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PSL Research University, Sorbonne Universités, UPMC,

75005 Paris, France
bInterdisciplinary Center for Theoretical Study, University of Science and Technology of China,

Hefei, Anhui 230026, China
cBethe Center for Theoretical Physics (BCTP), Physikalisches Institut, Universität Bonn,

53115 Bonn, Germany

E-mail: jie.gu@lpt.ens.fr, minxin@ustc.edu.cn, kashani@lpt.ens.fr,

aklemm@th.physik.uni-bonn.de

Abstract: F-theory compactifications on appropriate local elliptic Calabi-Yau manifolds

engineer six dimensional superconformal field theories and their mass deformations. The

partition function Ztop of the refined topological string on these geometries captures the

particle BPS spectrum of this class of theories compactified on a circle. Organizing Ztop

in terms of contributions Zβ at base degree β of the elliptic fibration, we find that these,

up to a multiplier system, are meromorphic Jacobi forms of weight zero with modular

parameter the Kähler class of the elliptic fiber and elliptic parameters the couplings and

mass parameters. The indices with regard to the multiple elliptic parameters are fixed by

the refined holomorphic anomaly equations, which we show to be completely determined

from knowledge of the chiral anomaly of the corresponding SCFT. We express Zβ as a

quotient of weak Jacobi forms, with a universal denominator inspired by its pole struc-

ture as suggested by the form of Ztop in terms of 5d BPS numbers. The numerator is

determined by modularity up to a finite number of coefficients, which we prove to be fixed

uniquely by imposing vanishing conditions on 5d BPS numbers as boundary conditions.

We demonstrate the feasibility of our approach with many examples, in particular solving

the E-string and M-string theories including mass deformations, as well as theories con-

structed as chains of these. We make contact with previous work by showing that spurious

singularities are cancelled when the partition function is written in the form advocated

here. Finally, we use the BPS invariants of the E-string thus obtained to test a generaliza-

tion of the Göttsche-Nakajima-Yoshioka K-theoretic blowup equation, as inspired by the

Grassi-Hatsuda-Mariño conjecture, to generic local Calabi-Yau threefolds.
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1 Introduction

How well and how generally we can compute the topological string partition function

Ztop serves as a benchmark for how well we understand topological string theory. The

computational tools available depend sensitively on the class of geometries on which we

consider the theory. The most computable class of geometries to date are local toric Calabi-

Yau 3-folds. The key methods that exist for the computation of Ztop on these geometries

rely on localization [1, 2], large N-dualities involving matrix models [3] or 3d Chern-Simons

theories giving rise to the topological vertex [4, 5], as well as the modular approach [6–8]

based on the holomorphic anomaly equations [7, 9]. In this paper, following [10], we will use

modular methods in conjunction with vanishing conditions on 5d BPS invariants Nκ
j−j+

to

compute the refined topological string partition function on a class of non-toric geometries,

consisting of elliptically fibered local Calabi-Yau manifolds M̌ .

The Nκ
j−j+

are the multiplicities of 5d BPS states that arise upon M-theory compact-

ification on the Calabi-Yau manifold M̌ . Such BPS states were first considered in [11, 12]

and play a decisive role in our analysis. They fall into spin representations of the 5d little

group SU(2)+ × SU(2)− and are labelled by classes κ ∈ H2(M̌,Z) determining the mass of

the corresponding BPS particles. The Nκ
j−j+

determine the refined partition function Ztop,

which depends on Kähler parameters of the geometry as fugacities for the classes κ, and

the parameters ǫ± = 1
2(ǫ1 ± ǫ2) which serve as fugacities for the ± spins j− and j+.

On general Calabi-Yau manifolds, a deformation invariant BPS index is obtained

only upon summing over the right spin quantum number. This corresponds to setting

s2 = −(2ǫ+)
2 to zero and leads to the conventional topological string partition function

in which the string coupling constant — a genus counting parameter — is identified as

g2s = −ǫ1ǫ2 [11, 12]. A geometrical model for computing these 5d BPS invariants was
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proposed in [13]. If the Calabi-Yau manifold admits a U(1) isometry, as will be the case

with the geometries M̌ that we consider in this paper, the integers Nκ
j−j+

are individually

invariant [2, 14]. On local Calabi-Yau manifolds that engineer N = 2 gauge theories in

4 and 5 dimensions, Ztop can be identified [5, 15, 16] with the Nekrasov partition func-

tion [17], with ǫi playing the role of the equivariant parameters introduced by Nekrasov in

his localization calculation.

The refined Ztop plays a central role in the AGT correspondence [18] and its generaliza-

tions, via which the refined partition function Ztop is related to correlators in Liouville and

Toda conformal field theories [19–22]. In the ǫ2 → 0 limit, refined Ztop relates to integrable

models underlying the space of vacua of N = 2 supersymmetric gauge theories [23] . It

also features prominently in a recent proposal [24] for a non-perturbative completion of the

refined topological string on toric geometries which relies crucially on refinement for the

so-called pole cancellation mechanism [25, 26].

In addition to the coupling constants gs and s, refined Ztop depends on Kähler pa-

rameters t of the underlying geometry. The modular methods referred to in the opening

paragraph yield log Ztop as an asymptotic series in gs and s with coefficients that are exact

in t, whereas topological vertex computations yield Ztop as an expansion in et with coeffi-

cients that are exact in gs and s [4, 5]. For the latter, on appropriate geometries, the sum

over some [27] but not all of the Kähler parameters can be performed. The methods [10, 28]

we will advance in this paper for elliptically fibered manifolds rely on modular considera-

tions and the holomorphic anomaly equation in the form [29], and yield Ztop again as an

expansion in Kähler parameters assigned to the base of the elliptic fibration, but now with

coefficients that enjoy modular properties making the invariance of Ztop under fiber mon-

odromies manifest. These coefficients are meromorphic Jacobi forms of vanishing weight

and of index determined by the holomorphic anomaly equations, with modular parameter

the Kähler parameter of the fiber, and elliptic parameters built from the ǫ parameters and

additional Kähler parameters identified with masses in the six dimensional setting that we

will discuss presently. Based on the pole structure of these forms, as implied by the form

of Ztop in terms of 5d BPS states [11, 12, 30], we can argue that they must be quotients

of weak Jacobi forms, with a universal denominator. Determining the numerator at each

base degree then becomes a finite dimensional problem, which can be solved by imposing

boundary conditions in the form of vanishing conditions on the refined BPS invariants

Nκ
j−j+

. These methods can also be applied to compact geometries [10], in which case the

vanishing conditions are however not sufficient to solve the theory, as the index of the

denominator grows too rapidly with the base degree [28].

The geometries on which we will consider Ztop yield via F-theory compactification an

intriguing class of chiral 6d supersymmetric field theories. These theories are exotic in that

they generally do not admit a Lagrangian description, exhibit strings in their spectrum

(which become tensionless in the IR), and defy the expectation based on power counting

that they should be trivial in the infrared. Indeed, we will focus on geometries that lead

to 6d theories with a superconformal fixed point in the infrared. The topological string

on these geometries captures the Kaluza-Klein modes of the tensionless string upon circle

compactification. As initiated in [31], studying these modes can yield insight into the

– 2 –
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nature of such strings. The elliptic genus of their 2d chiral worldsheet theory is closely

related to Ztop, and provides a physical explanation for the transformation properties as

Jacobi forms, based on the chiral anomaly of the theory.

A classification of geometries leading to 6d super conformal field theories upon F-

theory compactification, conjectured to be complete, is presented in [32, 33], based on

earlier work in [34]. They consist of elliptic fibrations over non-compact complex surfaces

B̌ which contain tree-like configurations of intersecting P1’s. In this work, we will focus

on geometries leading to 6d theories without enhanced gauge symmetry; this requires the

self-intersection number of these curves to be −1 or −2. In upcoming work [35], we will

take up the more general case.

The cases in which all curves in B̌ have self-intersection number −2 are covered by the

resolution of the quotient C2/Γ, with Γ a discrete subgroup of SU(2). As B̌ in this case

has trivial canonical class, the elliptic fibration yielding the Calabi-Yau 3-fold is trivial,

and the corresponding 6d theories have (2, 0) supersymmetry. The An series in this class

yields superconformal theories which describe a stack of n + 1 M5 branes. The A1 case,

corresponding to the geometry T 2 ×
[
O(−2) → P1

]
, is called the M-string [36].

The generic case requires a non-trivial elliptic fibration to yield a Calabi-Yau 3-fold

over B̌, and leads to a 6d theory with (1, 0) supersymmetry. The simplest example of

this class is called the E-string [31, 37, 38], and consists of the elliptic fibration over the

non-compact base surface O(−1) → P1. This geometry can also be constructed as the total

space of the canonical bundle of the compact elliptic surface 1
2K3, a nine point blow-up of

P2. According to the classification results in [32, 33], an ADE chain of (−2) curves with

a single (−1) curve at one end also engineers a 6d theory without gauge symmetry with a

superconformal fixed point.

Our methods yield closed results at a given base degree from which all refined BPS

invariants can easily be extracted. We list some of these invariants for ease of reference

for mathematicians approaching them by other means. We use this data to refine the

vanishing conditions on these invariants which follow from application of the adjunction

formula. For the E-string, this data also allows us to provide some circumstantial evidence

that the E-string BPS spectrum is computable via the quantization of an appropriate

underlying quantum curve: we show that a suitably generalized consistency condition [39]

between two perspectives [24, 39] on the quantization of the mirror curve in the case of toric

Calabi-Yau manifolds is satisfied by these invariants. For a special class of toric Calabi-Yau

manifolds, the consistency condition is shown in [40] to be the Nekrasov-Shatashvili limit

of the Göttsche-Nakajima-Yoshioka K-theoretic blowup equation [41–43] for the gauge

theoretic Nekrasov partition functions. The natural generalization of the blowup equation

that we propose, and that is satisfied by the E-string, can be applied to any local Calabi-Yau

geometry on which the refined topological string can be formulated.

This paper is organized as follows. In section 2, we outline the general strategy to

obtain the refined topological string partition on elliptically fibered Calabi-Yau manifolds

and introduce the coefficients Zβ of the expansion of Ztop in base Kähler parameters. We

then review integer BPS invariants and their vanishing from a geometric point of view in

section 3.1 and present the geometries we will discuss in this paper, centered around the E-

– 3 –
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and the M-string, in section 3.2. We discuss the geometric meaning of the mass parameters

in section 3.3. In section 4.1, we show that Jacobi forms satisfy a differential equation,

which we identify with a generalization of the holomorphic anomaly equations in wave

function form to the refined case in subsection 4.2. The differential equation encodes the

indices of the various elliptic parameters on which Zβ depends. These indices can be derived

from the anomaly polynomial of the 2d chiral theory living on the worldsheet of the non-

critical strings of the 6d theories, as we demonstrate in section 4.3. In section 4.4, we make

a universal ansatz for the denominator of Zβ based on the pole structure of refined Ztop as

implied by the form of Ztop in terms of 5d BPS numbers. Together with the information

regarding the indices, this determines Zβ up to a finite number of coefficients. In section 5.1,

we determine under what circumstances vanishing conditions on BPS invariants suffice to

determine these coefficients. We conclude that for all geometries relevant to this paper,

they suffice.1 Our approach thus leads to a complete solution for the class of theories we

are considering. We present concrete results for the M-string in section 5.2, for the E-string

in section 5.3, and for the E-M string chain in section 5.4. Further results and examples for

refined BPS invariants are relegated to appendix C. In section 6, we extract BPS numbers

from our closed expressions for Zβ and discuss their structure and their vanishing. In

section 7, we relate our results for the E- and M-string to the ones obtained by [44] using

a domain wall argument in terms of ratios of theta function. Based on theta functions

identities, proven in appendix B, we show that additional poles exhibited by these latter

expressions are spurious. Finally, in section 8, we propose a generalization of the blowup

equation and find that it is satisfied for the E-string. Some of the data needed for this

check is presented in appendix D. Some background on the ring of modular and generalized

Jacobi forms is provided in appendix A. As we summarize in the conclusions in section 9,

our method has a wide range of applicability. We are confident that it can be adapted to

encompass all geometries engineering 6d superconformal field theories [35, 45].

2 General strategy for the solution of the topological string partition

function on elliptically fibered Calabi-Yau manifolds

We will compute the refined topological string partition function on elliptic Calabi-Yau

spaces with at least one zero section recursively as an expansion in the base classes β. The

fundamental objects in this study are the expansion coefficients Zβ in these classes, defined

via

Z(tb, τ, tm, ǫ1, ǫ2) = exp(Fβ(τ, tm, ǫ1, ǫ2)Q
β) = Zβ=0


1 +

∑

β 6=0

Zβ(τ, tm, ǫ1, ǫ2)Q
β


 .

(2.1)

We distinguish between three classes of Kähler parameters: those associated to the base,

denoted tb, the exponentials Qβ = exp(2πitβ) = exp(2πi
∑

βitbi) of which provide our

1At lowest base wrapping degree, they need to be supplemented with one non-vanishing BPS number.
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expansion parameters,2 the Kähler parameter τ of the elliptic fiber, with q = exp(2πiτ),

which will play the role of modular parameter, and the remaining Kähler parameters tm

associated to mass deformations of the theory (for geometries containing curves of self-

intersection number less than -2, there will also be Kähler parameters associated to the

resolution of singular elliptic fibers, see [35, 45]).

