I(w)H(w)dw = N̄ , and then P (v, w) = H(w)QN̄,I(v, w). (16)

To prove the existence of such a fixed point, we need a careful analysis of the mapping N̄ 7→ NN̄,I(w),
which we perform in the next subsection, adding many properties that will be used later on. The
conclusion of the proof is given afterwards.

3.1 Main properties of NN̄,I(w) in (15)

Being given N̄ , the linear stationary state Equation (15), because it is solved w by w, is a standard
equation and solutions form a one dimensional vector space (the eigenspace for the eigenvalue 0) ac-
cording to the Krein-Rutman theorem [14]. Uniqueness is enforced thanks to the normalization as a
probability.

Integrating Equation (15), we obtain that a solution satisfies

(
− v + I(w) + wσ(N̄)

)
QN̄,I(v, w)− a

∂QN̄,I(v, w)

∂v
=

 0 for v < VR,

NN̄,I(w) for v > VR,
(17)

with NN̄,I(w) to be found such that
∫ VF
−∞QN̄,I(v, w)dv = 1. Hence, the solution is explicitly given by

QN̄,I(v, w) =


1

ZN̄,I(w)e
− (v−I(w)−wσ(N̄))2

2a

∫ VF

VR

e
(v′−I(w)−wσ(N̄))2

2a dv′ for v < VR,

1
ZN̄,I(w)e

− (v−I(w)−wσ(N̄))2

2a

∫ VF

v
e

(v′−I(w)−wσ(N̄))2

2a dv′ for v > VR,

(18)

with

ZN̄,I(w) =

∫ VF

−∞

∫ VF

v′=max(VR,v)
e

(v′−I(w)−wσ(N̄))2−(v−I(w)−wσ(N̄))2

2a dv′dv

which is also written under the more convenient form

ZN̄,I(w) =

∫ VF

−∞

∫ VF

v′=max(VR,v)
e

(v′−v).[v′+v−2I(w)−2wσ(N̄)]
2a dv′dv. (19)

Because of the boundary condition QN̄,I(VF , w) = 0, an immediate consequence of (17) is the relation

NN̄,I(w) =
a

ZN̄,I(w)
= −a

∂QN̄,I(VF , w)

∂v
. (20)

Throughout the paper, we use properties of the function ZN̄,I(w) which we state in the following
lemma.
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Lemma 3.2 Given I ∈ L∞(R) and N̄ > 0, the unique solution QN̄,I(v, w) > 0 of Equation (15),
defined by (18)-(19), satisfies the following estimates. There is a constant C(a, VR, VF ) such that

C min

(
1

‖I‖L∞ + |w|+σ(N̄)
, (VF − VR)

)2

≤ ZN̄,I(w) ≤ Ce

(
‖I‖L∞+|w|−σ(N̄)

)2

a , (21)

lim
w→+∞

ZN̄,I(w) = 0, lim
w→−∞

ZN̄,I(w) = +∞, inf
N̄
ZN̄,I(w) > 0, ∀w ∈ R, (22)

∀w ≤ 0, ∂N̄ZN̄,I(w) ≥ 0 and ∀w ≥ 0, ∂N̄ZN̄,I(w) ≤ 0, (23)

∂wZN̄,I(w) ≤ 0, if I ′(·) ≥ 0. (24)

Moreover, when σ(N) = N , the following estimates holds

lim
−wN̄→+∞

ZN̄,I(w) = +∞, (25)

∂2
N̄N̄ZN̄,I(w) > 0, ∀w ≤ 0. (26)

Proof of Lemma 3.2. We first prove inequality (21). We set A = ‖I‖L∞ + |w|−σ(N̄) where
|w|− = −min(0, w). As

e
2(v′−v)(−I(w)−wσ(N̄))

2a ≤ e
2(VF−v)A

2a , for VF ≥ v′ ≥ v,

we obtain, with formula (19), that there exists a constant C such that

ZN̄,I(w) ≤
∫ VF

−∞

∫ VF

v′=max(VR,v)
e
|v′|2−|v|2+2(VF−v)A

2a dv′dv ≤ C
∫ VF

−∞
e
−|v|2+2(VF−v)A

2a dv.

Therefore, we conclude the upper bound with

ZN̄,I(w) ≤ Ce
2VFA

2a

∫ VF

−∞
e
−|v|2−2vA

2a dv = Ce
V 2
F+A2+A2

2a

∫ VF

−∞
e
−|v|2−2vA−A2

2a dv.

