J. Bartkova, N. Rezaei, M. Liontos, P. Karakaidos, D. Kletsas et al., Oncogene-induced senescence is part of the tumorigenesis barrier imposed by DNA damage checkpoints, Nature, vol.296, issue.7119, pp.633-640, 2006.
DOI : 10.1016/S0002-9440(10)63393-7

W. Xue, L. Zender, C. Miething, R. Dickins, E. Hernando et al., Senescence and tumour clearance is triggered by p53 restoration in murine liver carcinomas, Nature, vol.98, issue.7128, pp.656-60, 2007.
DOI : 10.1038/nature05529

S. Foster, D. Wong, M. Barrett, and D. Galloway, Inactivation of p16 in Human Mammary Epithelial Cells by CpG Island Methylation, Molecular and Cellular Biology, vol.18, issue.4, pp.1793-801, 1998.
DOI : 10.1128/MCB.18.4.1793

M. Hollstein, D. Sidransky, B. Vogelstein, and C. Harris, p53 mutations in human cancers, Science, vol.253, issue.5015, pp.49-53, 1991.
DOI : 10.1126/science.1905840

D. Jarrard, S. Sarkar, Y. Shi, T. Yeager, G. Magrane et al., p16/pRb pathway alterations are required for bypassing senescence in human prostate epithelial cells, Cancer Res, vol.59, issue.12, pp.2957-64, 1999.

N. Kim, M. Piatyszek, K. Prowse, C. Harley, M. West et al., Specific association of human telomerase activity with immortal cells and cancer, Science, vol.266, issue.5193, pp.2011-2016, 1994.
DOI : 10.1126/science.7605428

J. Shay and S. Bacchetti, A survey of telomerase activity in human cancer, European Journal of Cancer, vol.33, issue.5, pp.787-91, 1997.
DOI : 10.1016/S0959-8049(97)00062-2

J. Bartholomew, D. Volonte, and F. Galbiati, Caveolin-1 Regulates the Antagonistic Pleiotropic Properties of Cellular Senescence through a Novel Mdm2/p53-Mediated Pathway, Cancer Research, vol.69, issue.7, pp.2878-86, 2009.
DOI : 10.1158/0008-5472.CAN-08-2857

B. Bhatia, A. Multani, L. Patrawala, X. Chen, T. Calhoun-davis et al., Evidence that senescent human prostate epithelial cells enhance tumorigenicity: Cell fusion as a potential mechanism and inhibition by p16INK4a and hTERT, International Journal of Cancer, vol.22, issue.7, pp.1483-95, 2008.
DOI : 10.1128/MCB.3.4.523

A. Krtolica, S. Parrinello, S. Lockett, P. Desprez, and J. Campisi, Senescent fibroblasts promote epithelial cell growth and tumorigenesis: A link between cancer and aging, Proceedings of the National Academy of Sciences, vol.57, issue.9, pp.12072-12079, 2001.
DOI : 10.1073/pnas.91.9.3749

URL : http://www.ncbi.nlm.nih.gov/pmc/articles/PMC59769

D. Liu and P. Hornsby, Senescent Human Fibroblasts Increase the Early Growth of Xenograft Tumors via Matrix Metalloproteinase Secretion, Cancer Research, vol.67, issue.7, pp.3117-3143, 2007.
DOI : 10.1158/0008-5472.CAN-06-3452

J. Campisi, J. Andersen, P. Kapahi, and S. Melov, Cellular senescence: a link between cancer and age-related degenerative disease? Semin Cancer Biol, pp.354-363, 2011.
DOI : 10.1016/j.semcancer.2011.09.001

URL : http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3230665

M. Collado, M. Blasco, and M. Serrano, Cellular Senescence in Cancer and Aging, Cell, vol.130, issue.2, pp.223-256, 2007.
DOI : 10.1016/j.cell.2007.07.003

C. Bavik, I. Coleman, J. Dean, B. Knudsen, S. Plymate et al., The Gene Expression Program of Prostate Fibroblast Senescence Modulates Neoplastic Epithelial Cell Proliferation through Paracrine Mechanisms, Cancer Research, vol.66, issue.2, pp.794-802, 2006.
DOI : 10.1158/0008-5472.CAN-05-1716

L. Castro-vega, K. Jouravleva, P. Ortiz-montero, W. Liu, J. Galeano et al., The senescent microenvironment promotes the emergence of heterogeneous cancer stem-like cells, Carcinogenesis, vol.36, issue.10, pp.1180-92, 2015.
DOI : 10.1093/carcin/bgv101