For the unrefined case ǫ1 = −ǫ2, an ansatz for Zβ(tb, τ, tm, ǫ1, ǫ2) has been presented

in [10] based on general arguments that is valid both for compact and non-compact ellip-

tically fibered Calabi-Yau spaces. In this paper, we seek to generalize this ansatz to the

refined case. The ingredients are the following:

• Elliptically fibered Calabi-Yau manifolds M exhibit special auto-equivalences of the

derived category of coherent sheafs Db(M) which can be identified with the S and the

T transformation of the modular group SL(2,Z). Via the Fourier-Mukai transform,

they induce an action on the K-theory charges K(M) = Heven(M). Via mirror

symmetry, this action can be identified with the monodromy action of the symplectic

group Sp(h3(W ),Z) on the middle cohomology H3(W ) of the mirror manifold W to

M . This action can also be computed directly on W . One obtains

τ → τγ =
aτ + b

cτ + d
, tmi → tγmi

=
tmi

cτ + d
, tβ → tβ + µγ(β) +O(Qβ) . (2.2)

The projective nature of the first two transformations arises as the Kähler parameters

are ratios of periods. The more non-trivial fact is the transformation of tβ up to

exponentially suppressed contributions. In particular µγ(β) gives rise to a multiplier

system ǫγ(β) = exp(2πiµγ(β)). It is characterized by µS(β) = µT (β) = −(Cβ ·K)/2,

see [28] for a derivation.

• The transformation properties of Z(tb, τ, tm, ǫ1,−ǫ1) under this action have been

determined in [29].

• Demanding that Z(tb, τ, tm, ǫ1,−ǫ1) (before taking the holomorphic limit!) be in-

variant under the monodromy transformations (2.2) requires also transforming gs as

g2s → (gγs )
2 =

g2s
(cτ + d)2

. (2.3)

Combining this with results on the refined holomorphic anomaly equations allows us

to extend this transformation property to the refined case, yielding

ǫ1/2 → ǫγ1/2 =
ǫ1/2

cτ + d
. (2.4)

• The invariance of Z(tb, τ, tm, ǫ1, ǫ2) under the joint transformations (2.2) and (2.4)

implies that in the holomorphic limit, Zβ(τ, tm, ǫ1, ǫ2) transform as Jacobi forms with

the multiplier system ǫγ(β), modular parameter τ and elliptic parameters (tm, ǫ1, ǫ2).

2More precisely, the tb are shifted with regard to the geometric Kähler parameters t̃b by tbi = t̃bi −
τ(Cbi ·K)/2, with Cbi a curve in the class corresponding to bi and K the canonical class of the base surface,

see [28] for details.
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• The pole structure of Z(tb, τ, tm, ǫ1, ǫ2) as suggested by the form of the free energy

expressed in terms of 5d BPS numbers (as reviewed in the next section, see for-

mula (3.11)) implies that Zβ(τ, tm, ǫ1, ǫ2) is a ratio of weak Jacobi forms, and allows

us to make a universal ansatz for the denominator, see (4.31).

• The indices related to the elliptic parameters can be calculated in the unrefined case

from the topological terms that appear in the holomorphic anomaly equations of [29]

as explained in [10, 28]. A derivation of the indices in the refined case should be

possible based on the refined holomorphic anomaly equations. We provide such a

derivation, modulo several constants which we fix by studying examples. We demon-

strate that our final result also follows from anomaly considerations, following [45].3

• The ring of weak Jacobi forms with given even weight and integer index in a single

elliptic parameter z is generated by the forms A(τ, z) and B(τ, z), see appendix A.

Lacking an analogous structure theorem for weak Jacobi forms exhibiting multiple

elliptic parameters, we conjecture that the numerator of Zβ(τ, tm, ǫ1, ǫ2) is an ele-

ment of the ring generated by {A(, τ, zi), B(τ, zi)}zi∈{ǫ+,ǫ−}, where ǫ± = (ǫ1 ± ǫ2)/2,

together with an appropriate generating set of Weyl invariant Jacobi forms: these

exhibit the mass parameters tm as tuples of elliptic parameters, and are invariant

under the action of the Weyl group of the flavor symmetry group on these tuples.

This fixes the numerator up to a finite number of coefficients.

• Vanishing conditions on 5d BPS invariants suffice to uniquely fix the numerator, and

therewith Zβ . We thus obtain explicit expressions for Z(tb, τ, tm, ǫ1, ǫ2) which, aside

from passing the stringent test of integrality for all 5d BPS invariants encompassed,

match all results available in the literature computed by other means.

3 Geometry

We begin this section by recalling some aspects of the geometric invariants associated to the

topological string and its refinement. We then introduce the elliptically fibered geometries

that will be the subject of this paper.

3.1 Integer BPS numbers and their vanishing

The free energy F (t, gs) of the topological string on a Calabi-Yau manifold M was initially

defined from the world-sheet point of view as a sum over connected word-sheet instanton

contributions, via the expansion

F (t, gs) =
∞∑

g=0

∑

κ∈H2(M,Z)

g2g−2
s rκgQ

κ , rκg ∈ Q . (3.1)

The rational invariants rκg are called Gromov-Witten invariants. Mathematically, they can

be defined as follows: let Mg,κ(M) be the moduli stack of holomorphic embedding maps

3We thank Michele Del Zotto and Guglielmo Lockhart for explaining their ideas to us.
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X : Σg → M such that the image [X(Σg)] lies in the curve class κ. Then rκg =
∫
Mg,κ(M) 1 is

the degree of the virtual fundamental class. As the virtual dimension dimvir(Mg,κ(M)) =∫
κ c1(M)+ (g− 1)(3−dimC(M)) is zero on Calabi-Yau 3-folds, the determination of rκg re-

duces to a point counting problem with rational weights, generically with a non-zero answer.

An important insight into the structure of the topological string free energy was pro-

vided by string-string duality. Comparing the expansion (3.1) with a BPS saturated het-

erotic one loop computation, Gopakumar and Vafa [11, 12] conjectured that the gs expan-

sion takes the general form

F (t, gs) =
∞∑

m=1
g=0

∑

κ∈H2(M,Z)

Iκg
m

(
2 sin

(gsm
2

))2g−2
Qmκ , Iκg ∈ Z . (3.2)

The coefficients Iκg of this expansion are integers. They can be identified with the counting

parameters in the BPS index

TrHBPS
(−1)2j

3
+u2j

3
−QH =

∑

κ∈H2(M,Z)

∞∑

g=0

Iκg

(
u

1
2 + u−

1
2

)2g
Qκ , (3.3)

defined via a trace over the Hilbert space HBPS of 5d BPS states in the compactification

of M-theory on the Calabi-Yau manifold M .4 The BPS states can be organized into

representations of the 5d Poincaré group; their mass is proportional to their charge κ, and

each component Hκ of HBPS can be decomposed into irreducible representations of the

little group SU(2)− × SU(2)+,

Hβ =
⊕

j−,j+

Nκ
j−j+ [(j−, j+)] . (3.4)

Generically, this decomposition is not invariant upon motion in moduli space. The invariant

index (3.3) is obtained upon summing over the spin quantum numbers of SU(2)+ with

alternating signs. Using ideas of [12], this index was geometrically interpreted in [13] based

on the SU(2)−×SU(2)+ Lefschetz decomposition of the moduli spaceMκ
g of aD0-D2 brane

system. Mκ
g was realized in [13] as the Jacobian fibration over the geometric deformation

space of a family of curves of maximal genus g in the class κ wrapped by the D2 brane.

The D0 brane number counts the degeneration of the Jacobian and is hence related to the

geometric genus of the curve.

An important ingredient in our determination of the topological string partition func-

tion will be the vanishing of the invariants Iκg at fixed class κ for sufficiently large g. For

geometries M̌ which are the total space of the canonical bundle of a compact surface S, as is

the case for the E-string and the M-string geometry which we will review below, this vanish-

ing can be argued for very simply: the only curves that contribute to the partition function

lie inside the compact surface. Given a smooth representative Cκ of a class κ ∈ H2(S,Z),

the adjunction formula permits us to express the canonical class KC of Cκ in terms of its

normal bundle in the surface, and the canonical class K of the surface S. Via the relation

4A universal factor 2[(0, 0)]⊕ [( 1
2
, 0)] is factored out of the Hilbert space to obtain HBPS [11, 12].
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between the degree and the arithmetic genus pa(κ) of the curve, 2pa(κ)− 2 = KC ·Cκ, this

yields

2pa(κ)− 2 = C2
κ +K · Cκ , (3.5)

providing an upper bound

gmax(κ) =
C2
κ +K · Cκ

2
+ 1 (3.6)

on the geometric genus of any representative of the class κ. Note that a smooth representa-

tive of a class κ ∈ H2(S,Z) does not necessarily exist. More generally, we have to resort to

Castelnuovo theory, which studies the maximal arithmetic genus of curves of given degree

in projective space, see e.g. [46]. Either way, at fixed κ, there exists a bound beyond which

Iκg vanishes, simply because the moduli space Mκ
g is empty. This is in contrast to the

Gromov-Witten invariants rκg , which due to multi-covering contributions do not vanish for

fixed κ even at arbitrarily large genus. At large degree, the bound scales as gmax ∼ κ2. We

will use the term Castelnuovo bound generically to refer to a bound beyond which BPS

invariants vanish.

Mathematically, the BPS data of the D0-D2 brane system is best described by stable

pair or PT invariants [47]. If the curve is smooth at the bound and the obstructions

vanish, the dimension of the deformation space PH0(O(Cκ)) follows from the Riemann-

Roch theorem

χ(O(Cκ)) =
2∑

i=0

hi(O(Cκ)) =
C2
κ −K · Cκ

2
+ 1 , (3.7)

and the Iκgmax(κ)
evaluate to

Iκgmax(κ)
= (−1)χ(O(Cκ))χ(Pχ(O(Cκ))−1) . (3.8)

The invariants Iκg at g < gmax(κ) generically evaluate to much larger numbers due to the

increasing degeneration of the Jacobian.

When the Calabi-Yau manifold admits a C∗ isometry, one can also give a geometrical

interpretation to states with definite + Lefschetz number and the BPS numbers N b
j−j+

∈ N

introduced in (3.4) which keep track of the degeneracy of states with definite SU(2)− and

the SU(2)+ spin. The corresponding index is

TrHBPS
u2j

3
−v2j

3
+QH =

∑

κ∈H2(M,Z)

∑

j−,j+∈ 1
2
N

Nκ
j−j+ [j−]u[j+]vQ

κ . (3.9)

We have here assigned to every irreducible SU(2) representation labeled by j ∈ N/2 a

Laurent polynomial,

[j]x =

j∑

k=−j

x2k, (3.10)

where the summation index k is increased in increments of 1 starting at −j. These

BPS numbers are computed by the refined topological string, whose free energy takes
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the form [30]

F (t, ǫ1, ǫ2) =
∞∑

m=1
j−,j+∈N/2

∑

κ∈H2(M,Z)

Nκ
j−j+

(−1)2(j−+j+)

m

[j−]um [j+]vm

(x
m
2 − x−

m
2 )(y

m
2 − y−

m
2 )

Qmκ .

(3.11)

We have introduced the variables

x = exp(i ǫ1) = uv, y = exp(i ǫ2) =
v

u
, u = exp(i ǫ−) =

√
x

y
, v = exp(i ǫ+) =

√
xy ,

(3.12)

with

ǫ− =
1

2
(ǫ1 − ǫ2), ǫ+ =

1

2
(ǫ1 + ǫ2) . (3.13)

For geometries M̌ that geometrically engineer N = 2 gauge theories in 5 dimensions, (3.11)

coincides with the K-theoretic instanton partition function of Nekrasov [17], and ǫ1,2 map

to equivariant parameters in the localization computation performed in the gauge theoretic

setting.

To facilitate the transition between the refined and the unrefined free energy, it is also

convenient to introduce the variables

g2s = −ǫ1ǫ2 , s = −(ǫ1 + ǫ2) . (3.14)

Comparing (3.3) and (3.9) allows us to relate the BPS number Nκ
j−j+

to the invariants Iκg .

In terms of the tensor representations Tg =
(
2[0] +

[
1
2

])⊗g
, where the bracket [j] indicates

the irreducible SU(2) representation of spin j, we obtain

∑

j−,j+∈ 1
2
N

(−1)2j+(2j+ + 1)Nκ
j−j+ [j−] =

∑

g∈N
Iκg Tg . (3.15)

This relation implies that if at fixed κ, the maximal genus for which Iκg 6= 0 is gmax(κ), the

maximum left spin for which the number Nκ
j−j+

6= 0 is

2jmax
− (κ) = gmax(κ) =

C2
κ +K · Cκ

2
+ 1 . (3.16)

To describe a generic bound on the right spin, we will need to review some aspects of

PT theory of stable pairs [47, 48] and its relation to KKV theory [13] and refined KKV

theory as outlined in [2]. As above, we will assume that there is a smooth curve Cκ in the

class κ ∈ H2(S,Z). Following the notation in [2], we denote by Pn(M,κ) the moduli space

of stable pairs (F, s), where F is a free sheaf of pure dimension 1 generated by the section

s ∈ H0(F ) outside d points, with ch2(F ) = κ and holomorphic Euler characteristic χ(F ) =

n = 1− pa + d. The PT invariant Pn,κ is defined as the degree of the virtual fundamental

class of Pn(M,κ). These invariants were related to Iκg in [48]. Following [2], we will review

a generic model for Pn(M,κ) based on which the SU(2)− × SU(2)+ decomposition of the

Hilbert space Hβ of 5d BPS states can be computed. This will permit us to arrive at a
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bound for the maximal right spin jmax
+ (κ) of non-vanishing BPS numbers Nκ

jmax
− j+

. Based

on experience, this also serves as a bound below jmax
− .

The basic identity relating the geometric SU(2) Lefschetz decomposition to the

SU(2)− × SU(2)+ decomposition of Hβ is motivated by the KVV approach [2, 13]. It

is given, at sufficiently small Euler characteristic as we explain presently, by

H∗(C[k]) =
(
θpa−kHκ

)
SU(2)∆

⊕H∗(C[k−2]) . (3.17)

C[k] here is the relative Hilbert scheme parameterizing curves C of class κ with k distin-

guished points. In the generic cases we will consider, such Hilbert schemes will be projective

spaces, and the corresponding cohomology carries the standard Lefschetz decomposition.