For the lower bound, we set

|w|+ = max(0, w) and Ã = ‖I‖L∞ + |w|+σ(N̄),

and conclude that

e−
(VF−v)Ã

a ≤ e
2(v′−v)(−I(w)−wσ(N̄))

2a for VF ≥ v′ ≥ v.

Inserting this lower bound in formula (19), we deduce that there exists a constant C(a, VR, VF ) such
that

ZN̄,I(w) ≥
∫ VF

−∞
(VF−max(VR, v))e

−|v|2−2(VF−v)Ã

2a dv ≥ C
∫ VF

VR

(VF−v)e
−(VF−v)Ã

a dv = C

∫ VF−VR

0
ze
−zÃ
a dz.

We deduce that there exists a constant C(a, VR, VF ) such that

ZN̄,I(w) ≥ C min(
1

Ã2
, (VF − VR)2),
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which ends the proof of estimate (21).
Next, we prove the inequality (22). We have, for all w ∈ R,∫ VF

−∞

∫ VF

v′=max(VR,v)
e

(v′−v).(v′+v−2‖I‖L∞−2wσ(N̄))

2a dv′dv ≤ ZN̄,I(w)

≤
∫ VF

−∞

∫ VF

v′=max(VR,v)
e

(v′−v).(v′+v+2‖I‖L∞−2wσ(N̄))

2a dv′dv.

(27)

Because σ > 0 for N̄ 6= 0, we have almost everywhere in v and v′

lim
w→−∞

e−2wσ(N̄)(v′−v) = +∞ and lim
w→+∞

e−2wσ(N̄)(v′−v) = 0.

To prove the estimate (23), we differentiating the explicit formula of ZN̄,I(w) with respect to N̄ .
We obtain that

∂N̄ZN̄,I(w) = −wσ′(N̄)

∫ VF

v=−∞

∫ VF

v′=max(VR,v)

v′ − v
a

e
(v′−I(w)−wσ(N̄))2

2a e−
(v−I(w)−wσ(N̄))2

2a dv dv′,

which directly gives (23).

To prove (24), we observe that, when I ′(w) ≥ 0,

∂wZN̄,I(w) = −(I ′(w) + σ(N̄))

∫ VF

v=−∞

∫ VF

v′=max(VR,v)

v′ − v
a

e
(v′−v)(v′+v−2I(w)−2wσ(N̄))

2a dv dv′ ≤ 0.

Next, when σ(N) = N , we have

ZN̄,I(w) ≥
∫ wN̄+1

v=wN̄
e−

(v−I(w)−wN̄)2

2a

(∫ VF

v′=max(v,VR)
e

(v′−I(w)−wN̄)2

2a dv′

)
dv.

Therefore, we obtain estimate (25) because for v ∈ (wN̄,wN̄ + 1), we have

e−
(v−I(w)−wN̄)2

2a ≥ e−
(‖I‖L∞+2)2

2a , so that ZN̄,I(w) ≥ e−
(‖I‖L∞+2)2

2a

∫ VF

v′=VR

e
(v′−I(w)−wN̄)2

2a dv′.

Finally, the inequality (26) follows from

∂2
N̄N̄ZN̄,I =

w2

a2

∫ VF

v=−∞

∫ VF

v′=max(v,VR)
(v′ − v)2e−

(v−I(w)−wσ(N̄))2

2a e
(v′−I(w)−wσ(N̄))2

2a dv′dv > 0.

The proof of Lemma 3.2 is complete.
�

3.2 Conclusion of the proof of Theorem 3.1

We come back to the fixed point equation (16). With the above notations, it is restated, using the
quantity ZN̄,I(w) defined by (19), as a fixed point of the function ψ : R+ → R+

ψ(N̄) := a

∫ +∞

−∞

H(w)

ZN̄,I(w)
dw = N̄ . (28)
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We have ψ(0) > 0.
In the inhibitory case, when supp(H) ⊂ R−, we have ψ′(·) < 0 thanks to (23), and thus there is a
unique fixed point.
When excitatory weights are considered, as

lim
w→+∞

1

Z̄N̄,I(w)
= 0,

we have to impose an additional assumption on H to control ψ(· ). For this purpose, using estimate
(21), thanks to the assumption (14), we know that ψ(·) remains bounded and hence, there is at least
one fixed point by continuity. �

4 Output signals induced from a synaptic weight distribution

As a first property of the network properties, we aim at identifying which possible steady states
output activities N(w) or signal S(w) can be generated by the network by varying the synaptic weight
distribution H.

We prove that any nonnegative normalized output signal S ∈ L1(R), with fast decay at −∞, can be,
up to a multiplicative constant, reproduced by a stationary state of Equation (10) for a well chosen
synaptic weight distribution H.