J. Coppe, P. Desprez, A. Krtolica, and J. Campisi, The Senescence-Associated Secretory Phenotype: The Dark Side of Tumor Suppression, Annual Review of Pathology: Mechanisms of Disease, vol.5, issue.1, pp.99-118, 2010.
DOI : 10.1146/annurev-pathol-121808-102144

A. Lasry and Y. Ben-neriah, Senescence-associated inflammatory responses: aging and cancer perspectives, Trends in Immunology, vol.36, issue.4, pp.217-245, 2015.
DOI : 10.1016/j.it.2015.02.009

J. Coppe, C. Patil, F. Rodier, Y. Sun, D. Munoz et al., Senescence-Associated Secretory Phenotypes Reveal Cell-Nonautonomous Functions of Oncogenic RAS and the p53 Tumor Suppressor, PLoS Biology, vol.49, issue.12, pp.2853-68, 2008.
DOI : 10.1371/journal.pbio.0060301.sd018

T. Bachelot, I. Ray-coquard, C. Menetrier-caux, M. Rastkha, A. Duc et al., Prognostic value of serum levels of interleukin 6 and of serum and plasma levels of vascular endothelial growth factor in hormone-refractory metastatic breast cancer patients, British Journal of Cancer, vol.88, issue.11, pp.1721-1727, 2003.
DOI : 10.1038/sj.bjc.6600956

I. Benoy, R. Salgado, P. Van-dam, K. Geboers, E. Van-marck et al., Increased Serum Interleukin-8 in Patients with Early and Metastatic Breast Cancer Correlates with Early Dissemination and Survival, Clinical Cancer Research, vol.10, issue.21, pp.7157-62, 2004.
DOI : 10.1158/1078-0432.CCR-04-0812

H. Knupfer and R. Preiss, Significance of interleukin-6 (IL-6) in breast cancer (review), Breast Cancer Research and Treatment, vol.49, issue.1, pp.129-164, 2007.
DOI : 10.1007/s10549-006-9328-3

C. Yao, Y. Lin, C. Ye, J. Bi, Y. Zhu et al., Role of interleukin-8 in the progression of estrogen receptor-negative breast cancer, Chin Med J (Engl), vol.120, issue.20, pp.1766-72, 2007.

T. Blick, E. Widodo, H. Hugo, M. Waltham, M. Lenburg et al., Epithelial mesenchymal transition traits in human breast cancer cell lines, Clinical & Experimental Metastasis, vol.172, issue.2, pp.629-671, 2008.
DOI : 10.1155/2001/850531

C. Sommers, E. Thompson, J. Torri, R. Kemler, E. Gelmann et al., Cell adhesion molecule uvomorulin expression in human breast cancer cell lines: relationship to morphology and invasive capacities, Cell Growth Differ, vol.2, issue.8, pp.365-72, 1991.

C. Chavey, F. Bibeau, S. Gourgou-bourgade, S. Burlinchon, F. Boissiere et al., Oestrogen receptor negative breast cancers exhibit high cytokine content, Breast Cancer Research, vol.9, issue.1, p.15, 2007.
DOI : 10.1186/bcr1648

URL : https://hal.archives-ouvertes.fr/inserm-00143810

D. Iliopoulos, H. Hirsch, G. Wang, and K. Struhl, Inducible formation of breast cancer stem cells and their dynamic equilibrium with non-stem cancer cells via IL6 secretion, Proceedings of the National Academy of Sciences, vol.17, issue.10, pp.1397-402, 2011.
DOI : 10.1101/gad.1061803

S. Kim, J. Kang, X. Song, B. Kim, Y. Yoo et al., Role of the IL-6-JAK1-STAT3-Oct-4 pathway in the conversion of non-stem cancer cells into cancer stem-like cells, Cellular Signalling, vol.25, issue.4, pp.961-970, 2013.
DOI : 10.1016/j.cellsig.2013.01.007

H. Korkaya, G. Kim, A. Davis, F. Malik, N. Henry et al., Activation of an IL6 Inflammatory Loop Mediates Trastuzumab Resistance in HER2+ Breast Cancer by Expanding the Cancer Stem Cell Population, Molecular Cell, vol.47, issue.4, pp.570-84, 2012.
DOI : 10.1016/j.molcel.2012.06.014

P. Sansone, G. Storci, S. Tavolari, T. Guarnieri, C. Giovannini et al., IL-6 triggers malignant features in mammospheres from human ductal breast carcinoma and normal mammary gland, Journal of Clinical Investigation, vol.117, issue.12, pp.3988-4002, 2007.
DOI : 10.1172/JCI32533DS1