θ is an SU(2)− lowering operator, i.e. it acts as

θ([(j−, j+)]) = (θ[j−])⊗ [j+] = [(j− − 1, j+)] , (3.18)

with the understanding that [j] = 0 for j < 0. (·)SU(2)∆ is the map from SU(2)− × SU(2)+
representations to the diagonal SU(2)∆ representation. Corrections to (3.17) arise from

reducible curves. At a given class κ, the minimal Euler characteristic of a reducible curve

with components of class κ1 + κ2 = κ will be χ1 + χ2 = 1− pa(κ1) + 1− pa(κ2). At given

κ, the minimal Euler characteristic at which corrections due to reducible curves can arise

is thus given by

min
{
1− pa(κ1) + 1− pa(κ2)|κ1 + κ2 = κ

}
. (3.19)

Below this bound, (3.17) holds unmodified.

We will argue for a bound on the SU(2)+ number at given κ for geometries M̌ which

are the total space of the canonical bundle over a Fano surface S. In this case, for small d

bounded by a constraint linear in κ [48], the moduli space of stable pairs on M̌ coincides

with that of S, P1−pa+d(M̌, κ) = P1−pa+d(S, κ). The latter in turn is isomorphic to the

appropriate relative Hilbert scheme of curves of class κ with d distinguished points (cf.

proposition B.8 of [48]),

P1−pa+d(S, κ) ≃ C[d] . (3.20)

For Cκ a curve of class κ, a model for this Hilbert scheme is given by P(C2
κ−Cκ·K)/2−d over

S[d].

Returning to (3.17), we see that the contributions to highest left spin can be read off

at d = 0. We obtain

H∗(C) = H∗(P(C2
κ−Cκ·K)/2) =

[
C2
κ − Cκ ·K

4

]
= Nκ

pa,jmax
+

[jmax
+ ] , (3.21)

i.e.

2jmax
+ (κ) =

C2
κ − Cκ ·K

2
. (3.22)

We reiterate that we have derived jmax
− as the right spin at highest left spin, but expect it

to present more generally a bound on right spin at given κ. This generic bound is quadratic

in κ, just as the bound on j−. It is implicit in the formalism of [2], but not spelled out
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explicitly. Instead, more complicated calculations are performed there for d > 0, showing

an asymptotic pattern of the refined BPS numbers that we also observe in our examples.

The generic bound is satisfied for the large κ asymptotics in all known geometric examples,

in particular for the E-string for which S is only semi-Fano.

Let us finally comment on geometries bases on chains of (−1) and (−2) curves. We can

consider each such curve as the base of an elliptic surface. For curve classes lying in a single

such surface, the bounds (3.16) and (3.22) should apply unaltered. More general classes

will require a more detailed analysis. In these cases, the leading contributions must come

from reducible curves which have been excluded by the condition (3.19), so the precise

bound will have to include these. We still expect it to remain quadratic in the curve class.

This expectation is confirmed by our explicit computations, see section 6.

3.2 Geometries underlying the E- and M-string and generalizations

The geometries we will consider in this paper consist of elliptically fibered Calabi-Yau

manifolds M̌ over non-compact bases B̌, such that

• all compact curves Ci in B̌ are contractible, and

• the elliptic fiber does not degenerate over all of Ci for any i.

The first condition is required for the 6d theories engineered by compactifying F-theory

on M̌ to have a superconformal fixed point [32, 33], and is a prerequisite, as we explain

below, for the boundary conditions supplied by vanishing conditions on GV invariants

to completely fix our ansatz. The second condition implies that the 6d theories do not

exhibit gauge symmetry. We will treat the case with gauge symmetry in a forthcoming

publication [35].

The simplest examples that we consider contain a single compact curve C in the base

B̌. These geometries can be obtained via decompactification limits of elliptic fibrations

over Hirzebruch surfaces. Recall that a Hirzebruch surface Fk is a P1 fibration over a

base P1. Two irreducible effective divisors Ck and F can be chosen to span H2(Fk,Z). F

corresponds to a fiber of Fk, hence F · F = 0, and Ck is a section of the fibration, thus

Ck · F = 1, with Ck · Ck = −k. The canonical class of Fk in terms of these two divisors is

given by −KFk
= 2Ck + (2 + k)F .

Calabi-Yau elliptic fibrations over the Hirzebruch surfaces Fk, k = 0, 1, 2, can

be constructed as hypersurfaces in an appropriate ambient toric variety [49]. These

constructions yield geometries with h1,1 = 3, corresponding to the lifts of Ck and F , and

the elliptic fiber E.

A more flexible way to obtain an elliptic fibration with section over the base B is via

the Weierstrass equation

y2 = 4x3 − f4x− g6 . (3.23)

To ensure that the total space of this fibration is a Calabi-Yau manifold, we must choose

f4 and g6 as sections of particular line bundles over the base surface B,

f4 ∈ −4KB , g6 ∈ −6KB , (3.24)
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whereKB is the canonical class ofB. The elliptic fibration is singular along the discriminant

locus of the fibration, defined as the zero locus of the discriminant

∆12 = f3
4 − 27g26 . (3.25)

The type of singularity along each component of the discriminant locus depends on the

vanishing order of ∆ together with that of f and g on this component, and has been

classified by Kodaira.

The minimal vanishing order γ of a section of the line bundle −nKB along a curve

Ck with negative self-intersection number −k can be computed by decomposing −nKB =

γCk + A, with γ the smallest positive integer such that Ck · A ≥ 0. Equivalently, we

can consider a decomposition −nKB = γ′Ck + A′, where now, γ′ ∈ Q and we impose

A′ · Ck = 0. We have γ′ = γ + A·Ck

C2
k
, and by minimality of γ, −1 < A·Ck

C2
k

≤ 0; hence the

minimal vanishing order is given by the smallest integer larger or equal to γ′. Either way,
based on the canonical class of the Hirzebruch surface Fk cited above, we can argue that

for k = 0, 1, 2, sections of −4KB,−6KB or ∆ generically do not vanish identically over

Ck. Thus, ∆|Ck
will generically vanish only at the intersection of Ck with −12KB, hence

at −12KB · Ck = 12(2 − k) points. As f |Ck
and g|Ck

will generically not vanish at these

points, the elliptic fibration above Ck (recall that Ck is a section of B) will generically

exhibit 12(2− k) isolated I1 singularities, hence correspond to a K3 surface, 1
2K3 surface,

and the trivial product P1 × T 2 respectively.

We decouple gravity by decompactifying these geometries along the direction of the

fiber F of the Hirzebruch surface. The fibration structure of these geometries is summarized

in diagram (3.26).

E → M
yπ

F = P1 → B = Fkyπ′

Ck = P1

→

E → M̌
y̌π

O(−k) → B̌
y̌π′

Ck = P1

. (3.26)

We can engineer more general 6d superconformal theories by replacing the base Ck of

the non-compact base B̌ of the elliptic fibration by a string of intersecting P1’s. Setting

B̌ = C2/Γ, with Γ chosen among the discrete subgroups of SU(2), yields theories with (2, 0)

supersymmetry, as the elliptic fibration here is trivial. The string of compact curves in B̌

and their intersections is encoded in the Dynkin diagram corresponding to the subgroups

Γ; recall that these enjoy an ADE classification. In particular, all of these curves have

the topology of P1 and have normal bundle −2H. We refer to them as (−2) curves. The

massless M-string is the simplest member of this class of geometries, with Γ = Z2 ∼ A1.

The papers [32, 33] discuss which F-theory compactifications on elliptic fibrations over

non-compact bases can lead to 6d SCFTs with generically only (1,0) supersymmetry. The

only additional SCFTs without gauge symmetry contained in this classification arise upon
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Figure 1. The root lattice of affine E8.

including a single (−1) curve at the end of a string of (−2) curves; in the case Γ = Zn+1,

this corresponds to an E-Mn string chain bound state.

The topological data that we will need to determine the topological string partition

function on these geometries consists of the intersection numbers of these curves, as well

as their intersection product with the canonical line bundle of B̌. The latter is once again

simply determined by the adjunction formula (3.5), this time applied to B̌. As all compact

curves C in B̌ have genus 0, we obtain

KB̌ · C = −2− C · C . (3.27)

3.3 Turning on mass parameters

Above, we have identified the elliptic fibration over the total space of the bundle O(−1) →
P1 as local 1

2K3. Let us briefly recall the geometry of the 1
2K3 surface. It can be obtained

as the blow up of P2 at nine points. One can construct a series of del Pezzos surfaces Bk

by blowing up k generic points in P2. The canonical class is given by

−K = 3H −
k∑

i=1

ei . (3.28)

Here, H is the hyperplane class of P2 and ei, i = 1, . . . , k, denote the exceptional P1 curves

resulting from the blowups. The intersection numbers between these divisors are

H2 = 1 , ei ·H = 0 , e2i = −1 , i = 1, . . . , k . (3.29)

Let Λk = H2(Bm,Z) and

Λ′
k = {x ∈ Λk|x ·K = 0} . (3.30)

The intersection product induces an inner product on this lattice. One can readily show

that Λ′
k can be equipped with a root (or co-root) basis whose negative Cartan matrix is

−,−, A1, A1 × A2, A4, D5, E6, E7, E8 for k = 0, . . . , 8. The simple roots are always of the

form βij = ei − ej or γijk = H − ei − ej − ek, where i, j, k are taken to have distinct values.

For example, in the case k = 8, we obtain the root lattice of E8, as depicted in figure 1.

We set αk = ek − ek+1, k = 1, . . . , 7, and α8 = γ123. The labels correspond to the upper

indices in the figure (the lower indices are the Dynkin labels). The full set of positive

roots is then all βij , of which there are 28, all γijk (56), all δij = 2H −∑
k 6=i,j ek (28) and

ǫi = 3H −∑
k 6=i ek (8), yielding 120 = 248−8

2 .

It follows from the intersection numbers that K2 = 9−k. The 1
2K3 surface is obtained

by blowing up the unique base point of the elliptic pencil that models B8. It is elliptically

fibered over this exceptional divisor C1 = e9. As k = 9, −K is no longer positive. Indeed,
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it can be identified with the elliptic fiber E of this surface. Setting α0 = e9 − e8, the

divisors can be mapped to simple roots of the affine E8 Lie algebra, with α0 constituting

the affine root. The additional intersection numbers are C2
1 = −1, C1 ·E = 1, and E2 = 0.

The explicit geometric interpretation of the mass parameter in the case of the M-

string, and more generally in the case of elliptic fibrations over resolved ADE singularities,

is not equally transparent to us. Following [50], one could attempt to interpret the mass

parameter as deforming the geometry M̌ = B̌×T 2 away from the trivial product by fibering

the non-compact surface B̌ over T 2. We leave the exploration of this possibility (and in

particular the analysis of the D and E case, the mass deformation of which is excluded

in [51] based on physical considerations) to future work. In section 6, we will discuss a

related proposal for the mass deformation.

4 Holomorphic anomaly and Jacobi forms

The holomorphic anomaly equations for elliptic fibrations can be written in a form which

implies that Zβ is a Jacobi form of weight 0 and index a fixed function of β. For the relevant

properties of Jacobi forms, see appendix A. In the following, we will use the notation

A(τ, ζ) = A (τ, z) = φ−2,1(τ, z) , B(τ, ζ) = B (τ, z) = φ0,1(τ, z) , (4.1)

with ζ = 2πz, for the two generators of the ring of holomorphic weak Jacobi forms inter-

changeably. When only one argument is given, the elliptic parameter is meant.

4.1 A differential equation for Jacobi forms

A weak Jacobi form of weight k has a Taylor expansion

φ(τ, z) =
∞∑

j=0

ηj(τ)z
j , (4.2)

with the ηj being quasi-modular forms of weight j + k (in fact, one can be more precise

about the form of these coefficients, expressing them as functions of modular forms, their

derivatives, and the weight and index of φ [52]). Considering (4.2) term by term, we deduce

that the phase factor arising upon modular transformation of φ is due to the occurrence of

factors of E2 in the coefficients ηk. Since E2 transforms under modular transformations as

E2

(
aτ + b

cτ + d

)
= (cτ + d)2E2(τ) +

6

πi
c(cτ + d) , (4.3)

the exponential

exp

(
π2

3
mz2E2

)
(4.4)

generates the inverse of the phase factor occurring in the transformation of the Jacobi

form. The product exp(π
2

3 mz2E2)φ thus transforms without phase factor. Arguing again

termwise, we conclude that the E2 dependence in the Taylor coefficients is cancelled by

this prefactor. Hence a Jacobi form of index m satisfies the equation

∂

∂E2
exp

(
π2

3
mz2E2

)
φ = exp

(
π2

3
mz2E2

)(
∂

∂E2
+

π2

3
mz2

)
φ = 0 . (4.5)
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Conversely, a power series in z with quasi-modular coefficients that satisfies the equation
(

∂

∂E2
+

π2

3
mz2

)
φ = 0 (4.6)

transforms under modular transformations as a Jacobi form of indexm. If it is also periodic

under z → z + 1, its transformation behavior under z → z + τ as a Jacobi form follows by

combining periodicity and modular transformations. In the following, we will use elliptic

parameters ζ with period 2π + 2πτ ; they are related to z by z 7→ ζ/(2π). For these,
(

∂

∂E2
+

1

12
mζ2

)
φ = 0 . (4.7)

4.2 The index from the holomorphic anomaly equations

For the geometries described in the previous section, the holomorphic anomaly equations

have been motivated in the form [10]
(
∂E2 +

1

12

β · (β +KB̌)

2
g2s

)
Zβ = 0 . (4.8)

Here, the modular parameter of E2 is the Kähler parameter τ of the elliptic fiber, and

β =
∑r

i=1 nbiDbi = (nbi), where Dbi denote compact divisors in the non-compact base

surface B̌ of the elliptic fibration, whose canonical divisor is denoted as KB̌. Comparing

to equation (4.7), we conclude that the Zβ are Jacobi forms with modular parameter τ ,

elliptic parameter the string coupling gs, and of index

m =
β · (β +KB̌)

2
. (4.9)

This expression for the index can easily be evaluated using the intersection matrix of the

Dbi and the adjunction formula in the form (3.27). For the E- and the M-string, with

β = (nb), we obtain

β · (β +KB̌) =

{
−nb(nb + 1) for the E-string,

−2n2
b for the M-string.