Theorem 4.1 (Relation output signal to synaptic weights) We assume (4) and give the in-
put signal I ∈ C1

b(R) and the output signal S ≥ 0 normalized with
∫ +∞
−∞ S(w) = 1 and satisfyning∫ 0

−∞ e
−γwS(w) < ∞ with γ > σM

VF−VR
a . Then, we can find a synaptic weight distribution H(w)

normalized to 1, such that (7) holds true for a solution of (10)–(13).

In the case of inhibitory signal, that means supp(S) ⊂ (−∞, 0], for all σ ∈ C2, the synaptic weight
distribution H and N̄ are unique.

Proof. Consider an output normalized signal S(w) ≥ 0. Using the notations of section 3, the relations
(7) are reduced to building a distribution H(w) normalized to 1, such that the following relations hold

N(w) = H(w)NN̄,I(w), H(w) = N̄
S(w)

NN̄,I(w)
, (29)

and the fixed point condition (16) is automatically satisfied thanks to the normalization of S.

In other words, we look for N̄ such that

H(w) = N̄
ZN̄,I(w)

a
S(w) and

∫ +∞

−∞
H(w)dw = 1.

Let us mention that H ∈ L1 because of estimate (22) and the integrability condition on S(·).
These conditions are reduced to achieve the value a by the mapping ψ : R+ → R+ defined by

ψ(N̄) = N̄

∫ +∞

−∞
S(w)ZN̄,I(w)dw = a.

9



We have obviously ψ(0) = 0. Moreover, using the last estimate of (22), we obtain that

ψ(N̄) ≥ N̄
(∫ +∞

−∞
S(w) inf

N̄
ZN̄,I(w)dw

)
with

∫ +∞

−∞
S(w) inf

N̄
ZN̄,I(w)dw > 0

and so ψ(+∞) = +∞ which implies existence of the activity N̄ satisfying the desired nonlinearity.

In the inhibitory case, we notice that ψ is increasing as a consequence of (23) and uniqueness follows.

The proof of Theorem 4.1 is complete. �

5 Discrimination property

A desired property of the input-ouput map is to be able to discriminate between signals. In our
language, it is to say that two different input signals I(w) will generate two different network activities
N(w). To state a more precise result, we need the notation, for two bounded input currents I and J ,

L(w) = e
−(‖I‖L∞+|w|−σM )2−(‖J‖L∞+|w|−σM )2

a .

The discrimination property is a consequence of the functional inequality∫
|NI(w)−NJ(w)|dw ≥ C

∫
L(w)H(w)|I(w)− J(w)|dw, (30)

for two solutions of (10)–(13). The network under consideration has this property.

Theorem 5.1 (Discrimination property) We consider two bounded input currents I and J . Being
given normalized synaptic weights H(w) such that

∫ +∞
0 wH(w)dw < +∞. We define

ν = ‖σ′‖∞
∫
|w|L(w)H(w)dw < +∞

Then, the discrimination inequality (30) holds true with a positive constant

C = C(ν, a, VF , VR, ‖I‖∞, ‖J‖∞, σM ).

Proof. We denote by M̄ a total activity obtained via Equations (10)–(13) stemming from the current
J (that is the input current is given by J), and by N̄ a total activity obtained via Equations (10)–(13)
stemming from the current I.

We have

NI(w)−NJ(w) = H(w)[NN̄,I(w)−NM,J(w)] = H(w)[
a

ZN̄,I(w)
− a

ZM̄,J(w)
].

Therefore using the upper bound (21), we find that there exists a constant C such that

|NI(w)−NJ(w)| = aH(w)
|ZN̄,I(w)− ZM̄,J(w)|
ZN̄,I(w)ZM̄,J(w)

≥ CL(w)H(w)|ZN̄,I(w)− ZM̄,J(w)|. (31)

10



To go further, we set α = I(w) + wσ(N̄), β = J(w) + wσ(M̄), and write, using (19),

ZN̄,I(w)− ZM̄,J(w) =

∫ VF

−∞

∫ VF

v′=max(VR,v)

[
e

(v′−v).(v′+v−2α)
2a − e

(v′−v).(v′+v−2β)
2a

]
dv′dv

= −
∫ VF

−∞

∫ VF

v′=max(VR,v)

∫ β

α

v′ − v
a

e
(v′−v).(v′+v−2γ)

2a dγdv′dv.

