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Abstract

Proof by coupling is a classical proof technique for establishing probabilistic properties of two
probabilistic processes, like stochastic dominance and rapid mixing of Markov chains. More recently,
couplings have been investigated as a useful abstraction for formal reasoning about relational properties
of probabilistic programs, in particular for modeling reduction-based cryptographic proofs and for
verifying differential privacy. In this paper, we demonstrate that probabilistic couplings can be used for
verifying non-relational probabilistic properties. Specifically, we show that the program logic pRHL—
whose proofs are formal versions of proofs by coupling—can be used for formalizing uniformity and
probabilistic independence. We formally verify our main examples using the EasyCrypt proof assistant.

1 Introduction
Uniformity and probabilistic independence are two of the most useful and commonly encountered
properties when analyzing randomized computations. Uniform distributions are a central building
block of randomized algorithms. Arguably the simplest non-trivial distribution—the coin flip—is
a uniform distribution over two values. Given access to uniform samples, there are known
transformations for converting the samples to simulate more complex distributions, like Gaussian
or Laplacian distributions. Conversely, turning samples from various non-uniform distributions
into uniform samples is an active area of research.

Probabilistic independence is no less useful. The probability of a conjunction of independent
events can be decomposed as a product of probabilities of individual events, each which can
then be analyzed in isolation. Independent random variables are also needed to apply more
sophisticated mathematical tools, like concentration inequalities.

Given these and other applications, it is not surprising that researchers have investigated
different methods of reasoning about uniformity and independence. For instance, Pearl and Paz
[1818] develop an axiomatic theory based on graphoids for modeling conditional independence
in probability theory. However, proving uniformity and independence by program verification
remains a challenging task. Most verification techniques for probabilistic programs do not treat
these properties as first-class assertions, and rely on reasoning principles that are cumbersome
to use. Often, the only way to prove uniformity or independence is to prove exact values for the
probability of specific events.

For example, consider a formal system for proving properties of the form PrJsKm [E] = p,
which capture the fact that the event E has probability p in the distribution obtained by
executing the randomized program s on some initial memory m (many existing systems use this
idea, e.g. [99, 1313, 1515, 1717, 1919, 2020]). Suppose that we want to prove that a program variable x of
some finite type A is uniformly distributed in the output distribution JsKm. The only way to
show this property is to analyze the probability of each output: for every a ∈ A, prove that
PrJsKm [x = a] = 1

|A| .

ar
X

iv
:1

70
1.

06
47

7v
2 

 [
cs

.P
L

] 
 1

 A
pr

 2
01

7



Uniformity and independence by couplings G. Barthe, T. Espitau, B. Grégoire, J. Hsu, P.-Y. Strub

For independence, the situation is similar. Assume that we want to prove that the two program
variables x and y of respective types A and B are (probabilistically) independent in the output
distribution JsKm. This can be done by exhibiting functions f, g, h such that for every a ∈ A and
b ∈ B, we have: PrJsKm [x = a] = f(a), PrJsKm [y = b] = g(b), PrJsKm [x = a ∧ y = b] = h(a, b).
Then, independence between x and y holds by proving that h(a, b) = f(a) · g(b) for every a ∈ A
and b ∈ B.

While these approaches work in theory, they can be laborious in practice. It may be
awkward to express the probability of x = a, and the functions f , g and h may be difficult to
produce. The main contribution of this paper is an alternative method based on probabilistic
couplings for proving uniformity and independence. Probabilistic couplings are a classical
method for proving sophisticated probabilistic properties (e.g., stochastic dominance, rapid
mixing of Markov chains, and more [1616, 2121, 2222]). More recently, couplings have been used to
reason about relational properties of probabilistic programs, notably differential privacy [55, 66].
Here we show that uniformity and independence properties can also be verified using coupling,
despite being non-relational properties. As a consequence, our verification method inherits the
many advantages of reasoning by couplings: compositional reasoning, and no need to reason
directly about probabilistic events. Concretely, we show how uniformity and independence can
be captured in the relational program logic pRHL [11].

In summary, our main contributions are novel methods to prove uniformity and independence
properties of probabilistic programs. We prove the soundness of the methods and demonstrate
their usefulness on a class of case studies.

Detailed Contributions
Uniformity. Suppose we have a program s with a program variable x ranging over a finite
set A, and we want to show that x is distributed uniformly over A after executing s. Rather
than computing the probability of PrJsKm [x = a] for each a ∈ A, it suffices to show that the
probabilities of any two outputs are equal:

∀a1, a2 ∈ A. PrJsKm [x = a1] = PrJsKm [x = a2] .

Now, we can view uniformity as a relational property: if we consider two runs of s, then the
probability of x being a1 in the first run should be equal to the probability of x being a2 in the
second run. In pRHL, this property is described by the following judgment:

∀a1, a2 ∈ A. � s ∼ s : φ =⇒ x〈1〉 = a1 ⇐⇒ x〈2〉 = a2

where the assertion φ asserts that the initial states are equal.

Independence. Proving probabilistic independence is more involved. We show how to prove
independence in two different ways. Assume that we want to prove that the program variables
x and y of respective finite types A and B are independent. First, if the distribution of 〈x, y〉 is
uniformly distributed over A×B, then x and y are independent (and are themselves uniformly
distributed). Indeed, assume that for all a ∈ A and b ∈ B we have PrJsKm [x = a ∧ y = b] = 1

|A|·|B| .
Then we have PrJsKm [x = a] =

∑
b∈B PrJsKm [x = a ∧ y = b] = 1

|A| . A similar argument applies
to the probability that y = b, from which independence follows. Thus, our first method of
proving independence is by reduction to proving uniformity.

This approach is simple to use, but it only applies to proving independence of uniform
random variables. A more expressive, but also slightly more complicated approach is to express
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probabilistic independence as a property of a modified version of the program, without any
requirement on uniformity. More specifically, independence of x and y can be derived from the
equality between the probabilities of x = a ∧ y = b and x1 = a ∧ y2 = b, where in the first case
the probability is taken over the output of the original program s, and in the second case the
probability is taken over the output of the program s1; s2, where s1 and s2 are renamings of s
(we call s1; s2 a self-composition of s [22, 1212]). The reason is not hard to see. Since the composed
programs operate on disjoint memory, the final combined output distribution models two
independent runs of the original program s. So, the probability PrJs1;s2Km1]m2

[x1 = a ∧ y2 = b]—
wherem1]m2 is the disjoint union of two copies ofm—is equal to the product of PrJs1Km1

[x1 = a]
and PrJs2Km2

[y2 = b]. Since s1 and s2 are just renamed versions of the original program s, these
probabilities are in turn equal to PrJsKm [x = a] and PrJsKm [y = b] in the original program.