(4.10)

Already in [53], it was argued that the masses of the E-string should enter the partition

function as the elliptic parameters of Jacobi forms, with index proportional to the number

of strings. The same holds true for the M-string. This gives rise to the equation
(
∂E2 +

1

12

[
β · (β +KB̌)

2
g2s + cmnbQ(m)

])
Zβ = 0 , (4.11)

where the quadratic form Q(m) is

Q(m) =

{
(m,m)e8 for the E-string ,

m2 for the M-string .
(4.12)

(·, ·)e8 is the E8 Weyl invariant inner product on the root space Φe8 , normalized so that

the norm square of the highest (and hence every) root of e8 is 2 (the Killing form will also
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make an appearance below, for which we will use the notation (·, ·), dropping the index).

m is the 8 dimensional mass parameter of the E-string and takes values in the complexified

root lattice Φe8 ⊗ C of e8. m is the mass associated to the M-string. The value of cm is

determined experimentally to be

cm =

{
1
2 for the E-string,

1 for the M-string.
(4.13)

The coupling constant s of the refined topological string in many respects behaves as a

mass parameter [8]. It is hence to be expected that it also enters the holomorphic anomaly

equations with a coefficient proportional to nb.
(
∂E2 +

1

12

[
β · (β +KB̌)

2
g2s + cmnbQ(m) + csnbs

2

])
Zβ = 0 . (4.14)

We determine the values of cs experimentally to be

cs =

{
1
2 for the E-string,
1
4 for the M-string.

(4.15)

The value of cs for the E-string was already reported in [54]. We will call

Mβ =
β · (β +KB̌)

2
g2s + cmnbQ(m) + csnbs

2 (4.16)

the index polynomial of Zβ .

Assuming that the contributions to the index polynomial which depend on s and the

masses remain linear in the base class, Mβ has a unique generalization to geometries with

base B̌ a resolved ADE quotient of C2, possibly with a (−1) curve added at the end of the

chain of (−2) curves, given by

Mβ =
β · (β +KB̌)

2
g2s +

1

4

(
2n0 +

n∑

i=1

ni

)
s2 +

n0

2
(m,m)e8 +m2

n∑

i=1

ni . (4.17)

We have here set β = (n0,n), with n0 specifying the wrapping number of the (−1) curve,

and called the rank of the ADE quotient n. With recourse to (3.27), we can easily evaluate

the intersection products. This yields

Mβ = −1

2




n∑

i,j=0

C ′
ijninj + n0


 g2s+

1

4

(
2n0 +

n∑

i=1

ni

)
s2+

n0

2
(m,m)e8+m2

n∑

i=1

ni , (4.18)

where we have introduced the intersection matrix

C ′ =




1 −1 0 · · ·
−1

CΓ0
...




. (4.19)
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This index polynomial can in principle be applied to any of the ADE quotients. For

the D and the E series, it is not immediately obvious that twisting by the mass parameter

is well-defined geometrically. In appendix C, we give some coefficients Nκ
j−j+

extracted

from our preliminary results for the D4 quotient which pass basic consistency checks: they

are positive integers, and follow a checkerboard pattern [2].

4.3 The index from anomalies

The contribution Zβ(τ,m, ǫ1, ǫ2)Q
β in the expansion (2.1) of the refined topological string

partition function can be identified with the elliptic genus of the non-critical string coming

from D3 branes wrapping the curve class β in the Calabi-Yau. From the elliptic genus

point of view, ǫ1, ǫ2 and m are interpreted as fugacities ua associated to global symmetries

in the worldsheet theory of the non-critical string. This connection gives us another way

to derive the index polynomial (4.18).

The elliptic genus transforms under the modular group as [55]

Z

(
aτ + b

cτ + d
,

ua
cτ + d

)
= η exp

[
− πi c

cτ + d

∑

a

Aau2a

]
Z(τ, ua) ,

(
a b

c d

)
∈ SL(2,Z) . (4.20)

Here η is a phase factor which will be reproduced in our ansatz by inclusion of factors of

the Dedekind η function; Aa are the ’t Hooft anomaly coefficients of the global symmetry

currents

Aa = TrWeylγ3Q
aQa , (4.21)

Qa being the charge operators of the global symmetries with fugacities ua. The index

polynomial of the elliptic genus is thus given by

M =
1

2

∑

a

Aau2a . (4.22)

On the other hand, the ’t Hooft anomaly coefficients are naturally contained in the anomaly

polynomial I4 of the 2d worldsheet theory, since the latter contains terms like [56]

I4 ∋
∑

a

Aach2(Fa) , (4.23)

where Fa are the field strength of the global symmetries which are weakly gauged. In fact,

as pointed out in [45], the index polynomial M of the elliptic genus can be obtained from

the anomaly polynomial I4 by a simple substitution. This procedure reproduces the index

polynomial (4.18) argued for above, as we now demonstrate.

The anomaly polynomial of the 2d worldsheet theory of the non-critical string reads [57]

I4 =
∑

i,j

ηijninj

2
(c2(L)− c2(R))

+
∑

i

ni

(
1

4

∑

a

ηiaTrF 2
a − 2− ηii

4
(p1(T )− 2c2(L)− 2c2(R)) + h∨Gi

c2(I)

)
.

(4.24)
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Here c2(L), c2(R) are the second Chern classes of the SU(2)−, SU(2)+ bundles associated

to the Omega background, while c2(I) is the second Chern class of the SU(2)I bundle

associated to the SU(2) R-symmetry of the 6d (1, 0) theory inherited by the worldsheet

of the non-critical string. p1(T ) is the first Pontryagin class of the tangent bundle of the

worldsheet, and it vanishes in the elliptic genus calculation as the worldsheet is a torus. Fa

are the field strength of weakly gauged flavor symmetries. They include those Gi induced by

singular elliptic fibers over the compact divisors Dbi in the base, which manifest themselves

as gauge symmetries in the 6d theory, as well as the flavor symmetries inherited from the 6d

theory, for instance the E8 symmetry associated to the E-string and the U(1)m symmetry

associated to the M-string. If Gi = ∅, one sets h∨Gi
= 1. ni are the wrapping numbers of

the non-critical string on Dbi . ηij can be identified with the intersection numbers C ′
ij of

Dbi , and ηia are the charges of the flavor symmetries carried by the non-critical string. For

the flavor symmetries of the E-string and the M-string, ηia = −1 [57].

It is claimed in [45] that the index polynomial (called modular anomaly in that paper)

of the elliptic genus can be obtained from the anomaly polynomial by the substitution

c2(L) 7→ −ǫ2− , c2(R) 7→ −ǫ2+ , c2(I) 7→ −ǫ2+ ,

1

2
TrF 2

G 7→ − 1

2h∨G

∑

α∈Φg

(α,m)(α,m) , p1(T ) 7→ 0 .
(4.25)

The inner product (·, ·) on the complexified root lattice Φg ⊗ C is the one induced by the

Killing form. To relate to our discussion in section 4.2, note that the only flavor symmetries

are the E8 symmetry of the E-string and the U(1)m symmetry associated to the chain of

(−2) curves. In the latter case, one simply needs

TrF 2
U(1)m

7→ −4m2 . (4.26)

In the case of the E-string, we note that via

(m,m) =
∑

α∈Φg

(α,m)(α,m) and (θ, θ) =
1

h∨g
, (4.27)

where θ indicates a highest root, we can simplify the replacement rule and obtain

1

2
TrF 2

E8
7→ −(m,m)e8 , (4.28)

where (·, ·)g was introduced above as the scalar product normalized such that long roots

have lengths squared 2. The replacement rules (4.25) together with (4.26) and (4.28)

reproduce the index polynomial (4.18).

Note that given the information that Zβ is a Jacobi form, the holomorphic anomaly

equations are completely determined by the index polynomial of the Jacobi form, as we

argue in section 4.1 and 4.2. We have here seen that the index polynomial is also fully

determined by the chiral anomaly of the 2d worldsheet theory of the 6d BPS string. The

holomorphic anomaly in this setting thus follows from the chiral anomaly.
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4.4 The ansatz for Zβ

The space of holomorphic weak Jacobi forms of fixed weight and index is finite dimensional.

We will make the ansatz, following [10] for the unrefined case, that the meromorphic Jacobi

form Zβ is a rational function of Jacobi forms, with a universal denominator. Once the

form of the denominator is fixed, we have the following situation:

• In the massless unrefined case, the structure of the numerator of Zβ is completely

fixed, and the computation of Zβ reduces to fixing a finite number of coefficients.

• Considering masses increases the number of elliptic parameters. The simplest general-

isation of the massless ansatz is to consider the numerator to be a polynomial of Jacobi

forms of elliptic parameter either gs or the masses. This proves to be sufficient for the

smooth elliptic fibrations that we are considering. The M-string exhibits a single mass

parameter, Jacobi forms of index nb with regard to this mass are hence polynomials in

A(τ,m) and B(τ,m). The 8 mass parameters of the E-string enjoy the action of the E8

Weyl group, under which the theory is symmetric. A set of 9 E8 Weyl invariant Jacobi

forms here generates the ring of Jacobi forms required. The main properties of these

forms are reviewed in appendix A.4. In the case of the E-Mn string chain, one includes

both the 8 masses of the E-string and the extra mass associated to the M-string chain.

• Refinement increases yet again the number of elliptic parameter. Now, Jacobi forms

of different combinations of the elliptic parameters are required.

To arrive at the correct ansatz in the massive refined case, we take the form of the re-

fined topological string free energy [30] in terms of 5d BPS invariants n
g−,g+
β as inspiration.5

Recall that this takes the form

F =
∑ n

g−,g+
β

w

(2 sinwǫ+)
2g+(2 sinwǫ−)2g−

2 sin wǫ1
2 2 sin wǫ2

2

Qwβ , (4.29)

where ǫ± = ǫ1±ǫ2
2 . Note that the argument of the sine functions are proportional to ǫ1,2 in

the denominator, and proportional to ǫ± in the numerator. Given that the generators of

integer index Jacobi forms, A(τ, z) and B(τ, z), have an expansion in

x = (2 sinπz)2 , (4.30)

with A ∼ x to leading order, we make the ansatz

Zβ =

( √
q

η(τ)12

)−β·KB̌ φk,n+,n−,β(τ,m, ǫ+, ǫ−)
∏r

i=1

∏βi
s=1

[
φ−1, 1

2
(τ, sǫ12π )φ−1, 1

2
(τ, sǫ22π )

] , (4.31)

where φ2
−1, 1

2

= φ−2,1 and

φk,n+,n−,β(τ,m, ǫ+, ǫ−) =
∑

ck4,k6,kA,+,kB,+,kA,−,kB,−,km
(4.32)

×Ek4
4 Ek6

6 φkm
(m)(AkA,+BkB,+)(ǫ+)(AkA,−BkB,−)(ǫ−) ,

5These can easily be related to the BPS numbers Nβ
j
−
j+

introduced above; see e.g. [8].
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with φkm
(m) a polynomial of appropriate weight and index in the generators A(τ,m),

B(τ,m), and the E8 Weyl invariant Jacobi forms. The η(τ) dependent prefactor is argued

for in [28], and entails that Zβ for β including a (-1) curve class transforms as a Jacobi

form only up to a non-trivial multiplier system. The factor
√
q comes from a redefinition

of the curve classes Q in the base such that the latter behave properly under the modular

transformation of the elliptic fiber [10]. We include it in Zβ so that the combination√
q/η(τ)12 is invariant under the shift τ 7→ τ + 1. For Zβ to have vanishing weight,

we restrict the sum such that the total weight k of each summand cancels that of the

denominator in (4.31). For the E- and the M-string, with β = (nb), this yields

k =

{
(6− 2)nb = 4nb for the E-string,

−2nb for the M-string.
(4.33)

The index of Zβ determined in section 4.2 then constrains the indices (n+, n−) of the Jacobi
forms in each summand as follows:

n+

(
ǫ1 + ǫ2

2

)2

+ n−

(
ǫ1 − ǫ2

2

)2

− nb(nb + 1)(2nb + 1)

12
(ǫ21 + ǫ22) = (4.34)

=

{
nb(nb+1)ǫ1ǫ2−nb(ǫ1+ǫ2)2

2 for the E-string,
4n2

bǫ1ǫ2−nb(ǫ1+ǫ2)2

4 for the M-string.

yielding

n+ =

{
nb
3 (n

2
b + 3nb − 4) for the E-string,

nb
6 (2n

2
b + 9nb − 5) for the M-string,

(4.35)

and

n− =

{
nb
3 (n

2
b − 1) for the E-string,

nb
6 (2n

2
b − 3nb + 1) for the M-string.

(4.36)

Similar calculations can be performed for the geometries based on chains of (−1) and (−2)

curves.

5 Computing Zβ in terms of meromorphic Jacobi forms

To determine the coefficients of the numerator (4.32) of Zβ , we proceed as follows:6 Assume

all Zβ′ below a certain base degree β have been determined.

• Express Fβ as defined in (2.1) in terms of Zβ′ for β′ ≤ β,

Fβ = Zβ + polynomial in Zβ′ , β′ < β . (5.1)

• Express Zβ′ for β′ ≤ β in the form (4.31), with the coefficients c in (4.32) known for

β′ < β.

6For ease of exposition, we set the E-string masses to zero here. Adapting the algorithm to the massive

E-string case is immediate. In our computations, we have considered the fully massive case.
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• Expand Fβ in q, with its coefficients expressed as polynomials in

x± = x
( ǫ±
2π

)
, xm = x

(m

2π

)
, (5.2)

with x as defined in (4.30).

• Obtain the same expansion of Fβ expressed in terms of BPS invariants by express-

ing (4.29) in terms of x± and xm and expanding appropriately.