We assume, without lose of generality, that β > α. Then, we have∣∣ZN̄,I(w)− ZM̄,J(w)
∣∣ ≥ ∫ VF

−∞

∫ VF

v′=VR

∫ β

α

v′ − v
a

e
(v′−v).(v′+v−2γ)

2a dv′dvdγ

≥
∫ VR−a

−∞

∫ VF

v′=VR

∫ β

α

v′ − v
a

e
(v′−v).(v′+v−2γ)

2a dv′dvdγ

As for all v ∈ (−∞, VR − a) and v′ ∈ (VR, VF ), it holds v′−v
a ≥ 1, we obtain that, with

γ∞ = ‖I‖∞ + ‖J‖∞ +RσM ,∣∣ZN̄,I(w)− ZM̄,J(w)
∣∣ ≥ ∫ β

α

∫ VR−a

−∞

∫ VF

v′=VR

e
(v′−v)(v′+v−2γ∞)

2a dv′dvdγ

≥ C(a, VR, VF , γ∞) (α− β).

We can now go back to (31) and obtain

|NI(w)−NJ(w)| ≥ CL(w)H(w)|I(w) + wσ(N̄)− J(w)− wσ(M̄)|

≥ CL(w)H(w)
[
|I(w)− J(w)| − |w| ‖σ′‖∞|N̄ − M̄ |

]
.

As a consequence, with our definition of ν, we find∫
|NI(w)−NJ(w)|dw ≥ C

∫
L(w)H(w)|I(w)− J(w)|dw − Cν|N̄ − M̄ |

and because

|N̄ − M̄ | =
∣∣∣∣∫ NI(w)−NJ(w)dw

∣∣∣∣ ≤ ∫ |NI(w)−NJ(w)| dw

we finally obtain ∫
|NI(w)−NJ(w)|dw ≥ C

1 + Cν

∫
L(w)H(w)|I(w)− J(w)|dw.

Theorem 5.1 is proved. �

6 Synaptic weight distribution stemming from a learning rule

We now study how a learning rule defines a specific synaptic weight distribution. We assume that
our network is submitted to the simplified Hebbian learning rule (8) with a function K(·) which is
piecewise C1, discontinuous at 0 and satisfies

wK(w) > 0 for w 6= 0, 0 < Km ≤ |K(·)| ≤ KM a.e. . (32)
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The sign condition is just to impose that inhibitory and excitatory neurons may change weight but
remain in the same status. We also give a bounded input signal. Our aim here is to study possible
distributions of synaptic weights generated by the pair (K, I). We point out a specific difficulty which
motivates the more thorough analysis in the next section,

The model we work on is the steady state equation
∂
∂v

[(
− v + I(w) + wσ(N̄)

)
p
]

+ ε ∂
∂w

[(
K(w)N(w)N̄ − w

)
p
]
− a∂

2p
∂v2 = N(w)δ(v − VR),

N(w) = −a∂p(VF ,w)
∂v , N̄ =

∫ +∞

−∞
N(w)dw, H(w) =

∫ VF

−∞
p(v, w)dv,

∫ ∞
−∞

H(w)dw = 1,

(33)
with the boundary conditions

p(VF , w) = 0, p(−∞, w) = 0, p(v,±∞) = 0. (34)

We give an input signal I(w) and the learning rule K(w) which selects a distribution H. Which are
the possible synaptic weights H(w)?

We show that many distributions of synaptic weights are possible and solutions of Equation (33)
are far from unique. We recall the definition of QN̄,I(w, v) and NI,N̄ (w) in Equation (15) and state
the

Theorem 6.1 (Weight distribution induced by learning) Let I ∈ Cb(R) and K satisfy (32).
Then, there exists infinitely many solutions P (w, v) ≥ 0 of Equation (33) independent of ε. They are
given by

P (v, w) = HN̄,A(w)QN̄,I(w, v), with HN̄,A(w) =
w

N̄K(w)NN̄,I(w)
IA(w) ≥ 0,

for some appropriate subsets A ⊂ R such that∫ +∞

−∞
HN̄,A(w)dw = 1. (35)

Notice that this non-uniqueness theorem yields the question to find an organizing principle which
selects the synaptic weight among the large class built in the proof of Theorem 6.1. This is the topic
of Section 7.

Proof of Theorem 6.1. The strategy of proof is as for Theorem 4.1 and we look for a fixed point
for the total activity N̄ to build a solution of the nonlinear Equation (33).

Therefore we fix a value N̄ > 0 and a bounded subset of A ⊂ R. Let the synaptic weights HN̄,A(w)
be defined by

HN̄,A(w) =
w

N̄K(w)NN̄,I(w)
IA(w) ≥ 0,

the sign being a consequence of the sign condition on K. One readily checks that, with P defined in
Theorem 6.1, we have (N(w, t)K(w)N̄ − w)P = 0 and thus P is indeed a solution of Equation (9).