Our encoding casts independence as a relational property between a program s and its
self-composition s1; s2, a property which can be directly expressed in pRHL:

∀a ∈ A, b ∈ B. � s ∼ s1; s2 : φ =⇒ (x〈1〉 = a ∧ y〈1〉 = b) ⇐⇒ (x1〈2〉 = a ∧ y2〈2〉 = b)

where the precondition φ captures the initial conditions. We show that our approach extends to
independence and conditional independence of sets of program variables.

Outline Section 22 and Section 33 provide the relevant mathematical background and introduce
the setting of our work. Section 44, Section 55 and Section 66 respectively address the case of
uniformity, independence, and conditional independence. In each case we demonstrate our
method using classic examples of randomized algorithms. We conclude the paper with a
discussion of alternative techniques for verifying these properties.

2 Mathematical Background
For the sake of simplicity, we restrict ourselves to discrete (countable) sub-distributions.

Definition 1. A sub-distribution over a set A is defined by a mass function µ : A→ R+, which
gives the probability of the unitary events a ∈ A. This mass function must be s.t.

∑
a∈A µ(a)

is well-defined and its weight satisfies |µ| 4=
∑
a∈A µ(a) ≤ 1. In particular, the support of the

sub-distribution supp(µ)
4
= {a ∈ A | µ(a) 6= 0} is discrete. When |µ| is equal to 1, we call µ a

distribution. We let D(A) denote the set of sub-distributions over A. An event over A is a
predicate over A. The probability of an event E in a sub-distribution µ, written Prx∼µ [E], is
defined as

∑
{x∈A|E(x)} µ(x).

When working with sub-distributions over tuples, the probabilistic versions of the usual
projections on tuples are called marginals. For distributions over pairs, we define the first and
second marginals π1(µ) and π2(µ) of a distribution µ over A× B by π1(µ)(a)

4
=
∑
b∈B µ(a, b)

and π2(µ)(b)
4
=
∑
a∈A µ(a, b). We are now ready to formally define coupling.

Definition 2. Let A1 and A2 be two sets, and let Ψ ⊆ A1 × A2. A Ψ-coupling for two
sub-distributions µ1, µ2 resp. over A1 and A2 is a sub-distribution µ ∈ D(A1 × A2) such that
π1(µ) = µ1 and π2(µ) = µ2 and supp(µ) ⊆ Ψ. We write JΨ 〈µ1 & µ2〉 to denote the existence
of a Ψ-coupling.

In addition to the general definition, we shall also consider a special case of coupling:
specifically, we say that (µ1, µ2) are f -coupled if f : A1 → A2 is a bijection such that µ1(x) =
µ2(f(x)) for every x ∈ A1. In this case, we write f J 〈µ1 & µ2〉.

3



Uniformity and independence by couplings G. Barthe, T. Espitau, B. Grégoire, J. Hsu, P.-Y. Strub

Previous works establish a number of basic facts about couplings, see e.g. Barthe et al. [11, 55],
In particular, one useful consequence of couplings is that they can show that one event has
smaller probability than another.

Lemma 3 (Fundamental lemma of coupling). Let E1 and E2 be predicates over A1 and A2, and
let Ψ

4
= {(x1, x2) | (x1 ∈ E1)⇒ (x2 ∈ E2)}. If JΨ 〈µ1 & µ2〉, then Prx1∼µ1

[E1] ≤ Prx2∼µ2
[E2].

One can immediately derive a variant of the lemma where ⇐⇒ and = are used in place of
⇒ and ≤ respectively. The following lemma provides a converse to the fundamental lemma of
coupling in the special case where we are interested in proving the equality of two distributions.

Lemma 4. For every µ1, µ2 ∈ D(A), the following are equivalent:

• µ1 = µ2;

• for every a ∈ A, Prx∼µ1 [x = a] = Prx∼µ2 [x = a];

• for every a ∈ A, JΨa 〈µ1 & µ2〉 where Ψa
4
= {(x1, x2) | x1 = a ⇐⇒ x2 = a};

• JΨA 〈µ1 & µ2〉 where ΨA
4
= {(x1, x2) | x1 = x2}.

We note that the third item (existence of liftings for pointwise equality) is often easier to
establish than the last item (existence of lifting for equality), since one can choose the coupling
for each possible value of a, rather than showing a single coupling for all values of a.

3 Setting
We will work with a simple probabilistic imperative language. Probabilistic assignments are of
the form x $← g, which assigns a value sampled according to the distribution g to the program
variable x. The syntax of statements is defined by the grammar:

s ::= skip | abort | x← e | x $← g | s; s | if e then s else s | while e do s

where x, e and g respectively range over (typed) variables in X , expressions in E and distributions
in D. To ensure that the set of states is countable, we require that there are finitely many
variables X . As usual E is defined inductively from X and a set F of simply typed function
symbols. In this paper, distributions used for sampling are either uniform distributions over a
finite type A, or the Bernoulli distribution with parameter p, which we denote by Bern(p). We
assume that expressions and statements are typed in the usual way.

We assume we are given a set-theoretical interpretation for every type and operator of the
language. We define a state as a type-preserving mapping from variables to values, and we let
State denote the set of states. The set of states is equipped with the usual functions for reading
and writing a value; we use m(x) to denote the value of x in m, and m[x := v] to denote state
update, in this case the state obtained from m by updating the value of x with v.

One can equip D(State) with a monadic structure, using the Dirac distributions δx for the
unit and distribution expectation Ex∼µ[M(x)] for the bind, where

Ex∼µ[M(x)] : x 7→
∑
a

µ(a) ·M(a)(x).

The semantics of expressions and distribution expressions is parametrized by a state m, and
is defined in the usual way where we require all distribution expressions to be interpreted as
proper distributions (sub-distributions with weight 1).
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JskipKm = δm JabortKm = 0

Jx← eKm = δm[x:=JeKm] Jx $← gKm = Ev∼JgKm[δm[x:=v]]

Js1; s2Km = Eξ∼Js1Km [Js2Kξ]
Jif e then s1 else s2Km = if JeKm then Js1Km else Js2Km

Jwhile b do sKm = lim
n→∞

J(if b then s)
[n]

; if b then abortKm

where s[n] ,
n times︷ ︸︸ ︷
s; . . . ; s.