• Imposing the boundary conditions on the BPS invariants that we discuss in section 5.1

and comparing coefficients suffices to fix all unknown coefficients.

Below, we will give a summary of the partition functions we have computed, including

the weight, the indices, and the number of summands in the numerator φk,n+,n−,β for the

E-string, the M-string, and the E-Mn string chain. In each case, we also give explicit

expressions for the numerator φk,n+,n−,β for relatively small base degrees in terms of weak

Jacobi forms, such that Zβ can easily be reconstructed in accordance with (4.31). The

φk,n+,n−,β for higher base degrees are available upon request. In the following, we will use

the following notation:

A± = A(τ, ǫ±) , Am = A(τ,m) , B± = B(τ, ǫ±) , Bm = B(τ,m) . (5.3)

Ai and Bi denote the W (E8)-invariant Jacobi forms reviewed in appendix A.4.

5.1 Sufficiency of vanishing conditions to fix ansatz

In this section, we study to what extent the vanishing conditions on the BPS numbers

Nκ
j−j+

suffice to fix the coefficients in the ansatz (4.32).

5.1.1 The unrefined case

For ease of exposition, we begin with the unrefined case. The ansatz (4.31) simplifies in

this case to

Zβ

/( √
q

η(τ)12

)−β·KB̌

=
φk,n,β(τ,m, ǫ)

∏r
i=1

∏βi
s=1

[
φ−2,1(τ,

sǫ
2π )

] , (5.4)

with

φk,n,β(τ,m, ǫ) =
∑

ck4,k6,kA,kB,km
Ek4

4 Ek6
6 φkm

(m)(AkABkB)(ǫ) . (5.5)

We will think of Zβ as a power series in q with coefficients that are Laurent series in x =

(2 sinπz)2, see appendix A. For the ensuing discussion, it will be convenient to introduce

the following terminology: we will call a series

φ(q, x) =
∞∑

n=0

qnfn(x) (5.6)

geometrically bounded if for all n, the series fn(x) are finite polynomials. For example, 1+qx

is geometrically bounded, while 1 + q
1−x is not. Clearly, the product of two geometrically

bounded series is also geometrically bounded. It is easy to show that A(τ, z) and B(τ, z)
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are geometrically bounded as power series in q and x; hence, all weak Jacobi forms are,

as they can be written as polynomials in A(τ, z), B(τ, z), E4(τ) and E6(τ). The inverse

φ(q, x)−1 of a geometrically bounded series φ(q, x) is geometrically bounded if and only if

the leading term f0(x) is a non-vanishing constant.

As we discussed in section 3.1, Castelnuovo theory asserts the vanishing of Gopakumar-

Vafa invariants of a given curve class at sufficiently high genus. Defining the single wrapping

contribution to Zβ as

Zsingle
β = Zβ −

∑
contributions from Iβ

′

g for β′ < β

=
∞∑

g=0

∑

κ

Iβ,κg

(
2 sin

(gs
2

))2g−2
Qκ , (5.7)

where gs = 2πz and Q = (q,Qm), we conclude that xZsingle
β must be geometrically

bounded. We will call a series that becomes geometrically bounded upon multiplication

with x a Gopakumar-Vafa series.

Zsingle
β will generically not be of the form (5.4). Assume however that we have fixed

all Gopakumar-Vafa invariants at base degrees β′ < β. Assume futher that at base degree

β, we find two different sets of constants c1 and c2 in (5.5) that are compatible with the

vanishing conditions on Gopakumar-Vafa invariants. Multi-wrapping contributions cancel

out in the difference of Zβ(c1) and Zβ(c2), as these depend on β′ < β. The ambiguity

Zambig
β in our procedure,

Zambig
β = Zβ(c1)− Zβ(c2) = Zsingle

β (c1)− Zsingle
β (c2) , (5.8)

is therefore a Gopakumar-Vafa series, and it can be written in the form (5.4), as evident

from the first equality in (5.8). Our argument will now rely on the lemma that the only

rational functions of weak Jacobi forms of the form (5.4) which are Gopakumar-Vafa series

have at most a single power of A(τ, z) in the denominator. Hence,

Zambig
β

/( √
q

η(τ)12

)−β·KB̌

=
φambig
β (τ, ǫ,m)

φ−2,1(τ,
ǫ
2π )

. (5.9)

Note that Zambig
β has the same index as Zβ . Z

ambig
β vanishes, and Zβ is therefore completely

determined by the vanishing conditions, when this index would require the index of φambig
β

to be negative.

To prove the lemma, assume that Zambig
β is a Gopakumar-Vafa series. Then

A(τ, z)Zambig
β

/( √
q

η(τ)12

)−β·KB̌

=
φ(τ, z)

D(τ, z)
(5.10)

is geometrically bounded, with D(τ, z) in the product form implied by (5.4). By the

factorized form (A.23) of A(τ, z), D(τ, z) can be decomposed as D(τ, z) = d(z)D̃(τ, z),

such that D̃(τ, z) = 1 + O(q, z). Geometric boundedness of (5.10) thus implies that each

coefficient of φ(τ, z) in a q expansion must be divisible by d(z). We can conclude that
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φ(τ, z) vanishes at the zeros of d(z) with at least equal multiplicity. Now d(z) has only real

zeros, and these coincide (counted with multiplicities) with the real zeros in z of D(τ, z).

Invoking the SL(2,Z) transformation properties of both φ(τ, z) and D(τ, z) to obtain the

SL(2,Z) images of these zeros in the complex plane, we can conclude that φ(τ, z) vanishes

at all the zeros of not only d(z) but D(τ, z), with at least equal multiplicity. Hence,

A(τ, z)Zambig
β

/( √
q

η(τ)12

)−β·KB̌
only exhibits removable singularities, is thus a weak Jacobi

form, and Zambig
β is of the form (5.9). This concludes the argument for the lemma.

5.1.2 The refined case

To adapt the terminology introduced above to the refined case, we introduce the notation

x± = (2 sin( ǫ±2 ))2, and call a power series in q, x± organized in the form

φ(q, x+, x−) =
∞∑

n=0

qnfn(x+, x−) (5.11)

geometrically bounded if the fn are polynomials in both x+ and x−. The numerator (4.32)

is evidently such a geometrically bounded power series. Likewise, we introduce the ter-

minology refined Gopakumar-Vafa series for a power series in (q, x+, x−), which, like the

single wrapping contribution to Zβ in the refined case, becomes geometrically bounded

when multiplied by x+ − x− = 4 sin( ǫ12 ) sin(
ǫ2
2 ).

To adapt our argument regarding Zambig
β to the refined case, we require a lemma stating

that the only rational functions of weak Jacobi forms of the form (4.31) which are refined

Gopakumar-Vafa series have at most a single power of

φ−1, 1
2

(
τ,

ǫ1
2π

)
φ−1, 1

2

(
τ,

ǫ2
2π

)
=

1

12
(A(τ, ǫ−)B(τ, ǫ+)−A(τ, ǫ+)B(τ, ǫ−)) (5.12)

in the denominator. This will allow us to conclude that the ambiguity in determining Zβ

upon imposing vanishing conditions takes the form

Zambig
β

/( √
q

η(τ)12

)−β·KB̌

=
φambig
β (τ, ǫ+, ǫ−,m)

φ−1, 1
2
(τ, ǫ1

2π )φ−1, 1
2
(τ, ǫ2

2π )
. (5.13)

The negativity of either the ǫ+ or the ǫ− index of φambig
β will then suffice to conclude that

the ambiguity must vanish.

To establish the lemma, we argue as above: if Zambig
β is to be a Gopakumar-Vafa series,

(A(τ, ǫ−)B(τ, ǫ+)−A(τ, ǫ+)B(τ, ǫ−))Zambig
β =

φ(τ, ǫ+, ǫ−)
D(τ, ǫ+, ǫ−)

(5.14)

must be geometrically bounded. Replacing D(τ, ǫ+, ǫ−) by d(ǫ+, ǫ−) and arguing term-

wise, we again conclude that (5.14) exhibits no poles. At this point, we would require

a structure theorem stating that a weak Jacobi form in two integer indices ǫ+ and ǫ− is

generated by A±, B±, E4 and E6. Short of this, we invoke the conjecture put forth in

section 2, stating that Zβ can be expressed in the form (4.31), to conclude the argument.
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(nb) k n+ n− #

(1) −2 1 0 2/1

(2) −4 7 1 28/7

(3) −6 20 5 982/215

(4) −8 42 14 −/2694

Table 1. The weight k, the indices n±, and the number of terms # in the numerator φk,n+,n
−
,(nb)

of the partition function of the massive/massless M-string.

Let us now apply these considerations to the massless E-string and M-string. For the

leading base degree β = C1,2, the general ansatz (4.31) is a refined Gopakumar-Vafa series,

so imposing the vanishing of BPS invariants is not sufficient to determine the coefficients c.

It turns out that for both models, providing one non-vanishing BPS invariant is sufficient

to completely fix the ansatz. Beyond this base degree, the indices for ǫ− in both models

are negative and smaller than −1. While for the ansatz (4.31), the numerator still has

non-negative index, the numerator of Zambig
β would now require negative index for ǫ−. As

this is not possible, imposing the vanishing conditions suffices to fix the ansatz completely

for all base degrees beyond β = C1,2. The analysis for the more general geometries we

consider proceeds analogously.

5.2 The M-string

For the M-string with its associated mass m turned on, we have computed the partition

function up to base degree three. The results are summarized in table 1. The explicit

forms of the numerator with base degree one and two are given in the following.

nb = 1.

φM

−2,1,0,(1) =
−AmB+ +A+Bm

12
. (5.15)

nb = 2.

φM

−4,7,1,(2) =
E3

4A−A7
+B2

m

7962624 − E3
4B−A7

+AmBm

7962624 +
E3

4B−A6
+B+A2

m

7962624 − E3
4A−A6

+B+AmBm

7962624

+
5E2

4B−A5
+B2

+AmBm

23887872 − 5E2
4A−A5

+B2
+B2

m

23887872 +
5E2

4A−A4
+B3

+AmBm

23887872 − 5E2
4B−A4

+B3
+A2

m

23887872

+
E4E6A−A6

+B+B2
m

8957952 −E4E6B−A6
+B+AmBm

8957952 +
E4E6B−A5

+B2
+A2

m

8957952 −E4E6A−A5
+B2

+AmBm

8957952

+
5E4B−A3

+B4
+AmBm

71663616 − 5E4A−A3
+B4

+B2
m

71663616 +
5E4A−A2

+B5
+AmBm

71663616 − 5E4B−A2
+B5

+A2
m

71663616

+
E2

6B−A7
+AmBm

6718464 − E2
6A−A7

+B2
m

6718464 +
E2

6A−A6
+B+AmBm

6718464 − E2
6B−A6

+B+A2
m

6718464

+
5E6A−A4

+B3
+B2

m

26873856 − 5E6B−A4
+B3

+AmBm

26873856 +
5E6B−A3

+B4
+A2

m

26873856 − 5E6A−A3
+B4

+AmBm

26873856

+
A−A+B6

+B2
m

214990848 − B−A+B6
+AmBm

214990848 +
B−B7

+A2
m

214990848 − A−B7
+AmBm

214990848 .

(5.16)

The massless limit is smooth and is obtained by replacing Am by 0 and Bm by 12. Al-

ternatively, the partition function of the massless M-string can be computed directly from

the ansatz (4.31) with mass set to zero. We pushed this calculation up to base degree 4 as

summarized in table 1.
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(nb) k n+ n− #

(1) 4 0 0 1/1

(2) 8 4 2 43/24

(3) 12 14 8 1663/431

(4) 16 32 20 −/4207

Table 2. The weight k, the indices n±, and the number of terms # in the numerator φk,n+,n
−
,(nb)

of the partition function of the massive/massless E-string.

5.3 The E-string

We have computed the partition functions for the E-string with its eight mass parameters

turned on up to base degree three. The results are summarized in table 2. The explicit

form of the numerator with base degrees one and two are given in the following.

nb = 1.

φE

4,0,0,(1) = −A1 . (5.17)

nb = 2.

φE

8,4,2,(2) =−5E3
4A

2
1A2

−A4
+

1492992 +
(E3

4−E2
6)A2

1A2
−A4

+

46656 − E2
4A

2
1B2

−A4
+

31104 − E3
4A2B2

−A4
+

124416 +
(E3

4−E2
6)A2B2

−A4
+

31104

−5E4E6B2B2
−A4

+

373248 +
E4E6A2

1A−B−A4
+

46656 +
E2

4E6A2A−B−A4
+

497664 +
5E3

4A−B2B−A4
+

1492992

+
5(E3

4−E2
6)A−B2B−A4

+

186624 +
E4E6A2

1A2
−B+A3

+

23328 − E2
4E6A2A2

−B+A3
+

497664 +
E6A2

1B2
−B+A3

+

2916

+
E4E6A2B2

−B+A3
+

10368 +
5E2

4B2B2
−B+A3

+

31104 − 5E3
4A2

−B2B+A3
+

1492992 − 5(E3
4−E2

6)A2
−B2B+A3

+

186624

−E2
4A

2
1A−B−B+A3

+

3888 −E3
4A2A−B−B+A3

+

62208 +
(E3

4−E2
6)A2A−B−B+A3

+

15552 − 5E4E6A−B2B−B+A3
+

186624

−E2
4A

2
1A2

−B2
+A2

+

5184 +
E3

4A2A2
−B2

+A2
+

41472 − (E3
4−E2

6)A2A2
−B2

+A2
+

10368 − E4A2
1B2

−B2
+A2

+

972

−E2
4A2B2

−B2
+A2

+

2592 − 5E6B2B2
−B2

+A2
+

7776 +
5E4E6A2

−B2B2
+A2

+

124416 +
E6A2

1A−B−B2
+A2

+

972

+
E6A2

1A2
−B3

+A+

2916 −E4E6A2A2
−B3

+A+

10368 +
E6A2B2

−B3
+A+

1944 +
5E4B2B2

−B3
+A+

5832 − 5E2
4A2

−B2B3
+A+

31104

−E4A2
1A−B−B3

+A+

729 +
E2

4A2A−B−B3
+A+

3888 +
5E6A−B2B−B3

+A+

11664 − E4A2
1A2

−B4
+

5832

+
E2

4A2A2
−B4

+

7776 + 2
729A

2
1B2

−B4
+ +

5E6A2
−B2B4

+

23328 − E6A2A−B−B4
+

1944 − 5E4A−B2B−B4
+

5832 .