M. Zacarias-fluck, B. Morancho, R. Vicario, L. Garcia, A. Escorihuela et al., Effect of Cellular Senescence on the Growth of HER2-Positive Breast Cancers, JNCI Journal of the National Cancer Institute, vol.107, issue.5, 2015.
DOI : 10.1093/jnci/djv020

Y. Lin, R. Huang, L. Chen, S. Li, Q. Shi et al., Identification of interleukin-8 as estrogen receptor-regulated factor involved in breast cancer invasion and angiogenesis by protein arrays, International Journal of Cancer, vol.88, issue.4, pp.507-522, 2004.
DOI : 10.1016/S0002-9440(10)64005-9

D. Waugh and C. Wilson, The Interleukin-8 Pathway in Cancer, Clinical Cancer Research, vol.14, issue.21, pp.6735-6776, 2008.
DOI : 10.1158/1078-0432.CCR-07-4843

J. Singh, B. Simoes, S. Howell, G. Farnie, and R. Clarke, Recent advances reveal IL-8 signaling as a potential key to targeting breast cancer stem cells, Breast Cancer Research, vol.72, issue.24 Suppl, p.210, 2013.
DOI : 10.1186/bcr3436

URL : http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3978717

E. Charafe-jauffret, C. Ginestier, F. Iovino, J. Wicinski, N. Cervera et al., Breast Cancer Cell Lines Contain Functional Cancer Stem Cells with Metastatic Capacity and a Distinct Molecular Signature, Cancer Research, vol.69, issue.4, pp.1302-1315, 2009.
DOI : 10.1158/0008-5472.CAN-08-2741

URL : https://hal.archives-ouvertes.fr/hal-01431954

Z. Hartman, G. Poage, P. Hollander, A. Tsimelzon, J. Hill et al., Growth of Triple-Negative Breast Cancer Cells Relies upon Coordinate Autocrine Expression of the Proinflammatory Cytokines IL-6 and IL-8, Cancer Research, vol.73, issue.11, pp.3470-80, 2013.
DOI : 10.1158/0008-5472.CAN-12-4524-T

J. Acosta, O. Loghlen, A. Banito, A. Guijarro, M. Augert et al., Chemokine Signaling via the CXCR2 Receptor Reinforces Senescence, Cell, vol.133, issue.6, pp.1006-1024, 2008.
DOI : 10.1016/j.cell.2008.03.038

URL : http://doi.org/10.1016/j.cell.2008.03.038

T. Kuilman, C. Michaloglou, L. Vredeveld, S. Douma, R. Van-doorn et al., Oncogene-Induced Senescence Relayed by an Interleukin-Dependent Inflammatory Network, Cell, vol.133, issue.6, pp.1019-1050, 2008.
DOI : 10.1016/j.cell.2008.03.039

URL : http://doi.org/10.1016/j.cell.2008.03.039

F. Balkwill, K. Charles, and A. Mantovani, Smoldering and polarized inflammation in the initiation and promotion of malignant disease, Cancer Cell, vol.7, issue.3, pp.211-218, 2005.
DOI : 10.1016/j.ccr.2005.02.013

P. Rothwell, F. Fowkes, J. Belch, H. Ogawa, C. Warlow et al., Effect of daily aspirin on long-term risk of death due to cancer: analysis of individual patient data from randomised trials, The Lancet, vol.377, issue.9759, pp.31-41, 2011.
DOI : 10.1016/S0140-6736(10)62110-1

D. Fraser, F. Sullivan, A. Thompson, and C. Mccowan, Aspirin use and survival after the diagnosis of breast cancer: a population-based cohort study, British Journal of Cancer, vol.58, issue.3, pp.623-630, 2014.
DOI : 10.1126/science.8290962

S. Streicher, H. Yu, L. Lu, M. Kidd, and H. Risch, Case-Control Study of Aspirin Use and Risk of Pancreatic Cancer, Cancer Epidemiology Biomarkers & Prevention, vol.23, issue.7, pp.1254-63, 2014.
DOI : 10.1158/1055-9965.EPI-13-1284

X. Jiang, D. Yang, R. Elliott, and J. Head, REDUCTION IN SERUM IL-6 AFTER VACINATION OF BREAST CANCER PATIENTS WITH TUMOUR-ASSOCIATED ANTIGENS IS RELATED TO ESTROGEN RECEPTOR STATUS, Cytokine, vol.12, issue.5, pp.458-65, 2000.
DOI : 10.1006/cyto.1999.0591