Figure 1: Denotational semantics of programs

Definition 5 (Semantics of statements).

• The semantics JsKm of a statement s w.r.t. to some initial state m is a sub-distribution
over states, and is defined by the clauses of Fig. 11.

• The (lifted) semantics JsKµ of a statement s w.r.t. to some initial sub-distribution µ over
states is a sub-distribution over states, and is defined as JsKµ , Em∼µ[JsKm] µ ∈ D(State).

A basic and highly important property of probabilistic programs is termination. We say
that a program s is lossless if for every initial memory m, |JsKm| = 1. By now, there are
many sophisticated techniques for proving losslessness even for languages that allow both
probabilistic sampling and non-determinism (including recent advances by Chatterjee et al.
[1010, 1111], Ferrer Fioriti and Hermanns [1414]). These techniques are capable of showing losslessness
for all of our examples (in some cases with a high degree of automation), so throughout the
paper, we assume that all programs are lossless. This assumption is used in the rules of pRHL
and the characterizations of uniformity and independence.

3.1 Self-Composition of Programs
For every program s and n ∈ N, we let s〈n〉 denote the n-fold self-composition of s, i.e.
s〈n〉

4
= s1; . . . , sn, where each sı is a copy of s where all variables are tagged with a superscript ı.

In order to state the main property of self-composition, we define the self-composition of a state;
given a state m, we define its n-fold self-composition m〈n〉 as the state from X 〈n〉 to values,
where X 〈n〉 4= {xı | x ∈ X , 1 ≤ ı ≤ n} such that for every x and ı, m〈n〉(xı) 4= m(x). Given a
state m from X 〈n〉, we denote by mı the ı-th projection of m.

Proposition 6. For every program s and state m, we have

PrJs〈n〉K
m〈n〉

[∧1≤ı≤nE
ı
ı ] =

∏
1≤ı≤n

PrJsKm [Eı]

where the event Eı is defined by Eı(m′〈n〉) 4= E(πı(m
′)) for every ı and πı is the projection from

a self-composed state to its ı-th component.

3.2 Probabilistic Relational Hoare Logic
Probabilistic Relational Hoare Logic (pRHL) is a program logic for reasoning about relational
properties of probabilistic programs. Its judgments are of the form � s1 ∼ s2 : φ =⇒ ψ,
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where s1 and s2 are commands and the pre-condition φ and the post-condition ψ are relational
assertions, i.e. first-order formulae built over generalized expressions. The latter are similar to
expressions, except that each variable is tagged with 〈1〉 or 〈2〉 to indicate the execution that it
belongs to; we call the two executions left and right. Generalized expressions are interpreted
w.r.t. a pair (m1,m2) of states, where the interpretation of the tagged variables x〈1〉 and x〈2〉
are m1(x) and m2(x) respectively. We write (m1,m2) � φ to denote that the interpretation of
the assertion φ w.r.t. (m1,m2) is valid.

Definition 7. A judgment � s1 ∼ s2 : φ =⇒ ψ is valid iff for every states m1 and m2,
(m1,m2) � φ implies J{(m′1,m′2)|(m′1,m′2)�ψ} 〈Js1Km1 & Js2Km2〉.

Fig. 22 presents the main rules of the logic; see Barthe et al. [11, 77] for the full system. The
logic includes two-sided rules, which operate on both programs, and one-sided rules, which
operate on a single program (left or right).

The [Conseq] rule is the rule of consequence, and reflects that validity is preserved by
weakening the post-condition and strengthening the pre-condition. The [Case] rule allows
proving a judgment by case analysis; specifically, the validity of a judgment with pre-condition Φ
can be established from the validity of two judgments, one where the pre-condition is strengthened
with Ξ and the other where the pre-condition is strengthened with ¬Ξ.

The [Struct] rule allows replacing programs by provably equivalent programs. The rules
for proving program equivalence are given in Fig. 33, and manipulate judgments of the form
Φ ` c ≡ c′, where Φ is a relational assertion. The first rule ([While-Split]) splits a single loop
into two loops (the first running while e′ is true, and the second running for the remaining
iterations); this transformation is useful for selecting different couplings in different program
iterations. The second rule ([Swap]) reorders two instructions, as long as they modify disjoint
variables. This allows us to couple sampling instructions that may come from two different parts
of the two programs.

Moving on to the two-sided rules, the [Seq] rule for sequential composition simply reflects the
compositional property of couplings. The [Assg] rule is standard. The [Rand] rule informally
takes a coupling between the two distributions used for sampling in the left and right programs,
and requires that every element in the support of the coupling validates the post-condition. The
rule is parametrized by a bijective function f from the domain of the first distribution to the
domain of the second distribution. This bijection gives us the freedom to specify the relation
between the two samples when we couple them. The [Cond] rule states that two synchronized
if statements can related if their respective branches are also related. The [While] rule is the
standard while rule adapted to pRHL. Note that we require the guard of the two commands
to be equal—so in particular the two loops must make the same number of iterations—and Φ
plays the role of the while loop invariant as usual.

The one-sided rules Assg-L, Rand-L, Cond-L and While-L are similar two their two-sided
variant, but only operate on the left program. The full system includes mirrored versions of
each one-sided rule, for reasoning about the right program.

Throughout the paper, we often assert that the left and the right copies of a state are equal.
This is captured by the relational assertion EqMem

4
=
∧
x∈X x〈1〉 = x〈2〉. We also often assert

cross-equality on n-fold composition of states EqMem〈p〉,〈q〉
4
=
∧
x∈X ,1≤ı≤p,1≤≤q x

ı〈1〉 = x〈2〉.