(5.18)

Just as for the M-string, the massless limit is smooth, and yields a partition function

summed over contributions from curve classes corresponding to the masses. For nb = 1, 2,

the expressions above reduce to

φE,m=0

4,0,0,(1) = −E4 (5.19)
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and

φE,m=0

8,4,2,(2) =
A2

−A4
+E5

4

55296 − A2
−A4

+E2
4E

2
6

46656 +
A2

−A3
+B+E3

4E6

373248 +
5A2

−A3
+B+E3

6

746496 − 11A2
−A2

+B2
+E4

4

663552

+
17A2

−A2
+B2

+E4E2
6

1990656 +
A2

−A+B3
+E2

4E6

746496 − A2
−B4

+E3
4

5971968 +
5A2

−B4
+E2

6

5971968 +
5A−A4

+B−E3
4E6

373248

−5A−A4
+B−E3

6

746496 − 13A−A3
+B−B+E4

4

995328 − 17A−A3
+B−B+E4E2

6

2985984 +
A−A2

+B−B2
+E2

4E6

62208

−13A−A+B−B3
+E3

4

2985984 +
5A−A+B−B3

+E2
6

2985984 − A−B−B4
+E4E6

746496 − A4
+B2

−E4
4

1990656 − 17A4
+B2

−E4E2
6

5971968

+
7A3

+B2
−B+E2

4E6

746496 − 11A2
+B2

−B2
+E3

4

1990656 − 5A2
+B2

−B2
+E2

6

1990656 +
A+B2

−B3
+E4E6

746496 +
B2
−B4

+E2
4

1492992 .

(5.20)

Similar to the M-string, the partition function of the massless E-string can alternatively

be computed from the ansatz (4.31) with all masses set to zero. We have pushed this

calculation up to nb = 4 as summarized in table 2.

5.4 The E-Mn string chain

Here we consider the E-Mn string chain, which is engineered by the geometric configuration

of one (−1) curve connected to one end of a linear chain of n (−2) curves. To simplify

the computation, we turn off the eight mass parameters associated to the E-string, but we

keep the mass m associated to the M-string chain finite. The weight and the indices of the

numerator φk,n+,n−,(nb) read

k = 4n0 − 2
n∑

i=1

ni ,

n+ =
1

2

n∑

i,j=0

C ′
ijninj −

(
3

2
n0 +

n∑

i=1

ni

)
+

n∑

i=0

ni(ni + 1)(2ni + 1)

6
,

n− = −1

2

n∑

i,j=0

C ′
ijninj −

1

2
n0 +

n∑

i=0

ni(ni + 1)(2ni + 1)

6
.

(5.21)

We have computed the partition functions up to base degree (2, 1), (1, 2) for n = 1

((−1) curve connected to one (−2) curve), base degree (2, 1, 1), (1, 2, 1), (1, 1, 2) for n = 2

((−1) curve connected to two (−2) curves), and base degree (2, 1, 1, 1) for n = 3. The

numbers of terms in the numerators are respectively 56, 53; 89, 80, 80; 126. We give in the

following the explicit expression for base degrees (1,1), (1,2), (2,1) for n = 1.

nb = (1, 1).

φ2,0,1,(1,1) =
E4

12
(AmB− −A−Bm) (5.22)
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nb = (1, 2).

φ0,5,3,(1,2) =
E4E2

6A3
−B2

mA5
+

6718464 +
E4E6B3

−B2
mA5

+

53747712 +
E2

4E6A−AmB2
−BmA5

+

8957952 +
E4

4A2
−AmB−BmA5

+

2654208

−E4E2
6A2

−AmB−BmA5
+

2239488 − E4
4A3

−B2
mA5

+

7962624 − E3
4A−B2

−B2
mA5

+

23887872 − E3
4AmB3

−BmA5
+

23887872

+
E4E6A−B2

−B+B2
mA4

+

17915904 +
E3

4A2
−B−B+B2

mA4
+

11943936 +
E3

4A2
mB3

−B+A4
+

23887872 +
E4E2

6A2
−A2

mB−B+A4
+

2239488

+
E4E6AmB3

−B+BmA4
+

13436928 +
E4E2

6A3
−AmB+BmA4

+

6718464 +
E2

4E6A2
−AmB−B+BmA4

+

8957952

−E4
4A2

−A2
mB−B+A4

+

2654208 − E4
4A3

−AmB+BmA4
+

7962624 − E2
4E6A3

−B+B2
mA4

+

8957952 − E2
4E6A−A2

mB2
−B+A4

+

8957952

−5E3
4A−AmB2

−B+BmA4
+

23887872 − E2
4B3

−B+B2
mA4

+

35831808 +
E4

4A3
−A2

mB2
+A3

+

3981312 +
E3

4A−A2
mB2

−B2
+A3

+

3981312

+
E3

4A3
−B2

+B2
mA3

+

5971968 +
E4E6A−AmB2

−B2
+BmA3

+

8957952 −E4E2
6A3

−A2
mB2

+A3
+

3359232 −E4E6A2
−B−B2

+B2
mA3

+

5971968

−E2
4E6A2

−A2
mB−B2

+A3
+

8957952 −E3
4A2

−AmB−B2
+BmA3

+

11943936 −E2
4AmB3

−B2
+BmA3

+

35831808 − 5E4E6A2
mB3

−B2
+A3

+

53747712

+
E2

4A2
mB3

−B3
+A2

+

17915904 +
E2

4E6A3
−A2

mB3
+A2

+

8957952 +
E4B3

−B3
+B2

mA2
+

107495424 +
E2

4A2
−B−B3

+B2
mA2

+

11943936

+
E4E6A2

−AmB−B3
+BmA2

+

8957952 − E4E6A−A2
mB2

−B3
+A2

+

5971968 − E3
4A3

−AmB3
+BmA2

+

11943936

−E2
4A−AmB2

−B3
+BmA2

+

35831808 − 5E4E6A3
−B3

+B2
mA2

+

53747712 +
E2

4A−A2
mB2

−B4
+A+

35831808 +
E4E6A2

−A2
mB−B4

+A+

17915904

+
E2

4A3
−B4

+B2
mA+

71663616 +
E4E6A3

−AmB4
+BmA+

13436928 − E3
4A3

−A2
mB4

+A+

11943936 − E4A−B2
−B4

+B2
mA+

71663616

−5E2
4A2

−AmB−B4
+BmA+

71663616 − E4AmB3
−B4

+BmA+

214990848 +
E4E6A3

−A2
mB5

+

53747712 +
E4A−AmB2

−B5
+Bm

71663616

−E2
4A2

−A2
mB−B5

+

71663616 − E2
4A3

−AmB5
+Bm

71663616 − E4A2
mB3

−B5
+

214990848 .

(5.23)

nb = (2, 1).

φ6,3,4,(2,1)=
A4

−A2
+AmB+E5

4

663552 +
A4

−A3
+BmE5

4

663552 − A3
−A3

+AmB−E5
4

331776 +
A−A3

+AmB3
−E4

4

995328

+
13A2

−A2
+AmB2

−B+E4
4

7962624 +
A2

−A3
+B2

−BmE4
4

2654208 − A3
−A+AmB−B2

+E4
4

11943936 − 23A3
−A2

+B−B+BmE4
4

11943936

−A4
−AmB3

+E4
4

23887872 − 23A4
−A+B2

+BmE4
4

23887872 +
23A−A+AmB3

−B2
+E3

4

35831808 +
5E6A4

−A+AmB2
+E3

4

4478976

+
23A2

+AmB4
−B+E3

4

71663616 +
A3

+B4
−BmE3

4

71663616 +
5E6A3

−A3
+B−BmE3

4

4478976 +
A−A2

+B3
−B+BmE3

4

35831808

+
E6A4

−A2
+B+BmE3

4

4478976 − E6A2
−A3

+AmB2
−E3

4

746496 − A3
−B−B3

+BmE3
4

2985984 − 5E6A3
−A2

+AmB−B+E3
4

4478976

−A2
−AmB2

−B3
+E3

4

7962624 − 13A2
−A+B2

−B2
+BmE3

4

23887872 +
5E6A3

−AmB−B3
+E2

4

8957952 +
E2

6A3
−A3

+AmB−E2
4

279936

+
E6A−A3

+B3
−BmE2

4

8957952 +
E6A4

−B3
+BmE2

4

4478976 +
A−B3

−B3
+BmE2

4

8957952 +
11E6A3

−A+B−B2
+BmE2

4

8957952

+
E6A2

−A2
+B2

−B+BmE2
4

1492992 − E2
6A4

−A2
+AmB+E2

4

559872 − E2
6A4

−A3
+BmE2

4

559872 − E6A2
−A+AmB2

−B2
+E2

4

1492992

−E6A3
+AmB4

−E2
4

4478976 − 17E6A−A2
+AmB3

−B+E2
4

8957952 − AmB4
−B3

+E2
4

17915904 − A+B4
−B2

+BmE2
4

17915904

+
E6A−AmB3

−B3
+E4

8957952 +
17E2

6A2
−A2

+AmB2
−B+E4

23887872 +
17E2

6A4
−A+B2

+BmE4

71663616 +
E6A2

+B4
−B+BmE4

8957952

+
17E2

6A3
−A2

+B−B+BmE4

35831808 −E6A+AmB4
−B2

+E4

8957952 −E6A−A+B3
−B2

+BmE4

8957952 − 17E2
6A2

−A3
+B2

−BmE4

23887872

−17E2
6A3

−A+AmB−B2
+E4

35831808 − 17E2
6A4

−AmB3
+E4

71663616 +
5E2

6A−A+AmB3
−B2

+

35831808 +
5E2

6A2
+AmB4

−B+

71663616

+
5E3

6A3
−A2

+AmB−B+

8957952 +
5E2

6A2
−A+B2

−B2
+Bm

23887872 +
5E3

6A4
−A2

+B+Bm

8957952 − 5E3
6A4

−A+AmB2
+

8957952

−5E3
6A3

−A3
+B−Bm

8957952 − 5E2
6A2

−AmB2
−B3

+

23887872 − 5E2
6A−A2

+B3
−B+Bm

35831808 − 5E2
6A3

+B4
−Bm

71663616

(5.24)

The partition functions with (nb) = (1, 1), (1, 2), (2, 1) are also given in the appendix

of [51] in terms of Jacobi theta functions, and we have checked that our results coincide
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Figure 2. All the M2 branes must form E-string-like bound states in the limit m = ǫ+.

with theirs in the small q = exp(2πi τ) expansion. Furthermore, the partition functions

with base degrees (nb) = (0, n1, n2) can also be computed with the multi-M-string setup

where M2 branes are suspended between three parallel M5 branes, as discussed in [36].

We have checked that our results of (nb) = (0, 1, 1), (0, 2, 1) are identical with those in [36].

5.4.1 Factorization of the partition function

It is claimed in [36] that when the mass m associated to (−2) curves is set to ǫ+, the

partition function for the E-M string chain factorizes

Z(n1,n2) =

{
ZE
(n2)

ZE
(n1−n2)

n1 ≥ n2

0 n1 < n2

, (5.25)

where ZE
(nb)

is the partition function of the E-string with base degree nb. We find that

factorization of this type is universal for E-Mn string chains. For instance, we found that

with m = ǫ+

Z(1,0,1) = Z(1,2,1) = Z(1,1,2) = 0 ,

Z(1,1,1) = Z(1,1,1,1) = ZE
(1) , Z(2,1,1) = Z(2,1,1,1) = (ZE

(1))
2 , . . .

(5.26)

All these factorization properties can be summarized in the following formula

Z(k1,k2,...,kn) =

{∏n
i=1 Z

E
(ki−ki+1)

k1 ≥ k2 ≥ . . . ≥ kn ≥ kn+1 = 0 ,

0 otherwise .
(5.27)

It can be explained by a mechanism similar to that behind (5.25). When m = ǫ+, as

argued in [51], all M2 branes must form bound states like (k, k, . . . , k︸ ︷︷ ︸
j

), in other words, an

M2 brane suspected between the M9 brane and the j-th M5 brane, and the bound state

behaves like an E-string state; see figure 2. Any remaining M-string state that is not part

of a bound state leads to the vanishing of the partition function.

6 BPS invariants and vanishing conditions

In this section, we will discuss the BPS invariants that we can extract from our modular

expressions for Zβ . We will supplement the vanishing conditions (3.16) and (3.22) derived

in section 3.1 with more stringent conjectured bounds based on these results, and get

additional hints with regard to the geometric origin of the mass parameter in geometries

involving (−2) curves.
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6.1 The E-string

The topological string on the compact elliptic fibration over the Hirzebruch surface F1 can

be solved to low genus in the B-model using mirror symmetry. This allows the computation

of the BPS invariants of local 1
2K3 which are accessible in the compact model, corresponding

to curve classes C = bC1 + eE. In this manner, [31] obtained the result

∞∑

ne=0

I1,ne
0 qne =

√
qE4

η12
= 1 + 252q + 5130q2 + 54760q3 + . . . , (6.1)

The base degree b = 0 invariants are given by [28]

I0,ne
0 = 480, I0,ne

1 = 4, ∀ ne ∈ N0, while I0,ne
g = 0 ∀g > 1, ne ∈ N0. (6.2)

In fact, these numbers are also related to modular generating functions, see [28] for details.

As discussed in section 3.3, eight additional homology classes arise in the decompacti-

fication limit of the geometry, given by the total space of the canonical bundle over 1
2K3.