A. Sasser, N. Sullivan, A. Studebaker, L. Hendey, A. Axel et al., Interleukin-6 is a potent growth factor for ER-?-positive human breast cancer, The FASEB Journal, vol.21, issue.13, pp.3763-70, 2007.
DOI : 10.1096/fj.07-8832com

M. Mumcuoglu, S. Bagislar, H. Yuzugullu, H. Alotaibi, S. Senturk et al., The Ability to Generate Senescent Progeny as a Mechanism Underlying Breast Cancer Cell Heterogeneity, PLoS ONE, vol.351, issue.6, p.11288, 2010.
DOI : 10.1371/journal.pone.0011288.s010

T. Schmittgen and K. Livak, Analyzing real-time PCR data by the comparative CT method, Nature Protocols, vol.2, issue.6, pp.1101-1109, 2008.
DOI : 10.1593/neo.07916

S. Farmer, Transcriptional control of adipocyte formation, Cell Metabolism, vol.4, issue.4, pp.263-73, 2006.
DOI : 10.1016/j.cmet.2006.07.001

E. Rosen, The transcriptional basis of adipocyte development, Prostaglandins, Leukotrienes and Essential Fatty Acids, vol.73, issue.1, pp.31-35, 2005.
DOI : 10.1016/j.plefa.2005.04.004

J. Phillips, C. Gersbach, A. Wojtowicz, and A. Garcia, Glucocorticoid-induced osteogenesis is negatively regulated by Runx2/Cbfa1 serine phosphorylation, Journal of Cell Science, vol.119, issue.3, pp.581-91, 2006.
DOI : 10.1242/jcs.02758

W. Chen, M. Lai, A. Wu, C. Wu, J. Gelovani et al., In vitro stage-specific chondrogenesis of mesenchymal stem cells committed to chondrocytes, Arthritis & Rheumatism, vol.21, issue.2, pp.450-459, 2009.
DOI : 10.1002/jbm.a.30560

S. Mani, W. Guo, M. Liao, E. Eaton, A. Ayyanan et al., The Epithelial-Mesenchymal Transition Generates Cells with Properties of Stem Cells, Cell, vol.133, issue.4, pp.704-719, 2008.
DOI : 10.1016/j.cell.2008.03.027

A. Morel, M. Lievre, C. Thomas, G. Hinkal, S. Ansieau et al., Generation of Breast Cancer Stem Cells through Epithelial-Mesenchymal Transition, PLoS ONE, vol.133, issue.8, p.2888, 2008.
DOI : 10.1371/journal.pone.0002888.g005

A. Davalos, J. Coppe, J. Campisi, and P. Desprez, Senescent cells as a source of inflammatory factors for tumor progression, Cancer and Metastasis Reviews, vol.336, issue.15, pp.273-83, 2010.
DOI : 10.4049/jimmunol.166.11.6483

Y. Katsuno, S. Lamouille, and R. Derynck, TGF-? signaling and epithelial?mesenchymal transition in cancer progression, Current Opinion in Oncology, vol.25, issue.1, pp.76-84, 2013.
DOI : 10.1097/CCO.0b013e32835b6371

K. Miyazono, Transforming growth factor-? signaling in epithelial-mesenchymal transition and progression of cancer, Proceedings of the Japan Academy, Series B, vol.85, issue.8, pp.314-337, 2009.
DOI : 10.2183/pjab.85.314

J. Xu, S. Lamouille, and R. Derynck, TGF-?-induced epithelial to mesenchymal transition, Cell Research, vol.3, issue.2, pp.156-72, 2009.
DOI : 10.1101/gad.276304

J. Park and J. Schwarzbauer, Mammary epithelial cell interactions with fibronectin stimulate epithelial-mesenchymal transition, Oncogene, vol.17, issue.13, pp.1649-57, 2014.
DOI : 10.1242/jcs.02566

URL : http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3934944

A. Morel, G. Hinkal, C. Thomas, F. Fauvet, S. Courtois-cox et al., EMT Inducers Catalyze Malignant Transformation of Mammary Epithelial Cells and Drive Tumorigenesis towards Claudin-Low Tumors in Transgenic Mice, PLoS Genetics, vol.296, issue.5, p.1002723, 2012.
DOI : 10.1371/journal.pgen.1002723.s014