4 Uniformity
Reasoning about probabilistic programs often requires establishing that a set of program variables
(each ranging over a finite type) is uniformly distributed:
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Conseq

� s1 ∼ s2 : Φ =⇒ Ψ
Φ′ =⇒ Φ Ψ =⇒ Ψ′

� s1 ∼ s2 : Φ′ =⇒ Ψ′
Struct

� s1 ∼ s2 : Φ =⇒ Ψ
Φ ` s1 ≡ s′1 Φ ` s2 ≡ s′2
� s′1 ∼ s′2 : Φ =⇒ Ψ

Case

� s1 ∼ s2 : Φ ∧ Ξ =⇒ Ψ
� s1 ∼ s2 : Φ ∧ ¬Ξ =⇒ Ψ

� s1 ∼ s2 : Φ =⇒ Ψ
Seq

� s1 ∼ s2 : Φ =⇒ Ξ
� s′1 ∼ s′2 : Ξ =⇒ Ψ

� s1; s′1 ∼ s2; s′2 : Φ =⇒ Ψ

Assg
Φ
4
= Ψ[e1〈1〉/x1〈1〉, e2〈2〉/x2〈2〉]

� x1 ← e1 ∼ x2 ← e2 : Φ =⇒ Ψ
Rand

f J 〈g1 & g2〉
Φ
4
= ∀v.Ψ[v/x1〈1〉, f(v)/x2〈2〉]

� x1
$← g1 ∼ x2

$← g2 : Φ =⇒ Ψ

Cond

Φ =⇒ e1 = e2

� s1 ∼ s2 : Φ ∧ e1 =⇒ Ψs � s′1 ∼ s′2 : Φ ∧ ¬e1 =⇒ Ψs′

� if e1 then s1 else s
′
1 ∼ if e2 then s2 else s

′
2 : Φ =⇒ Ψ

While
� s1 ∼ s2 : Ψ ∧ e1〈1〉 ∧ e2〈2〉 =⇒ Ψ ∧ e1〈1〉 = e2〈2〉

� while e1 do s1 ∼ while e2 do s2 : Ψ ∧ e1〈1〉 = e2〈2〉 =⇒ Ψ ∧ ¬e1〈1〉 ∧ ¬e2〈2〉

Assg-L
Φ
4
= Ψ[e1〈1〉/x1〈1〉]

� x1 ← e1 ∼ skip : Φ =⇒ Ψ
Rand-L

Φ
4
= ∀v1 ∈ supp(g1),Ψ[v1/x1〈1〉]
� x1

$← g1 ∼ skip : Φ =⇒ Ψ

Cond-L

� s1 ∼ s2 : Φ ∧ e1〈1〉 =⇒ Ψ
� s′1 ∼ s2 : Φ ∧ ¬e1〈1〉 =⇒ Ψ

� if e1 then s1 else s
′
1 ∼ s2 : Φ =⇒ Ψ

While-L
� s1 ∼ skip : Ψ ∧ e1〈1〉 =⇒ Ψ

� while e1 do s1 ∼ skip : Ψ =⇒ Ψ ∧ ¬e1〈1〉

Figure 2: Proof rules (selection)

While-Split
Φ ` while e do s ≡ while e ∧ e′ do s;while e do s

Swap
var(s1) ∩ var(s2) = ∅
Φ ` s1; s2 ≡ s2; s1

Figure 3: Equivalence rules (selection)
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Definition 8. A set X = {x1, . . . , xn} of program variables of finite types A1, . . . , An is
uniformly distributed in a distribution µ ∈ D(State) iff for every (a1, . . . , an) ∈ A1 × . . .×An:

Prµ

 ∧
1≤i≤n

xi = ai

 =
∏

1≤i≤n

1

|Ai|

Note that the definition of uniformity (and as we will see in later sections, the definition of
independence) naturally extends to sets of expressions, and so do our characterizations.

4.1 Characterization
The following proposition characterizes uniformity in terms of couplings.

Proposition 9 (Uniformity by coupling). Let X = {x1, . . . , xn} be a set of variables of respective
finite types A1, . . . , An. For every program s, the following are equivalent:
1. for every state m, X is uniformly distributed in JsKm;
2. for every two tuples (a1, . . . , an), (a′1, . . . , a

′
n) ∈ A1 × · · · ×An, we have

� s ∼ s : EqMem =⇒

 ∧
1≤i≤n

xi〈1〉 = ai

 ⇐⇒
 ∧

1≤i≤n

xi〈2〉 = a′i

.
Proof. [1.⇒ 2.] Let m be a memory and assume that X is uniformly distributed in JsKm. Let
(a1, . . . , an), (a′1, . . . , a

′
n) ∈ A1×· · ·×An. We denote by f : State→ State the bijection defined

by 
f(m) = m[xi ← a′i]1≤i≤n if ∀i.m[xi] = ai

f(m) = m[xi ← ai]1≤i≤n if ∀i.m[xi] = a′i

f(m) = m otherwise.

Let η ∈ D(State×State) be the distribution defined by η(m1,m2) = JsKm(m1) if m2 = f(m1),
and η(m1,m2) = 0 otherwise. We prove that η is a Ψ-coupling for JsKm, where

ψ
4
=
(∧

1≤i≤n xi〈1〉 = ai

)
⇐⇒

(∧
1≤i≤n xi〈2〉 = a′i

)
.

Regarding the marginals, we have:

π1(η)(m1) =
∑
m2

η(m1,m2) = η(m1, f(m1)) = JsKm(m1)

π2(η)(m2) =
∑
m1

η(m1,m2) = η(f−1(m2),m2) = JsKm(f−1(m2))

= JsKm(f(m2)) = JsKm(m2),

the last equality being a consequence of X being uniformly distributed in JsKm. Moreover, for
(m1,m2) ∈ supp(η), we have m2 = f(m1). Thus, m1[xi] = ai iff m2[xi] = a′i, and m1,m2 |= Ψ.
[2.⇒ 1.] Let (a1, . . . , an), (a′1, . . . , a

′
n) ∈ A1×· · ·×An and assume that � s ∼ s : EqMem =⇒ Ψ,

where Ψ is defined as in the previous case. Since m,m |= EqMem, by Lemma 33 we have:

PrJsKm

[∧
1≤i≤n xi = ai

]
= PrJsKm

[∧
1≤i≤n xi = a′i

]
,

showing that X is uniform in JsKm.

8
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By expressing uniformity as a coupling property, we can use pRHL to prove uniformity.
To demonstrate the technique, we consider classical examples from the theory of randomized
algorithms.