12



It remains to solve the fixed point, that is to find N̄ such that the following condition holds:∫ +∞

w=−∞
HN̄,A(w)dw = 1 and N̄ =

∫
HN̄,A(w)NI,N̄ (w)dw.

That is also written, recalling the notation (20),∫
A

wZN̄,I(w)

K(w)
dw = aN̄ and N̄2 =

∫
A

w

K(w)
dw. (36)

Because, in Theorem 6.1, the condition for the choice of the set A is the only constraint (35), to
conclude its proof it is enough to give a specific construction in the inhibitory case, which is addressed
in Proposition 6.2 and hence the proof of Theorem 6.1 is finished assuming Proposition 6.2. �

6.1 Solutions for learning with inhibitory weights only.

The proof of Theorem 6.1 can be concluded choosing the set A so as to select inhibitory weights only.

Proposition 6.2 (Inhibitory weights) There exists infinitely many steady states P (v, w) of Equa-
tion (33) independent of ε which supports in the variable w are union of intervals of (−∞, 0). In
particular there is one of the form

HN̄ (w) =
w

K(w)N̄NN̄,I(w)
I−ϕ≤w<0,

and it is unique in the case where I ′(w) ≥ 0 and where the saturation is neglected, that is σ(N) = N .

Proof of Proposition 6.2. We first observe that if the support of P (v, w) is equal to A = (−ϕ(N̄), 0),
then, with the second relation in (36), necessarily ϕ : R+ → R+ must be defined by

N̄2 =

∫ 0

−ϕ(N̄)
− w

K(w)
dw. (37)

There exist C1 > 0 and C2 > 0 such that this function ϕ satisfies

ϕ(0) = 0, C1N ≤ ϕ(N) ≤ C2N, C1 ≤ ϕ′(N) ≤ C2. (38)

The first two statements are immediate and the third one follows, differentiating (37) and using (32),
from the identity

2N̄ = −ϕ′(N̄)
ϕ(N̄)

K(−ϕ(N̄))
· (39)

Secondly, the value N̄ > 0 has to satisfy

Φ(N̄) =

∫ 0

−ϕ(N̄)

w

K(w)
ZN̄,I(w)dw = aN̄. (40)

Our goal is to prove that there exists a positive solution of Equation (40) and that it is unique when
σ(N) = N . To do this, let us compute the first two derivatives of Φ. We have

Φ′(N̄) = −ϕ′(N̄)
ϕ(N̄)

K(−ϕ(N̄))
ZN̄,I(−ϕ(N̄)) +

∫ 0

−ϕ(N̄)

w

K(w)
∂N̄ZN̄,I(w)dw.
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Using identity (39), we obtain that

Φ′(N̄) = 2N̄ZN̄,I(−ϕ(N̄)) +

∫ 0

−ϕ(N̄)

w

K(w)
∂N̄ZN̄,I(w)dw.

In particular, Φ′(0) = 0. Using Lemma 3.2, we obtain that there exists C > 0 such that for all w ≤ 0
and N̄ > 0,

ZN̄,I(w) > C and ∂N̄ZN̄,I(w) ≥ 0.

Hence, there exists C > 0 such that

Φ′(N̄) ≥ CN̄.

As Φ′(0) = Φ(0) = 0, there exists at least one nonnegative solution to (32).

To prove that there is a unique one in the case where σ(N) = N , it suffices to show that Φ′′ > 0.
Using (24), identity (39) and Lemma 3.2, we obtain that

Φ′′(N̄) =2ZN̄,I(−ϕ(N̄))− 2N̄ϕ′(N̄)∂wZN̄,I(−ϕ(N̄)) + 4N̄∂N̄ZN̄,I(−ϕ(N̄))

+

∫ 0

−ϕ(N̄)

w

K(w)
∂N̄N̄ZN̄,I(w)dw > 0

To prove that there exists infinitely many steady states of Equation (33), we notice that there exists
infinitely many other choices than I0≤w≤−ϕ(N̄) of subintervals such that the same proof holds. An

example is, given w0 ≤ 0, to consider the function ϕ̃(N̄) such that

HN̄ (w) =
−w

N̄NN̄,I(w)
Iw0≥w≥−ϕ̃(N̄), N(w) = NN̄,I(w)HN̄ (w)

where ϕ̃(N̄) is the value determined by ∫ 0

−∞
HN̄ (w)dw = 1.