URL : https://hal.archives-ouvertes.fr/hal-00712474

D. Sarrio, C. Franklin, A. Mackay, J. Reis-filho, and C. Isacke, Epithelial and Mesenchymal Subpopulations Within Normal Basal Breast Cell Lines Exhibit Distinct Stem Cell/Progenitor Properties, STEM CELLS, vol.8, issue.suppl 3, pp.292-303, 2012.
DOI : 10.1002/stem.791

C. May, N. Sphyris, K. Evans, S. Werden, W. Guo et al., Epithelial-mesenchymal transition and cancer stem cells: a dangerously dynamic duo in breast cancer progression, Breast Cancer Research, vol.5, issue.Pt 20, p.202, 2011.
DOI : 10.1371/journal.pone.0010365

G. Dontu and M. Wicha, Survival of Mammary Stem Cells in Suspension Culture: Implications for Stem Cell Biology and Neoplasia, Journal of Mammary Gland Biology and Neoplasia, vol.101, issue.10, pp.75-86, 2005.
DOI : 10.5483/BMBRep.2003.36.1.043

C. Halleux, V. Sottile, J. Gasser, and K. Seuwen, Multi-lineage potential of human mesenchymal stem cells following clonal expansion, J Musculoskelet Neuronal Interact, vol.2, issue.1, pp.71-77, 2001.

Z. Yang, J. Schmitt, and E. Lee, Immunohistochemical Analysis of Human Mesenchymal Stem Cells Differentiating into Chondrogenic, Osteogenic, and Adipogenic Lineages, Methods Mol Biol, vol.698, pp.353-66, 2011.
DOI : 10.1007/978-1-60761-999-4_26

I. Ben-porath, M. Thomson, V. Carey, R. Ge, G. Bell et al., An embryonic stem cell???like gene expression signature in poorly differentiated aggressive human tumors, Nature Genetics, vol.22, issue.5, pp.499-507, 2008.
DOI : 10.1016/S0140-6736(05)17947-1

D. Holliday and V. Speirs, Choosing the right cell line for breast cancer research, Breast Cancer Research, vol.115, issue.11 Suppl, p.215, 2011.
DOI : 10.1007/s10549-008-0053-y

C. Sheridan, H. Kishimoto, R. Fuchs, S. Mehrotra, P. Bhat-nakshatri et al., CD44+/CD24-breast cancer cells exhibit enhanced invasive properties: an early step necessary for metastasis, Breast Cancer Research, vol.50, issue.5, p.59, 2006.
DOI : 10.1007/BF00204786

URL : http://www.ncbi.nlm.nih.gov/pmc/articles/PMC1779499

K. Jung, N. Gupta, P. Wang, J. Lewis, K. Gopal et al., Triple negative breast cancers comprise a highly tumorigenic cell subpopulation detectable by its high responsiveness to a Sox2 regulatory region 2 (SRR2) reporter, Oncotarget, vol.6, issue.12, pp.10366-73, 2015.
DOI : 10.18632/oncotarget.3590

URL : http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4496361

W. Hwang, M. Yang, M. Tsai, H. Lan, S. Su et al., SNAIL Regulates Interleukin-8 Expression, Stem Cell?Like Activity, and Tumorigenicity of Human Colorectal Carcinoma Cells, Gastroenterology, vol.141, issue.1, pp.279-91, 2011.
DOI : 10.1053/j.gastro.2011.04.008

H. Liu, G. Ren, T. Wang, Y. Chen, C. Gong et al., Aberrantly expressed Fra-1 by IL-6/STAT3 transactivation promotes colorectal cancer aggressiveness through epithelial?mesenchymal transition, Carcinogenesis, vol.36, issue.4, pp.459-68, 2015.
DOI : 10.1093/carcin/bgv017

URL : http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4392608

J. Miao, L. Liu, and J. Huang, Interleukin-6-induced epithelial-mesenchymal transition through signal transducer and activator of transcription 3 in human cervical carcinoma, International Journal of Oncology, vol.45, issue.1, pp.165-76, 2014.
DOI : 10.3892/ijo.2014.2422

A. Yadav, B. Kumar, J. Datta, T. Teknos, and P. Kumar, IL-6 Promotes Head and Neck Tumor Metastasis by Inducing Epithelial-Mesenchymal Transition via the JAK-STAT3-SNAIL Signaling Pathway, Molecular Cancer Research, vol.9, issue.12, pp.1658-67, 2011.
DOI : 10.1158/1541-7786.MCR-11-0271