A general compact curve class in this geometry is of the form

C = bC1 + eE +

8∑

i=1

µiαi . (6.3)

With the intersection numbers discussed in section 3.3, we obtain

C2 = −b2 + 2be− (µ,µ)e8 , K · C = −b (6.4)

and can evaluate the Castelnuovo bound (3.6) for this geometry. For the case e < b, our

computations suggest a stricter bound than the one that follows from (3.6). Overall, the

vanishing conditions for the unrefined invariants Ib,eg = 0 that we obtain are

Ib,e,µg = 0





for g > 0 or µ > 0 if e = 0 and b = 1

∀ g if e < b and b > 1

for g > gmax(b, e,µ) = 1
2(2eb− b(b+ 1)− (µ,µ)e8) + 1 if e ≥ b .

(6.5)

Note that due to the positivity of the Cartan matrix of E8, the bound is weakest at µ = 0.

We further conclude that only a finite number of E8 Weyl orbits of the mass parameters,

as specified by the Weyl invariant inner product M = (µ,µ)e8 ∈ 2N for µ ∈ Φe8 ⊗ Z, can

contribute to BPS invariants at fixed (b, e):

M ≤ Mmax(e, b) = 2eb− b(b+ 1) + 2 . (6.6)

For the massless case, we can revert to (3.8) to predict the leading unrefined BPS

invariants at gmax(b, e) to be

Ib,egmax(b,e) = (−1)gmax(b,e)+b(gmax(b, e) + b) . (6.7)

This is confirmed by our explicit determination of Zβ in section 5.3. We list some of the

invariants Ib,eg at base degree b = 1, 2, 3 in table 3. Some invariants at base degrees b = 4, 5

can be found in appendix C.
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I1,eg e =0 1 2 3 4

g =0 1 252 5130 54760 419895

1 -2 -510 -11780 -142330

2 3 772 19467

3 -4 -1038

4 5

I2,eg e =2 3 4

g =0 -9252 -673760 -20534040

1 760 205320 11361360

2 -4 -25604 -3075138

3 1296 494144

4 -6 -45172

5 1844

6 -8

I3,eg e =3 4

g =0 848628 115243155

1 -246790 -76854240

2 30464 26356767

3 -1548 -5707354

4 7 790293

5 -64252

6 2388

7 -10

Table 3. Unrefined BPS invariants for the massless E-string at base degrees b = 1, 2, 3.

We can similarly evaluate the Castelnuovo bounds (3.16) and (3.22) for the refined

invariants N b,e
j−j+

to obtain

N b,e,µ
j−j+

= 0





for j− > 0 or j+ > 0 or µ > 0 if e = 0 and b = 1

∀ j−, j+ if e < b and b > 1

for





2j− > 2jmax
− (b, e) = 1

2(−b2 + 2be− (µ,µ)e8 − b) + 1

or

2j+ > 2jmax
+ (b, e) = 1

2(−b2 + 2be− (µ,µ)e8 + b)

if e ≥ b

(6.8)

We have again supplemented the bound with a stricter observational bound for e < b.

From the Lefschetz decomposition of the moduli space in the massless case, we conclude

N
(b,e)
jmax
− (b,e)jmax

+ (b,e) = 1 , (6.9)

as well as the checkerboard pattern for vanishing and non-vanishing BPS invariants inside

the bound (j−, j+) ≤ (jmax
− (b, e), jmax

+ (b, e)),

N
(b,e)
j−j+

= 0 if 2(jmax
− (b, e) + jmax

+ (b, e)− j− − j+) 6= 0 mod 2. (6.10)

Note that the Weyl symmetry that acts on the curves in 1
2K3 guaranties that the

BPS states are organized in terms of representations of the Weyl group. Setting m = 0

yields BPS invariants that are sums over the contributions of different Weyl orbits. This

is visible for the refined BPS invariants in table 4, as all orbits contribute with positive

sign. Moreover, in the refined case, we see that the contributions of degenerate curves

at higher arithmetic genus complete these Weyl orbit contributions to full representations

of E8. For instance, the N b=1,e=1
0,0 = 248 in table 4 for the refined E-String comes from

240 rational curves in the Weyl orbit of e8 of roots of length 2, supplemented by the

contribution of 8 degenerate curves of arithmetic genus one, the highest spin representation

of which in the Lefschetz decomposition of moduli space gives the contribution N b=1,e=1
1
2
, 1
2

=

1. Summing over the right spin quantum number j+ according to (3.15), we get from this

state (−2)
[
1
2

]
− = (−2)(T1 − 2T0). Adding to this the contribution 248[0]− = 248T0 at

spin 0 yields the entries Ib=1,e=1
0 = 252 and Ib=1,e=1

1 = −2 in table 3. This illustrates how

representation theoretic aspects get obscured by the signs in the unrefined case.

We can use the classic projective description of the moduli space of smooth very high

genus and high κ curves also in the refined case, and obtain asymptotic formulae for the
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N
(1,0)
j
−
j+

2j+ =0

2j− =0 1

N
(1,1)
j
−
j+

2j+ =0 1

2j− =0 248

1 1

N
(1,2)
j
−
j+

2j+ =0 1 2

2j− =0 4125

1 249

2 1

N
(1,3)
j
−
j+

2j+ =0 1 2 3

2j− =0 35001 1

1 4374

2 1 249

3 1

N
(1,4)
j
−
j+

2j+ =0 1 2 3 4

2j− =0 217501 249

1 39375 1

2 249 4375

3 1 249

4 1

N
(2,2)
j
−
j+

2j+ =0 1 2

2j− =0 3876

1 248

2 1

N
(2,3)
j
−
j+

2j+ =0 1 2 3 4 5

2j− =0 186126 249

1 4124 38877 1

2 249 4373

3 1 249

4 1

Table 4. Refined BPS invariants of the massless E-string at base degrees b = 1, 2 and e ≤ 3.

multiplicities of states. Let us introduce a degeneration parameter d = d+ + d− such

as at the end of section 3.1. In a suitable range d ≤ d(κ), we can use the projective

model of the moduli space Pn(M,κ) given by a P(C2
κ−K·Cκ)/2 bundle over S[d], together

with its SU(2)− × SU(2)+ Lefschetz decomposition and the multiplicities of Weyl orbits

to predict an infinite number of non-vanishing BPS numbers at arbitrary high base degree

b: we start with any maximal left and maximal right spin (3.16), (3.22) and predict,

using the methods of [2], the lower spin BPS degeneracies Nκ

jmax
− − d−

2
,jmax
+ − d+

2

bounded by

d+ + d− ≤ d(κ) = 2n+ 1. Note that at the boundary for even d the checkerboard pattern

already predicts vanishing numbers. Applying this procedure to all κ bounded by b < 5

and e < 13, we find that the BPS numbers stabilize for

e− b > n if b > 1 or e− b > 2n if b = 1 . (6.11)

This suggests that in this range, no corrections of the type discussed at the end of section 3.1

occur and the numbers are indeed given by the projective model. Examples for such

asymptotic BPS numbers are given in table 5 for d ≤ 10. The fact that there is such

a universal behavior of the BPS numbers for all b, which we have not used as boundary

conditions for our computations at fixed b, suggests that there should be a more universal

description of Ztop valid for all b.

We have also solved the massive E-string up to base degree b ≤ 3. The results at the

level of BPS numbers are available upon request. Some have already been discussed in [54]

based on computations using the refined holomorphic anomaly equations and imposing

boundary conditions. In this work, we have provided the systematic underpinning of such

calculations, and demonstrated the complete integrability of the massive E-string using our
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N
(b>1,e>n+b)

jmax
−

−
d
−

2
,jmax

+ −
d+
2

d+ =9 8 7 6 5 4 3 2 1 0

d− =9 - - - - 0

8 - - - 0 0

7 - - - 250 0

6 - - 44250 1 0

5 - - 1398253 4625 0

4 - 44250 261501 250 0

3 - 250 4625 39625 1

2 0 1 250 4375 0

1 0 0 0 1 249

0 0 0 0 0 1

Table 5. Asymptotics of refined BPS invariants of the massless E-string for d = 2n+1 with n = 4.

We indicate only those vanishings by 0 that are not already implied by the checkerboard pattern.

modular ansatz and the boundary conditions. Given a solution of the massive E-string, [54]

explains how to take limits to get solutions for the refined topological string on del Pezzo

surfaces BkP
2 given by P2 blown up at k points. For degree 9 − k smaller than six, these

are generically not toric and therefore not solvable by the topological vertex. Hence, our

methods also provide complete solutions for these previously inaccessible cases.

6.2 The M-string

The geometry of the M-string is less well understood in the literature. In the original

paper [36], a ‘non-planar toric diagram’ is considered with identifications of two outer

legs which indicate the sums with which the legs of refined topological vertices have to be

connected to obtain the partition function. It is however not at all obvious how to compute

the homology, the intersection numbers or the Kähler cone of the resulting local Calabi-Yau

space M̌ . Another description, most explicitly proposed in [58, 59], is in terms of an elliptic

fibration over a non-compact base containing a (−2) curve. As explained in section 3.2,

this implies that f4 and g6 restrict to constants at the (−2) curve and leads generically to

M̌ as a non-compact threefold over a local surface S = T 2×P1. This geometry appears too

simple to allow for a mass deformation. One possibility to arrive at such a deformation is to

tune complex structure moduli and choose these constants so that ∆ vanishes at the (−2)

curve, yielding an I1 singularity over the entire curve, i.e. giving rise to a constant fibration

with a nodal torus. This is reminiscent of the geometry described in [58, 59], except for two

additional non-compact curves with I1 singularities intersecting the compact P1 in those

references. This would allow the introduction of an additional Kähler parameter as mass

parameter by resolving the node over the compact P1.

Below, we will analyze the BPS numbers of the M-string and their vanishing. We find

BPS degeneracies and vanishing conditions which roughly follow the pattern expected from

a geometric description and are sufficient to solve the model completely. There are several

interesting features of the BPS spectrum which might help clarify the mass deformation of

the geometry, which we will elaborate on in the following.
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The enhanced supersymmetry of the massless M-string is visible in the trivial fibration

structure of the geometry described above (as the BPS numbers are independent of the

complex structure, we can consider the generic geometry T 2 × S in the massless case).

Consequently, the unrefined BPS invariants I
(b,e)
g of the massless M-string vanish for b ∈ N,

e ∈ N0.
7 For the refined invariants, this implies

∑

j+∈ 1
2
Z

(−1)2j+(2j+ + 1)N
(b,e)
j−j+

= 0 . (6.12)

We also find that the sums over left spins vanish,

∑

j−∈ 1
2
Z

(−1)2j−(2j− + 1)N
(b,e)
j−j+

= 0 . (6.13)

For the refined invariants N b,e
j−j+

, we find the vanishing conditions

N b,e
j−j+

= 0





for b > 1 and e = 0 or j+ < 5− 4b+ b2

for





2j− > 2jmax
− (b, e) = b(e− 1) + 1

or

2j+ > 2jmax
+ (b, e) = b(e+ 1)

. (6.14)

We note by comparing with (3.16) and (3.22) that this would correspond to intersection

numbers C2 = 0, C ·E = 1, K ·C = −2 and K ·E = 0. Note in particular that this is not

compatible with C2 = −2, our naive expectation. A possible explanation is a change in

the normal bundle of the base curve C required to allow for mass deformation, as discussed

above. We list the BPS numbers for b = 1, 2 and e ≤ 3 in the table 6.

Just as in the E-string case exemplified in table 5, the BPS numbers exhibit an asymp-

totic stability pattern for large κ and j±, suggesting a simple projective description of the

moduli space Pn(M̌, κ). However, they do not follow a checkerboard pattern. This can be

explained in part by the fact that in the mass deformed case, even and odd mass degrees

exhibit a checkerboard pattern filling the “white” and “black” fields respectively. In the

massless limit, these contributions are added.

From our ansatz (4.31) for Zβ , in which the mass parameter m enters via (5.3), and

the Fourier expansion of Am (A.23) and Bm (A.24), it follows that Zβ is symmetric under

m → −m, i.e. coefficients of Qµ
m and Q−µ

m , for Qm = exp(m), coincide. This Z2 symmetry

is the analogue of the E8 Weyl symmetry in the E-string case, and implies for the BPS

numbers that

Ib,e,µg = Ib,e,−µ
g , N b,e,µ

j−j+
= N b,e,−µ

j−j+
. (6.15)

For this reason, we will only list BPS invariants for µ ≥ 0.

7This can be seen in the BPS invariants of the degree 24 hypersurface in the resolution of P4(1, 1, 2, 8, 12)

analyzed in [49], which contains the geometry S as a local surface. The ones at base degree zero are I0,e1 = 1,

I0,eg = 0, ∀g 6= 1, e ∈ N [54].
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N
(1,0)
j
−
j+

2j+ =0 1

2j− =0 2 1

N
(1,1)
j
−
j+

2j+ =0 1 2

2j− =0 2 4 2

1 1 2 1

N
(1,2)
j
−
j+

2j+ =0 1 2 3

2j− =0 10 9 4 1

1 5 6 5 2

2 1 2 1

N
(1,3)
j
−
j+

2j+ =0 1 2 3 4

2j− =0 16 22 16 5

1 14 20 15 6 1

2 4 6 6 5 2

3 1 2 1

N
(2,1)
j
−
j+

2j+ =0 1 2 3 4

2j− =0 2 4 2

1 1 2 1

N
(2,2)
j
−
j+

2j+ =0 1 2 3 4 5 6

2j− =0 2 9 16 18 14 5

1 1 6 14 18 14 6 1

2 1 4 6 6 5 2

3 1 2 1

N
(2,3)
j
−
j+

2j+ =0 1 2 3 4 5 6 7 8

2j− =0 20 48 86 102 74 32 8 1

1 20 52 90 108 90 52 20 4

2 8 24 42 55 58 46 24 6

3 1 4 8 14 22 24 16 6 1

4 1 4 6 6 5 2

5 1 2 1

Table 6. Refined BPS invariants of the massless M-string at base degrees b = 1, 2 and e ≤ 3.