4.2 Simulating a Fair Coin

x← 0;
y ← 0;
while x = y do
x $← Bern(p);
y $← Bern(p);

Figure 4: Bernoulli uniformizer

This example considers a process for simulating a fair coin
using a biased coin. The idea is simple: 1) toss the coin
twice; 2) if the two outcomes differ, return the value of the
first coin; 3) if the two outcomes match, repeat from step
1. The algorithm does not require the bias of the coin to
be known, as long as it is some constant bias and there is
positive probability of returning 0 and 1. This process can
be modelled by the program s from Fig. 44, where 0 < p < 1
is a real parameter modeling the probability of the biased
coin to return 0 (tail). Our goal is to establish the trivial

judgment {>} s {>} and the following pRHL judgment:

� s ∼ s : > =⇒ x〈1〉 ⇐⇒ ¬x〈2〉

By the fundamental lemma of coupling, this implies that PrJsKm [x = 1] = PrJsKm [x = 0], and
hence that x is uniformly distributed upon termination. The proof proceeds by establishing the
following invariant:

x〈2〉 = if x〈1〉 = y〈1〉 then y〈2〉 else ¬x〈1〉

Validity of the invariant entails that the desired postcondition holds when the program exits, as
the invariant and the negation of the loop guard both hold. The invariant holds when entering
the loop, so we only need to prove that it is preserved by the loop body. The proof proceeds as
follows: first, we swap the two random assignments on the right, leading to the judgment:

� (x $← Bern(p); y $← Bern(p)) ∼ (y $← Bern(p); x $← Bern(p)) : φ′ =⇒ φ

where φ denotes the loop invariant and φ′ denotes its strengthening by the loop guard—we do
not need the precondition, since the values are freshly sampled in the body. Next, we apply the
[Rand] rule twice, with the identity bijection. The required pre-condition

∀v1, v2, v2 = (if v1 = v2 then v1 else ¬v1)

is clearly true.

4.3 Cyclic Random Walk

Consider a random walk over a cyclic path composed of n nodes labeled 0, 1, . . . , n− 1: starting
from position 0, at each step, we flip a fair coin over {−1, 1} and update the position accordingly
to the result of the coin flip. To take into account that we are on a cyclic structure, all
arithmetical operations are in the cyclic ring Z/nZ—i.e. are performed modulo n. At each
iteration, when moving between two contiguous positions over the circle, we consider that the
random walk visited the arc between the two nodes. We want to show that the last visited arc is
uniformly distributed. Fig. 55 (left) gives a graphical representation of the random walk, where c
is the random walk position and the dashed arc is the last visited arc when c moved from 0 to 1.

9
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0

n−1f

1

2

l

c

d← 0; c← 0; f ← 0; l← 0;
while l + 1 ≤ f do
d $← U{−1,1};
if c = l ∧ d = 1 then l← l + 1;
if c = f ∧ d = −1 then f ← f − 1;
c← c+ d;

ret← (l, l + 1)

Figure 5: Cyclic random walk

sync’ed anti-sync’ed

a, l

f

a+1

c

b, l

f

b+1

c

a

l

a+1, f

c

b, l

f

b+1

c

This process can be seen as a simple version of an
algorithm that samples a uniformly random spanning tree
on a graph—when the graph is a cycle, a spanning tree
visits all but one of the edges. While Broder [88] analyzes
the general problem, we can verify uniformity for the
cyclic random walk with couplings.

The proof proceeds as follows. We imagine executing
two random walks, from the same initial position. The
goal is to couple the walks so that (a, a + 1) is the last
arc in the first walk if and only if (b, b+ 1) is the last arc
in the second walk. If we can show this property for all
a, b, then this coupling argument shows that any two arcs
have the same probability of being the last arc, hence the

last arc must be uniformly distributed.

case (i) case (ii)

a, l

a+1, f

b, l

b+1
f

a, f

l

a+1

b

f

b+1
l

To describe the coupling informally, we first execute
asynchronously the two random walks until they eventu-
ally synchronize respectively on the arcs (a, a+ 1) and
(b, b + 1). At that point, we are in one of the follow-
ing cases: either the random walks synchronize on the
same side of the arcs (a, a + 1) and (b, b + 1), or they
synchronize on opposite sides. (These cases are depicted
on the left diagrams above, where the arc we want to
synchronize on is dashed.) From that point, we execute
the two processes resp. in lock-step (if they synchronized
on the same side) or anti-lock-step (if they did not).

At some point, both processes will visit the other side
of the arcs (a, a+1) and (b, b+1), and since they execute
in (anti)-lock-step, these events will occur synchronously.
At that point, either the processes finished their walk and they resp. return the arcs (a, a+ 1)
and (b, b+ 1) as their result (case (i) of the right diagram above), or they have other nodes to
visit and so they will not resp. return the arcs (a, a + 1) and (b, b + 1) (case (ii) of the same
diagram).

We now detail the formal proof. Consider the program of Fig. 55, where all arithmetical
operations are done modulo n. This algorithm instruments the random walk with two points f
and l representing the range [f, l] (using clockwise ordering) of all the points that have been
visited by the walk. When all nodes of the cycle have been visited (i.e. when l + 1 = f), the
arc between l and l + 1 is the only arc that has not been visited by the walk. Let s be the

10
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program of Fig. 55 and s′ the loop body of the single loop of s. We want to show that the final
arc ret—the only arc that has not been marked—is uniformly distributed among all arcs. This
follows by the judgment:

∀a, b ∈ Z/nZ, � s ∼ s : > =⇒ ret〈1〉 = (a, a+ 1) ⇐⇒ ret〈2〉 = (b, b+ 1).

First, we make use of the loop splitting equivalence rule ([While-Split]) to transform the
main loop into three pieces. In the left program:

while (|v| < n ∧ a, a+ 1 /∈ [f, l]) do s′;
while (|v| < n ∧ ¬(a, a+ 1 ∈ [f, l])) do s′;
while (|v| < n) do s′

where [f, l] represent the range f, f + 1, . . . , l. We use a similar transformation on the right
program, with b in place of a. To carry out the proof, we first use the one-sided loop rules
([While-L] and the corresponding version [While-R]) on the first loops of the left and right
programs. This part of the proof correspond to the walks synchronization as described above.
By a straightforward loop invariant, we can show that

Φ ∧ P (a)〈1〉 ∧ P (b)〈2〉

holds after the first loops, where P (x)
4
= (x ∈ [f, l]⊕ (x+ 1) ∈ [f, l]) and Φ

4
= ∀i ∈ {1, 2}. (c ∈

[f, l])〈i〉 indicates that the current positions (c〈1〉, c〈2〉) are contained in the range of visited
arcs. Next, we show that after the two second loops the following relational invariant is satisfied:

(a, a+ 1 ∈ [f, l])〈1〉 ∧ (b, b+ 1 ∈ [f, l])〈2〉 ∧ (l〈1〉 = a ⇐⇒ l〈2〉 = b)

After the second loop, there are two cases for the third loop. If l〈1〉 = a, we have l〈2〉 = b,
f〈1〉 = a+ 1 (since a+ 1 is visited in 〈1〉) and f〈2〉 = b+ 1. In this case, which corresponds to
the case (i) of the last diagram, the third loops both exit immediately and the random walks
resp. return the arcs (a, a+ 1) and (b, b+ 1). Otherwise, we have l〈1〉 6= a and l〈2〉 6= b, and we
can show, using the rules [While-L] and [While-R], that l〈1〉 (resp. l〈2〉) will never be set to a
(resp. b). In this case, which corresponds to the case (ii) of the last diagram, we can show that
the walks resp. return arcs distinct from (a, a+ 1) and (b, b+ 1).