URL : http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3243808

R. Zhang, L. Peng, J. Yang, L. Zheng, P. Xie et al., IL-8 suppresses E-cadherin expression in nasopharyngeal carcinoma cells by enhancing E-cadherin promoter DNA methylation, International Journal of Oncology
DOI : 10.3892/ijo.2015.3226

F. Li, B. Tiede, J. Massague, and Y. Kang, Beyond tumorigenesis: cancer stem cells in metastasis, Cell Research, vol.65, issue.1, pp.3-14, 2007.
DOI : 10.1038/sj.cr.7310118

F. Luo, T. Liu, J. Wang, J. Li, P. Ma et al., Bone marrow mesenchymal stem cells participate in prostate carcinogenesis and promote growth of prostate cancer by cell fusion <i>in vivo</i>, Oncotarget, vol.7, issue.21, pp.30924-30958, 2016.
DOI : 10.18632/oncotarget.9045

X. Zhi, J. Xiong, X. Zi, and Y. Hu, The potential role of liver stem cells in initiation of primary liver cancer, Hepatology International, vol.36, issue.3, pp.893-901, 2016.
DOI : 10.1007/s12072-016-9730-9

Y. Guo, F. Xu, T. Lu, Z. Duan, and Z. Zhang, Interleukin-6 signaling pathway in targeted therapy for cancer, Cancer Treatment Reviews, vol.38, issue.7, pp.904-914, 2012.
DOI : 10.1016/j.ctrv.2012.04.007

A. Sanguinetti, D. Santini, M. Bonafe, M. Taffurelli, and N. Avenia, Interleukin-6 and pro inflammatory status in the breast tumor microenvironment, World Journal of Surgical Oncology, vol.8, issue.7, p.129, 2015.
DOI : 10.1186/s12957-015-0529-2

K. Xie, Interleukin-8 and human cancer biology, Cytokine & Growth Factor Reviews, vol.12, issue.4, pp.375-91, 2001.
DOI : 10.1016/S1359-6101(01)00016-8

A. Yuan, J. Chen, P. Yao, and P. Yang, The role of interleukin-8 in cancer cells and microenvironment interaction, Frontiers in Bioscience, vol.10, issue.1-3, pp.853-65, 2005.
DOI : 10.2741/1579

A. Freund, C. Chauveau, J. Brouillet, A. Lucas, M. Lacroix et al., IL-8 expression and its possible relationship with estrogen-receptor-negative status of breast cancer cells, Oncogene, vol.22, issue.2, pp.256-65, 2003.
DOI : 10.1038/sj.onc.1206113

URL : https://hal.archives-ouvertes.fr/inserm-00143840

J. Acosta, A. Banito, T. Wuestefeld, A. Georgilis, P. Janich et al., A complex secretory program orchestrated by the inflammasome controls paracrine senescence, Nature Cell Biology, vol.122, issue.8, pp.978-90, 2013.
DOI : 10.1038/ncb2784

G. Nelson, J. Wordsworth, C. Wang, D. Jurk, C. Lawless et al., A senescent cell bystander effect: senescence-induced senescence, Aging Cell, vol.2, issue.Pt 1, pp.345-354, 2012.
DOI : 10.1111/j.1474-9726.2012.00795.x

URL : http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3488292

F. Rodier, J. Coppe, C. Patil, W. Hoeijmakers, D. Munoz et al., Persistent DNA damage signalling triggers senescence-associated inflammatory cytokine secretion, Nature Cell Biology, vol.11, issue.8, pp.973-982, 2009.
DOI : 10.1074/jbc.M408650200

J. Aubin, Regulation of osteoblast formation and function, Reviews in Endocrine and Metabolic Disorders, vol.2, issue.1, pp.81-94, 2001.
DOI : 10.1023/A:1010011209064

T. Komori, Regulation of bone development and extracellular matrix protein genes by RUNX2, Cell and Tissue Research, vol.162, issue.1, pp.189-95, 2010.
DOI : 10.1016/B978-0-08-092500-4.50010-3

D. Mendoza-villanueva, L. Zeef, and P. Shore, Metastatic breast cancer cells inhibit osteoblast differentiation through the Runx2/CBF?-dependent expression of the Wnt antagonist, sclerostin, Breast Cancer Research, vol.26, issue.5, p.106, 2011.
DOI : 10.1002/jbmr.307

M. Wicha, Cancer stem cell heterogeneity in hereditary breast cancer, Breast Cancer Research, vol.21, issue.2, p.105, 2008.
DOI : 10.2165/00063030-200721050-00002