The above argument applies directly and this concludes the proof of Proposition 6.2 and of Theo-
rem 6.1. �

6.2 Non existence result for learning with excitatory weights only

One might try the same approach and try to find purely excitatory weights. This is not always possible
and we have the

Proposition 6.3 (Excitatory weights) We take for w > 0 a bounded signal I. When σ(N) =
σ0

N
1+N with σ0 large enough, there is no solution of (33) with a weight distribution under the form

HN̄,A(w) =
w

N̄K(w)NN̄,I(w)
IA(w), with A = (0, ϕ).
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This Proposition implies that, for the purely excitatory case, we may not have convergence of the
solution of Equation (33) to a stationary state. As an example, in the situation of Proposition 6.3,
to hope having convergence to a stationary state, we have to deal with an initial condition where the
support of H and (−∞, 0) is non empty.

Proof. Using the same proof as for Proposition 6.2, we impose, still because of the conditions in (36),

N̄2 =

∫ ϕ(N̄)

0

w

K(w)
dw.

and the properties (38) still hold. According to the other condition in (36), we examine the condition

aN̄ =

∫ ϕ(N̄)

0

w

K(w)
ZN̄,I(w)dw := Φ(N̄).

We notice that

Φ′(N̄) = ϕ′(N̄)
ϕ(N̄)

K(ϕ(N̄))
ZN̄,I(ϕ(N̄)) +

∫ N̄2

0
∂N̄ZN̄,I(w)dw.

Since Φ′(0) = 0, we expect that, if there was a fixed point N0, then the first fixed point will be such
that Φ′(N0) ≥ 1. However at such a fixed point, we find, because ∂N̄ZN̄,I(w) < 0 for w > 0,

Φ′(N0) ≤ ϕ′(N0)
ϕ(N0)

KM

∫ VF

−∞

∫ VF

v′=max(VR,v)
e

(v′−v).[v′+v+2‖I‖∞−2σ0
N0ϕ(N2

0 )
1+N0

)]

2a dv′dv.

From the properties (38), we conclude that for σ0 large enough, we have necessary

Φ′(N0) < 1,

which is a contradiction and concludes the proof. �

7 Selection of inhibitory synaptic weights by noise

In this section, we choose K(w) = −1 for w ≤ 0 and we only consider inhibitory interconnections. In
view of the result of Section 6, we try to find a selection principle for the synaptic weight distribution
which would single out the choice A = (−ϕ, 0) established in Proposition 6.2. Indeed, among the
infinitely many steady states constructed in Theorem 6.1, numerical evidence, in Section 8, indicates
that a unique stationary state is selected with A = (−

√
2 N̄ , 0).

Two difficulties occur, namely the selection of the set A and the uniqueness of the value N̄ when
solving the fixed point (36). As in the inhibitory case, blow-up does not occur for Leaky Integrate
and Fire models [11], we simply assume that σ

(
N̄(t)

)
= N̄(t).

A possible organizational principle can be noise, which is compatible with numerical diffusion in the
observations of Section 6. Therefore, we heuristically study the stationary state of a modified equation
with a Gaussian noise, of intensity ν > 0, on the variable w. We use slow-fast limit in order to take
into account that learning is on a slow scale compared to neural activity. Then, we may compute more
easily the potential stationary states of the new equation given by

ε∂pε∂t + ∂
∂v

[(
− v + I(w) + wN̄ε(t)

)
pε
]

+ ε ∂
∂w

[(
−Nε(w, t)N̄ε(t)− w

)
pε
]

−a∂
2pε
∂v2 − εν ∂

2pε
∂w2 = Nε(w, t)δ(v − VR),

(41)
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with boundary conditions adapted to the purpose of dealing only with w ≤ 0,

pε(VF , w, t) = 0, pε(−∞, w, t) = 0,
(
Nε(w, t)N̄ε(t) + w

)
pε = −ν ∂pε

∂w
, at w = 0. (42)

Here ε > 0 represents the time scale of learning and thus vanishes in the limit of fast network adap-
tation vs slow learning.

In a first and formal step in our analysis, we consider the fast time scale ε → 0. This yields the
steady state Integrate and Fire density distribution as studied in Section 3. Since the synaptic weight
distribution takes a value H̃(w) that changes according to the slow time scale, we fix it here and find

p∗[H̃] = H̃(w)Q
N̄ [H̃],I

(v, w)

with QN̄,I defined through (15), (16). Then, N̄ [H̃] is solution of the fixed point equation

N̄ [H̃] =

∫ ∞
0

H̃(w)N
N̄ [H̃],I

(w)dw

with N
N̄ [H̃],I

is defined by Equation (20).