We now focus on the second loops, relating them with the two-sided variant of the [While]
rule. The particular coupling we choose will depend on the current positions in the two sides at
the start of the second loops. If a ∈ [f, l]〈1〉 and b ∈ [f, l]〈2〉 then we have l〈1〉 = a and l〈2〉 = b
(since a+ 1 /∈ [f, l]〈1〉) and we couple the walks to make identical moves. In that case, the key
part of the loop invariant is:

∧
Φ ∧ (a ∈ [f, l])〈1〉 ∧ (b ∈ [f, l])〈2〉

c〈1〉 − a = c〈2〉 − b
l〈1〉 = a ⇐⇒ l〈2〉 = b


The first line enforces some structural invariant and the second line enforces that both walks
make identical moves relative to a and b. The main difficulty is to show that both loops are
synchronized. Note that there are two reasons the loop may exit. If l has been incremented,
then the increment will be done on both side. Otherwise, if f has been decremented to a+ 1,
then we have c〈1〉 = f〈1〉 = a + 2, so c〈1〉 − a = c〈2〉 − b = 2 and c〈2〉 = b + 2 and the right
loop will also decrement f to b+ 1. The case a+ 1 ∈ [f, l]〈1〉 and b+ 1 ∈ [f, l]〈2〉 is very similar,
by reversing the roles of f and l. The remaining two cases, a + 1 ∈ [f, l]〈1〉 and b ∈ [f, l]〈2〉
or a ∈ [f, l]〈1〉 and b + 1 ∈ [f, l]〈2〉 is similar except that we force the walks to be execute in
anti-lock-step. Using the rule [Case], we put together these four cases and we conclude by
application of the rule for sequence.

11
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4.4 Ballot Theorem
So far, we have shown how couplings can be used to prove that a set of program variables is
uniformly distributed. Couplings can also be used for showing that two events have the same
probability, such as in the following example.

Example 10 (Ballot Theorem). Assume that voters must choose between two candidates A and
B. The outcome of the vote is nA votes for A and nB votes for B, with nA > nB. Assuming
that the order in which the votes are cast is uniformly random, the probability that A is always
strictly ahead in partial counts is (nA−nB)/(nA+nB).

The process can be formalized by the program from Fig. 66. Here we use the list l to store
intermediate results. Using li to denote the i-th element of the list l, the Ballot Theorem is
captured by the statement:

∀nA, nB .nA > nB =⇒ PrJsKm

 ∧
1≤i≤n

li 6= 0

∣∣∣∣∣∣ xA = nA ∧ xB = nB

 =
nA − nB
nA + nB

.

r ← 0;xA ← 0;xB ← 0; l← ε;
while |l| ≤ n do
r $← {A,B};
if r = A then ;
xA ← xA + 1;

else
xB ← xB + 1;

l← l :: (xA − xB)

Figure 6: Ballot theorem

There exist many proofs of the Ballot Theorem; we
formalize a proof that is sometimes called Andre’s reflection
principle. The crux of the method is a coupling proof of the
following fact: “bad” sequences starting with a vote to the
loser are equi-probable with “bad” sequences starting with
a vote to the winner, where a sequence of votes is “bad”
if there is a tie at some point in the partial counts. Let
φ
4
= (
∨

1≤i≤n li = 0) and ψ 4
= xA = nA ∧ xB = nB. The

above facts are captured by the pRHL judgment (universally
quantified over nA and nB such that nA > nB): � s ∼
s : > =⇒ ξ where

ξ
4
= (l1 · ln > 0 ∧ φ ∧ ψ)〈1〉 ⇐⇒ (l1 · ln < 0 ∧ φ ∧ ψ)〈2〉.

It follows from the properties of coupling that for every nA and nB such that nA > nB,
PrJsKm [l1 · ln > 0 ∧ φ ∧ ln = k] = PrJsKm [l1 · ln < 0 ∧ φ ∧ ln = k]. In terms of conditional prob-
abilities, we have PrJsKm [l1 · ln > 0 ∧ φ | ψ] = PrJsKm [l1 · ln < 0 ∧ φ | ψ]. Now observe that
any sequence that starts with a vote to B (i.e. the loser) is necessarily bad. Therefore,
PrJsKm [l1 · ln < 0 ∧ φ | ψ] = PrJsKm [l1 · ln < 0 | ψ]. By the above and elementary properties
of conditional independence:

PrJsKm [φ | ψ] = PrJsKm [l1 · ln > 0 ∧ φ | ψ] + PrJsKm [l1 · ln < 0 ∧ φ | ψ]

= 2 · PrJsKm [l1 · ln < 0 | ψ] .

Note that the probability in the right-hand side of the last equation represents the probability
that the first vote goes to the loser, conditional on ψ. This turns out to be exactly nB

nA+nB
, so

we conclude that PrJsKm [φ | ψ] = 2 · nB
nA+nB

or equivalently PrJsKm [¬φ | ψ] = nA−nB
nA+nB

as desired.
We now turn to the proof of the pRHL judgments. By symmetry it suffices to consider the first

judgment. Using the rule of consequence and the elimination rule for universal quantification, it
suffices to prove for every i:

� s ∼ s : > =⇒ l1〈1〉 · ln〈1〉 > 0 ∧ li〈1〉 = 0 ∧ ψ〈1〉 ⇒ l1〈2〉 · ln〈2〉 < 0 ∧ li〈2〉 = 0 ∧ ψ〈2〉

12
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We couple the samplings of x using the negation function until |l| = i, and then with the identity
bijection. This establishes the following loop invariant, from which we can conclude:

(∀j ≤ i. lj〈1〉 = −lj〈2〉) ∧ li〈1〉 = li〈2〉 = 0 ∧ (∀j > i. lj〈1〉 = lj〈2〉).

5 Independence
We now turn to characterizing probabilistic independence using couplings. We focus on proba-
bilistic independence of program variables, a common task when reasoning about randomized
computations. In our setting, the textbook definition of probabilistic independence can be cast
as follows:

Definition 11. A set X = {x1, . . . , xn} of program variables of types A1, . . . , An is probabilis-
tically independent in a distribution µ ∈ D(State) iff for every (a1, . . . , an) ∈ A1 × . . .×An:

Prµ

 ∧
1≤i≤n

xi = ai

 =
∏

1≤i≤n

Prµ [xi = ai] .

5.1 Characterization
Our first characterization of independence is based on the observation that uniformity entails
independence.

Fact 12 (Independence from uniformity). From every state m, if X is uniformly distributed in
JsKm then X is independent in JsKm.

This observation enables proving independence by coupling, in the special case where variables
are uniform and independent. For the general case, we will use an alternative characterization
based on self-composition.

Proposition 13 (Independence by coupling). The following are equivalent:
1. for every state m, X is independent in JsKm;
2. the following judgment, between a single copy of the program on the one hand and a n-fold

copy on the other hand, is derivable for every (a1, . . . , an) ∈ A1 × . . .×An:

� s ∼ s〈n〉 : EqMem〈1〉,〈n〉 =⇒
∧

1≤i≤n

xi〈1〉 = ai ⇐⇒
∧

1≤i≤n

xii〈2〉 = ai.

Proof. The validity of the universally quantified pRHL judgment is equivalent to the following
statement: for every a1, . . . , an and n-fold copy m〈n〉 of some initial state m,

PrJsKm

 ∧
1≤i≤n

xi = ai

 = PrJs〈n〉K
m〈n〉

 ∧
1≤i≤n

xii = ai

 =
∏

1≤i≤n

PrJsKm [xi = ai] .

The last equality comes from the property of n-fold self-composition (Proposition 66).

5.2 Pairwise Independence of Bits
Our first example is a well-known algorithm for generating 2n pairwise independent bits.
The algorithm first samples n independent bits b1 . . . bn, and then defines for every subset
X ⊆ {1, . . . , n} the bit zX =

⊕
i∈X bi.

13
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for i = 1 to n do
bi $← {0, 1};

for j = 0 to 2n − 1 do
zj ←

⊕
k∈bits(j) bk;

Figure 7: Pairwise independence

We can prove pairwise independence of the computed
bits, i.e. for every X 6= Y , zX and zY are independent.
Since there are 2n subsets of {1, . . . , n}, this gives us 2n

pairwise independent bits constructed from n independent
bits. The algorithm is encoded by the program s in Fig. 77,
where bitsmaps {0, . . . , 2n−1} to a subset in P({1, . . . , n})
of positions that are 1 in the binary representation, and
for i = a to bdo s is usual syntactic sugar for while loop
with an incrementing counter i.

By our characterization based on self-composition, pairwise independence of zj and zj′ for
every j 6= j′ is equivalent to the (universally quantified) pRHL judgment

� s ∼ s1; s2 : > =⇒ zj〈1〉 = a ∧ zj′〈1〉 = a′ ⇐⇒ z1
j 〈2〉 = a ∧ z2

j′〈2〉 = a′.

Since j 6= j′, the two sets bits(j) and bits(j′) must differ in at least one element. Let k0 be the
smallest element in which they differ. Without loss of generality, we can assume that k0 /∈ bits(j)
and k0 ∈ bits(j′). The crux of the proof is to establish the following judgment:

� sl ∼ sr : > =⇒ z〈1〉 = a ∧ z′〈1〉 = a′ ⇐⇒ z〈2〉 = a ∧ z′′〈2〉 = a′

where z =
⊕

k∈bits(j) bk, z
′ =

⊕
k∈bits(j′) bk and z′′ =

⊕
k∈bits(j′) b

′
k and

sl
4
= for i ∈ [1 . . . n] \ k0 do bi $← {0, 1}; bk0 $← {0, 1}

sr
4
= for i ∈ [1 . . . n] \ k0 do (bi $← {0, 1}; b′i $← {0, 1}); bk0 $← {0, 1}; b′k0 $← {0, 1}.

This is proved by coupling the variables of the two programs in an appropriate way. We couple
the random samplings as follows:

• for every k 6= k0, we couple bk〈1〉 and bk〈2〉 using the identity sampling;
• we use the Rnd-R rule for b′k〈2〉 for every k 6= k0;
• we couple bk0〈1〉 and b′k0〈2〉 with the bijection which ensures

bk0〈1〉 ⊕

 ⊕
k∈bits(j′)\{k0}

bk〈1〉

 = b′k0〈2〉 ⊕

 ⊕
k∈bits(j′)\{k0}

b′k〈2〉

 .

Putting everything together, the final proof obligation follows from the algebraic properties of
⊕.

5.3 k-wise Independence
The previous example can be generalized to achieve k-wise independence for general k. Suppose
we wish to generate n random variables that are k-wise independent. We will work in Z/pZ,
the field of integers modulo a prime p, such that k ≤ p. Let a0, . . . , ak−1 be drawn uniformly at
random from Z/pZ and define the family of random variables for every m ∈ {1, . . . , n}:

xm =

k−1∑
j=0

aj ·mj ,

where we take 00 = 1 by convention. The corresponding code is given in Fig. 88. Then, we can
show that any collection of k distinct variables {xi}i is independent.
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for i = 1 to n do
ai $← Z/pZ;

form = 0 to n− 1 do
xm ← 0;
for j = 0 to k − 1 do
xm ← aj ·mj ;

Figure 8: k-wise independence

For simplicity, we will show that the first k ele-
ments x0, . . . , xk−1 are uniform, and hence indepen-
dent. Let v0, . . . , vk−1 ∈ Z/nZ be arbitrary elements
of the field. Then the probability that (x0, . . . , xk−1) =
(v0, . . . , vk−1) is equal to p−k. Indeed, the equations

v0 = a0

...
...

vk−1 =
∑k−1
j=0 aj · (k − 1)j

define a system of linear equations with variables
a0, . . . , ak−1. By basic linear algebra the system of equations has a unique solution for the
variables a0, . . . , ak−1,11 which we denote (v∗0 , . . . , v

∗
k−1). Now consider the pRHL judgment that

establishes uniformity:

� s ∼ s : > =⇒ x0〈1〉 = v0 ∧ · · · ∧ xk−1〈1〉 = vk−1 ⇐⇒ x0〈2〉 = w0 ∧ · · · ∧ xk−1〈2〉 = wk−1

By applying (relational) weakest precondition on the deterministic fragments of the program,
the judgment is reduced to

� s ∼ s : > =⇒ a0〈1〉 = v∗0 ∧ · · · ∧ ak−1〈1〉 = v∗k−1 ⇐⇒ a0〈2〉 = w∗0 ∧ · · · ∧ ak−1〈2〉 = w∗k−1

We then repeatedly apply the rule for random sampling, with the permutation on Z/pZ that
exchanges (v∗i , w

∗
i ).