In a second step, we can integrate in v Equation (41) and divide by ε. Recalling that, from (6),

H̃ε(w, t) =
∫ VF
−∞ pε(v, w, t)dv, we obtain

∂H̃ε

∂t
+

∂

∂w

((
−Ñε(w)N̄ε(t)− w

)
H̃ε

)
= ν

∂2H̃ε

∂w2
.

With the equilibrium of the first step, we find the limit

∂H̃

∂t
+

∂

∂w

((
−Ñ(w)N̄(t)− w

)
H̃
)

= ν
∂2H̃

∂w2
, w ≤ 0 (43)

where

Ñ(w, t) = N
N̄ [H̃(.,t)],I

H̃(w, t), N
N̄ [H̃(.,t)],I

(w, t) := −a ∂
∂v
Q
N̄ [H̃(.,t)]

(VF , w), N̄(t) = N̄ [H̃(., t)],

(44)
and with the no-flux boundary condition

(
Ñ(w, t)N̄(t) + w

)
H̃ = −ν ∂H̃

∂w
, at w = 0. (45)

Notice that the form of Ñ(w, t) makes that Equation (43) is nonlinear hyperbolic, closely related to
first order scalar conservation laws, [12, 27]. Therefore, we may expect that discontinuities (shocks)
can be formed and that noise selects indeed a specific solution, namely the entropy solution. This is
stated in the following Theorem:

Theorem 7.1 (Small noise limit) Assume that I ′(w) ≥ 0. As ν → 0, the steady state of Equa-
tion (43)– (45) converges to the unique steady state built in Proposition 6.2 and supported by the single
interval [−A, 0].
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Proof. After integrating the equation for the steady states of (43), and using the boundary condition
at w = 0, we find that each stationary state H̃ν satisfies

(
H̃νNN̄ [H̃ν ],I

(w)N̄ + w
)
H̃ν = −ν dH̃ν

dw
. (46)

We first observe that solutions H̃ν of such an equation cannot vanish at a point because they are given
by an exponential.
Next, we claim that there is wν < 0 such that

H̃ ′ν(w) > 0 for w < wν , and H̃ ′ν(w) < 0 for w > wν . (47)

Indeed, since H̃ν(0) > 0, for w close to zero, we have H̃νNN̄ [H̃ν ],I
(w)N̄ + w > 0 and thus H̃ ′ν(w) < 0.

Because H̃ν is integrable on (−∞, 0), there has to be a largest value wν where

0 = H̃νNN̄ [H̃ν ],I
(wν)N̄ + wν and 0 = H̃ ′ν(wν).

Finally, on (−∞, wν) we necessarily have H̃ ′ν(w) > 0 because −w
N
N̄ [H̃ν ],I

(w) is a decreasing function

thanks to the assumption I ′(w) > 0 which implies N ′
N̄ [H̃ν ],I

> 0 using (24) because N
N̄ [H̃ν ],I

= a
Z
N̄ [H̃ν ],I

.

Therefore, if there was a second crossing point w1 < wν , where H̃νNN̄ [H̃ν ],I
(w1)N̄ = w1, we should

have both H̃ ′ν(w1) < 0 (to cross a decreasing function) and, the condition H̃ ′ν(w1) = 0 from (46). A
contradiction which states (47).
From this property, that

∫ 0
−∞ H̃ν(w)dw = 1 and the control from below and above of N

N̄ [H̃ν ],I
(w)

using Lemma 3.2, we conclude that H̃ν is uniformly bounded and has the uniform decay exp(−w2

2ν ) as

w → −∞. Therefore we may pass to the limit in (46) and conclude that the limit H̃ satisfies either
H̃(w) = 0, or H̃(w)N

N̄ [H̃],I
(w)N̄ + w = 0. From (47), this identifies the support of H̃ as stated in

Theorem 7.1. �

8 Learning, testing and pattern recognition

Based on numerical simulations, we illustrate the discrimination property stated in Section 5. We
consider the following two-phase setting:

Learning phase

1. An heterogeneous input I(w) is presented to the system, while the learning process is active. The
chosen initial data is supported on inhibitory weights so as to avoid the complexity of excitatory
cases and the learning rule is determined for the inhibitory weights by −N(w)N̄ , as in section 6,
by taking K(w) = −1 if w ≤ 0.

2. After some time, the synaptic weight distribution H(w, t) converges to an equilibrium distribu-
tion H∗I (w), which depends on I.

Testing phase

1. The learning process is now switched off, and a new input J(w) is presented to the system.
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Figure 1: (Two input signals) We have used two input signals that we denote I(w) on the left and
J(w) on the right.

2. After some time, the solution pJ(v, w, t) reaches an equilibrium p∗J(v, w), which can be summa-
rized by the output signal N∗J (w) which is the neural activity distribution across the heteroge-
neous populations.

The numerics has been performed using a finite difference method. For the Fokker-Planck equation
on the potential, we use the Sharfetter-Gummel method [24]. For the transport equation on the weight
variable, we use an upwind scheme [4, 25]. The matlab code is available on demand to one of the
authors.

Then, from the mathematical analysis performed in previous sections, we know that the following
”pattern recognition” property will be observed: the system can detect whether the new input J(w)
is actually the same one that has been presented during the learning phase, i.e. I(w): indeed, in this
case, N∗J (w) = w1[−A,0] has a very specific shape. A remarkable feature is that this specific shape does
not depend upon the original input I that has been learned in the learning phase: it is an intrinsic
property of the system. This is particularly interesting because it implies that detecting a learned
pattern could be implemented by an external system which would be independent of the given pattern.

To illustrate this pattern recognition property we display in Figure 1 the two input signals we have
used for the learning-testing set-up

I(w) = 1.5 ∗ exp

(
−(w + 0.5)2

0.01

)
, J(w) = .5 ∗ exp

(
−(w + 0.2)2

0.01

)
+ .5 ∗ exp

(
−(w + 0.6)2

0.01

)
.

After presentation of these input currents I(w) and J(w), the synaptic weight distribution converges
to H∗I that are displayed in Figure 2. The corresponding network activity N(w) are shown in Figure 3.
During the testing phase, learning is off and the system reacts differently according to the input it
receives: if the new input is the same as the learned one, then the neural activity distributes according
to the specific shape predicted by the theory and already shown in Figure 3, indicating that the
network has recognized the learned pattern. Whereas if the new input is not the same, here we invert
I and J as input currents, then the neural activity distributions have a very different shape Figure 4.
This illustrates the discrimination property.
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Figure 2: (Two connectivities) This figure displays the synaptic connectivities obtained after learning
with the input signals of Figure 1.

Figure 3: (Output with learned signal) This figure displays the netwotk activities N(w) when learned
with the two input signals of Figure 1, I on the left, J on the right.

9 Conclusions and perspectives

We have introduced a novel mathematical framework to study learning mechanisms in macroscopic
models of spiking neuronal networks by considering plasticity between neural subpopulation and the
overall mean-field activity. When ignoring the learning rule, we have characterized the synaptic
weight distribution which generates a given output signal, and we have shown a discrimination prop-
erty. When the learning rule is activated, we have studied the multiple synaptic weight equilibria
of the global coupled system with learning. A selection by noise selects a unique equilibria which is
also observed numerically. Furthermore, we have investigated the ability of such models to perform
pattern recognition tasks.

The class of models studied in this article are subject to several limitations and mainly that the
network is coupled via a global activity and not by pairwise interactions. A related limitation is that
stability and convergence to a unique equilibrium point depend on the excitatory/inhibitory nature
of the synaptic weight as it does for the noisy integrate-and-fire network model. Because we have
targeted mathematically proved results, we had to assume that the input signal is time independent,
which is a restriction in the theory.

To further extend our study, one should investigate other learning rules. A possible extension is to
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Figure 4: (Output with the other signal) With the synaptic weights of the learned signal I, we display
the activty for the input signal J (left), and for learned signal J we display the activty for the input
signal I (left).

use pairwise connections, leading to the following extension of our system
∂p
∂t + ∂

∂v

[(
− v + I(w) +

∫∞
−∞C(w,w′, t)N(w′, t)dw′

)
p
]
− a∂

2p
∂v2 = N(w, t)δ(v − VR),

N(w, t) := −a∂p∂v (VF , w, t) ≥ 0, N̄(t) =

∫ ∞
−∞

N(w, t)dw,
(48)

∂

∂t
C(w,w′, t) = K(w,w′)N(w, t)N(w′, t)− C(w,w′, t).

In closer connection with biological mechanisms such as spike-timing dependent plasticity, which may
also be integrated in the model with convolution operators. Other models of neuronal dynamics,
beyond spiking models, such as rate models or coupled oscillator systems, could also be studied and
compared within the proposed formalism.

Finally, to make the link with the fields of pattern recognition and machine learning deeper, further
questions can be considered, for instance to quantify the discrimination ability between two signals or
to evaluate the number and complexity of attractors, possibly dynamic, which can be stored into the
synaptic weight distribution.
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[9] M. J. Cáceres and B. Perthame, Beyond blow-up in excitatory integrate and fire neuronal
networks: refractory period and spontaneous activity, J. Theoret. Biol., 350 (2014), pp. 81–89.
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