6 Conditional Independence
Finally, we consider how to show conditional independence. Recall that the conditional proba-
bility Prx∼µ [A | B] is defined when Prx∼µ [B] 6= 0 and satisfies Prx∼µ [A | B]

4
=

Prx∼µ[A∧B]
Prx∼µ[B] .

Definition 14. Let X = {x1, . . . , xn} be a set of program variables of types A1, . . . , An and let
E be an event. We say that X is independent conditioned on E in a distribution µ ∈ D(State)
iff for every (a1, . . . , an) ∈ A1 × . . .×An:

Prµ

 ∧
1≤i≤n

xi = ai

∣∣∣∣∣∣ E
 =

∏
1≤i≤n

Prµ [xi = ai | E] .

(For this definition to make sense, we are implicitly assuming that Prµ [E] 6= 0.)

1Let the Vandermonde matrix V (1, . . . , k − 1) =
(
ij−1

)
i,j

be

V (1, . . . , k − 1) · (a0, . . . , ak−1)
T = (v0, . . . , vk−1)

T .

The system of equations has a unique solution if and only if the matrix V (1, . . . , k − 1) is invertible in the space
of matrices over Z/nZ, which happens if and only if its determinant is non-zero mod n. Expanding,

det(V (1, . . . , k − 1)) =
∏
i 6=j

(i− j) =

k−1∏
i=2

i!

Note that p does not divide the determinant by Gauss’ lemma, since n can’t divide any of the terms i! for any
i < n. Therefore, the system of equations has a unique solution.
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The following lemma unfolds the definition of conditional independence and is useful for the
characterization of the next section.

Lemma 15. A set of variables X is independent conditioned on an event E in µ iff for every
a1 ∈ A1, . . . , an ∈ An:

Prµ

 ∧
1≤i≤n

xi = ai ∧ E

 · (Prµ [E])
n−1

=
∏

1≤i≤n

Prµ [xi = ai ∧ E] .

6.1 Characterization

The characterization of independence based on self-composition can be extended as follows.

Proposition 16 (Conditional independence by coupling). The following are equivalent:

1. for every state m, X is independent conditioned on E in JsKm;

2. � s〈n〉 ∼ s〈n〉 : EqMem〈n〉,〈n〉 =⇒ (φ1 ∧ E〈1〉) ⇐⇒ (φ2 ∧ E〈2〉) where E
4
=
∧

1≤i≤nE
i,

φ1
4
=
∧

1≤i≤n(x1
i 〈1〉 = ai) and φ2

4
=
∧

1≤i≤n(xii〈2〉 = ai).

Proof. The proof is similar to the case of independence (Proposition 1313).

6.2 Example: Conditional Independence

x $← µ;
y $← µ′;
z $← µ′′;
w ← f(x, y);
w′ ← g(y, z);

Figure 9: Conditional indep.

We consider a simple example often used to illustrate Bayesian
networks models. Let x, y, z, w and w′ be random variables,
where x, y and z are sampled from distributions µ, µ′ and µ′′
respectively, and w and w′ are defined by their respective as-
signments. Both w and w′ depend on y, along with independent
sources of randomness, respectively x and z. While w and w′ are
not independent—they share dependence on y—if we condition
on a particular value of y, then w and w′ are independent.

The code of the corresponding program s is given in Fig. 99.
We want to show that w and w′ are independent conditioned on

y = c for every c. Using our characterization based on self-composition, it amounts to proving
the following (universally quantified) pRHL judgment:

� s〈2〉 ∼ s〈2〉 : EqMem〈2〉,〈2〉 =⇒ φ〈1〉 ⇐⇒ ψ〈2〉

where

{
φ
4
= w1 = a ∧ w′1 = b ∧ y1 = c ∧ y2 = c

ψ
4
= w1 = a ∧ w′2 = b ∧ y1 = c ∧ y2 = c.

The proof proceeds by moving the samplings of z1 and z2 in both programs to the front of
the program, and then swapping samplings in the left program (we can use the rule [Swap]
to reorder the instructions, as the sampling instructions for z1 and z2 operate on different
variables). Then, we couple z1〈1〉 to be equal to z2〈2〉, and z2〈1〉 to be equal to z1〈2〉. We apply
the identity coupling to all other random samplings.
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7 Formalization
EasyCrypt [33, 44] is an interactive proof assistant that supports reasoning about (relational)
properties of probabilistic programs, using the pRHL logic. We have applied EasyCrypt to the
main examples of this paper. For uniformity, it suffices to establish the required pRHL judgment;
in contrast, independence via self-composition requires to build the self-composed program,
which we have done manually. The main challenges for the verification are:

1. Restructuring the code of the program to make the rules of the logic applicable; this is
done by applying the equivalent of the [Struct] rules.

2. Discovering and establishing the correct proof invariants. The current version of EasyCrypt
requires that invariants are produced by the users.

3. Building an appropriate coupling, primarily through applying the rule for random samplings
with carefully chosen bijections.

Our examples are formalized in about 1,000 lines of proof script in EasyCrypt.22 The most
complex example, and the one where the three challenges are most pronounced, is the random
walk over a cycle. This example is formalized in about 500 lines of EasyCrypt code, out of which
the statement, including the definition of the program, takes about 50 lines. The remaining 90%
of the formalization covers the notions used in the proof and the proof itself.

8 Conclusion
We have proposed a new method based on probabilistic couplings for formally verifying uniformity
and independence properties of probabilistic programs. Our method complements the existing
range of techniques for probabilistic reasoning, and has many potential applications in program
verification, security, and privacy.
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