The negative powers of Qm are at odds with the identification of (tb, te = τ, tm = m)

as Kähler parameters in a large radius Kähler cone expansion of Ztop. By the structure of

the coefficients of weak Jacobi forms, we can however shift the modular parameter τ as

tb = tb, τ̃ = τ − tm, tm = m , (6.16)

thus absorbing all negative powers of Qm, yielding a geometric large radius expansion

interpretation. In the following, it will however be more convenient to continue working in

unshifted classes.

The Castelnuovo bounds that we extract from our computations for the massive M-

String depend on whether the degree µ in the mass parameter is even or odd. For even

degree, we obtain

N b,e,2ν
j−j+

= 0 if





2j− > 2jmax
− (b, e, ν) = 1

2(2be− 2ν2 − 2b) + 1

or

2j+ > 2jmax
+ (b, e, ν) = be− ν2 + b

, (6.17)
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N
(b>1,e≫b,µ=0)

jmax
−

−
d
−

2
,jmax

+ −
d+
2

d+ =9 8 7 6 5 4 3 2 1 0

d− =9 - - - - 0

8 - - - 1 0

7 - - - 21 0

6 - - 107 6 0

5 - - 180 40 1

4 - 107 74 14 0

3 - 21 40 28 4

2 1 6 14 10 1

1 0 0 1 4 3

0 0 0 0 1 1

Table 7. Asymptotics of refined BPS invariants of the massive M-string for µ even.

whereas for odd degree,

N b,e,2ν+1
j−j+

= 0 if





2j− > 2jmax
− (b, e, ν) = 1

2(2be− 2ν2 − 2b− 2ν) + 1

or

2j+ > 2jmax
+ (b, e, ν) =

{
0 if b = 1 and e ≤ ν(ν + 1)
1
2(2be− 2ν2 + 2b− 2ν) else.

(6.18)

Note that both 2jmax
∓ (b, e, ν) must be non-negative in order for N b,e,µ

j−j+
not to vanish. Just

as for the E-string, these vanishing conditions allow us to formulate a bound µmax(e, b) at

given (b, e) on µ above which all invariants vanish.

The massless M-string arises for tm = 0, i.e. Qm = 1. We can thus obtain the massless

BPS invariants by summing Ib,eg =
∑µmax(b,e)

µ=−µmax(b,e)
Ib,e,µg or N b,e

j−,j+
=

∑µmax(b,e)
µ=−µmax(b,e)

N b,e,µ
j−j+

,

just as for the E-string. Since µ even and µ odd have an opposite checkerboard pattern,

N
(b,e)
j−j+

= 0 if 2(j− + j+) + µ+ 1 6= 0 mod 2, (6.19)

the checkerboard pattern disappears in the massless case. However, it should still be true

that black vs. white fields stem from the decomposition of different PT moduli spaces

according to the parity of µ. A hint for this can be seen in the asymptotic BPS numbers

for high enough j±, (b, e) and small µ, which stabilize for even and odd µ to two classes of

patterns, shown in table 7 and in table 8 for d ≤ 10 respectively.

We have listed all non-vanishing refined BPS invariants for b = 1 and e ≤ 3 in table 9.

The BPS invariants for b = 2, 3 and e ≤ 3 are given in appendix C.3.

We can deduce from (6.17), (6.18) for every class (b, e) a bound on µ which grows8 to

leading order in e as

µmax(b, e) =
√
4be+ c1b+ c0 . (6.20)

8In [36], a bound µmax(e, b) = e + b is proposed. This bound grows linearly in e at fixed b, while the

actual growth scales only with
√
e. It is saturated for (b, e) = {(1, 0), (1, 1), (1, 2)}, while our bound is

saturated for an infinite set of (b, e).
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N
(b>1,e≫b,µ=±1)

jmax
−

−
d
−

2
,jmax

+ −
d+
2

d+ =9 8 7 6 5 4 3 2 1 0

d− =9 - - - 0 0

8 - - - 8 0

7 - - 70 2 0

6 - - 196 25 0

5 - 196 81 7 0

4 - 70 81 30 2

3 8 25 30 11 0

2 0 2 7 11 3

1 0 0 2 3 1

0 0 0 0 0 1

Table 8. Asymptotics of refined BPS invariants of the massive M-string for µ odd.

N
(1,0,0)
j
−
j+

2j+ =1

2j− =0 1

N
(1,0,1)
j
−
j+

2j+ =0

2j− =0 1

N
(1,1,0)
j
−
j+

2j+ =0 1 2

2j− =0 2

1 1 1

N
(1,1,1)
j
−
j+

2j+ =0 1 2

2j− =0 1 1

1 1

N
(1,1,2)
j
−
j+

2j+ =1

2j− =0 1

N
(1,2,0)
j
−
j+

2j+ =0 1 2 3

2j− =0 5 1

1 3 3

2 1 1

N
(1,2,1)
j
−
j+

2j+ =0 1 2 3

2j− =0 4 2

1 3 1

2 1

N
(1,2,2)
j
−
j+

2j+ =0 1 2

2j− =0 2

1 1 1

N
(1,2,3)
j
−
j+

2j+ =0

2j− =0 1

N
(1,3,0)
j
−
j+

2j+ =0 1 2 3 4

2j− =0 12 3

1 8 9 1

2 4 3

3 1 1

N
(1,3,1)
j
−
j+

2j+ =0 1 2 3 4

2j− =0 7 7

1 9 3

2 2 3 1

3 1

N
(1,3,2)
j
−
j+

2j+ =0 1 2 3

2j− =0 5 1

1 3 3

2 1 1

N
(1,3,3)
j
−
j+

2j+ =0 1 2

2j− =0 1 1

1 1

Table 9. Refined BPS invariants of the massive M-string at base degree b = 1 and e ≤ 3.

The precise values of the constants c0 and c1 appear to depend systematically on which

spin representations occur at µmax(b, e), i.e. for which (j−, j+) the invariants N
b,e,µmax(b,e)
j−,j+

are non-vanishing

Most notably, when

µmax(b, e) = 2
√
be− (b− 1) ∈ N , (6.21)

we always find N b,e,µmax

0, 2b−1
2

= 1.

In general, there are other spin representations at µmax(e, b) for different choices of c1
and c0. In particular, for b = 1 we have N

b,e,µmax(b,e)
0,0 = 1 when µmax(b, e) =

√
4e+ 1 ∈ N.
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I
(1,e,µ)
g=0 µ =0 1 2 3 4 5

e =0 -2 1

1 -12 8 -2

2 -56 39 -12 1

3 -208 152 -56 8

4 -684 513 -208 39 -2

5 -2032 1560 -684 152 -12

6 -5616 4382 -2032 513 -56 1

Table 10. Unrefined BPS invariants of the massive M-string at base degree b = 1 and genus g = 0.

For b = 2, we find spin representations that occur subleading for smaller values of c0:

N
(2,7,7)
j−j+

2j+ =0 1 2 3 4

2j− =0 1 1

1 1

for µmax(2, e) =
√
8e− 7

and

N
(2,3,4)
j−j+

2j+ =0 1 2 3 4

2j− =0 2

1 1 1

for µmax(2, e) =
√
8e− 8

, (6.22)

where we label the tables by those (b, e, µ) where these spin representations occur first.

The bounds on µ can also be seen from the unrefined invariants listed in table 10, where

I
(b,e)
g = 0 in the massless limit can serve as a check.

6.3 The E-Mn string chain

In this section, we report on Castelnuovo bounds for the E-Mn string chain that we ex-

tract from our computations. According to the general theory, the bounds jmax
− (bi, e) and

jmax
+ (bi, e) grow quadratically in the base degrees bi and the elliptic fiber degree e. Fur-

thermore, in the limit bi≥2 = 0 and the limit b1 = 0, one should recover the bounds for

the E-string and the M-string respectively. The only freedom we are allowed are quadratic

terms bibj(i < j) mixing base degrees in the bounds jmax
− (bi, e) and jmax

+ (bi, e). These terms

proved sufficient to deduce bounds for all cases considered.

E.g., for the massive E-M string chain with base degrees b0, b1 > 0 and only the

M-string mass turned on, we find the bounds9

N b0,b1,e,µ
j−j+

= 0 if





2j− > 2jmax
− = b0e− 1

2b0(b0 + 1) + b1(e− 1) + 1 + b0b1 − ⌊(µ/2)2⌋
or

2j+ > 2jmax
+ = b0e− 1

2b0(b0 − 1) + b1(e+ 1)− b0b1 − ⌊(µ/2)2⌋
.

(6.23)

7 Relating to the domain wall method

We now would like to compare our results on the E- and M-string with those of [44]. The

philosophy underlying [44] is that as both the M- and the E-string descend from the M2

9When either b1 = 0 or b0 = 0 we can use the E-string or the M-string bounds.
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brane of M-theory, stretched between two M5 branes and an M5 and an M9 brane respec-

tively, the elliptic genus capturing their BPS excitations should be constructed from the

same ingredients. More precisely, [36] invokes the relation between the elliptic genus of the

M-string and the topological string partition function to compute the former via the refined

topological vertex formalism [5].10 The resulting expression is given the interpretation of

the quantum mechanics of groundstates of M2 brane wrapped on T 2, labelled by Young

tableaux (consistent with the findings of [60]). The computation is then organized in terms

of certain matrices Dνtµ which are interpreted in terms of M5 brane domain walls separat-

ing M2 brane states ν and µ. In [44], this interpretation is pushed further: an expressions

Dµ for M9 domain walls is guessed, permitting the computation of both the Hilbert series

for heterotic strings (M2 branes spanning between two M9 branes) and E-strings (spanning

between an M5 and an M9 brane). Using this method, the elliptic genus of two E-strings

was determined in [44]. The calculation was generalized to three E-strings in [61].

7.1 The M-string via the topological vertex

The elliptic genus for the M-string obtained in [36] via a refined topological vertex calcu-

lation is

Z=
∑

ν

Q|ν| ∏

(i,j)∈ν

ϑ1

(
[νi − j + 1

2 ]ǫ1 + [−i+ 1
2 ]ǫ2 −m

)
ϑ1

(
[−νi + j − 1

2 ]ǫ1 + [i− 1
2 ]ǫ2 −m

)

ϑ1

(
[νi − j + 1]ǫ1 + [νtj − i]ǫ2

)
ϑ1

(
[νi − j]ǫ1 + [νtj − i+ 1]ǫ2

) .

(7.1)

Here, the first sum is taken over Young diagrams ν, and the second over the integer

coordinates of boxes of each such diagram. |ν| indicates the total number of boxes of the

diagram ν, and νi the number of boxes in the ith row. Recall that the zeros of ϑ1, all of which

are simple, lie at the origin and the lattice translates thereof. The expression (7.1) thus has

an infinite number of poles that are unexpected from the vantage point of the Gopakumar-

Vafa form of the refined topological string free energy [11, 12]. We will demonstrated here

for the case nb = 2 that these poles are spurious.

nb = 1. The single M-string elliptic genus is given by (7.1) as

Z1 =
ϑ1(ǫ+ −m)ϑ1(−ǫ+ −m)

ϑ1(ǫ1)ϑ1(ǫ2)
. (7.2)

This expression exhibits merely the expected poles at ǫ1,2 = 0. To identify this result

with (5.15), we use the sum of squares relation

ϑ1(z) =
ϑ2
2ϑ

2
3

ϑ2
4

(
ϑ2
3(z)

ϑ2
3

− ϑ2
2(z)

ϑ2
2

)
(7.3)

and the addition formula

ϑ1(w + z)ϑ1(w − z) =
ϑ2
2ϑ

2
3

ϑ2
4

(
ϑ2
3(w)

ϑ2
3

ϑ2
2(z)

ϑ2
2

− ϑ2
3(z)

ϑ2
3

ϑ2
2(w)

ϑ2
2

)
. (7.4)

Further identities among ϑ-functions are collected in appendix A.3.

10The geometries are not toric, but based on a representation first proposed in [30], vertex methods apply.
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nb = 2. As the expressions and identities required rapidly grow lengthy, we here focus

on the massless case. Z2 in this case reduces to

Z2 =
ϑ2
1(

3
2ǫ1 +

1
2ǫ2)ϑ

2
1(

ǫ1+ǫ2
2 )

ϑ1(ǫ1)ϑ1(ǫ2)ϑ1(ǫ2 − ǫ1)ϑ1(2ǫ1)
+ (ǫ1 ↔ ǫ2). (7.5)

This expression is more compact than the result (5.16), yet exhibits a pole on the diagonal

ǫ1 = ǫ2. That this pole is spurious follows from the identity

A
(
3

2
ǫ1 +

1

2
ǫ2

)
ϑ1(2ǫ2)−A

(
1

2
ǫ1 +

3

2
ǫ2

)
ϑ1(2ǫ1)

=
ϑ1(ǫ2 − ǫ1)A−

1492992
[B6

+ − 15A2
+B4

+E4 − 45A4
+B2

+E
2
4 + 40A3

+B3
+E6 + 24A5

+B+E4E6

+A6
+(27E

3
4 − 32E2

6)] . (7.6)

The easiest method to obtain such identities is by making a polynomial ansatz in

A±,B±, E4,6 with appropriate modular weight and elliptic indices in ǫ±, and then fix-

ing the coefficients by comparing the small ǫ expansion. We relegate the proof of this

identity to appendix B.

7.2 The E-string via the domain wall method

The formula (5.17) for the elliptic genus of a single E-string obtained in [31], which we

rederived above with our methods, serves as input in [44] to determine the matrix element

of the M9 domain wall operator between the states corresponding to ν = · and ν = . For

two E-strings, [44] obtain the result

Z2 =
q

576η12
1

ϑ1(ǫ1)ϑ1(ǫ2)ϑ1(ǫ2 − ǫ1)ϑ1(2ǫ1)
[(−4A2

1E4 + 3A2E
2
4 + 5B2E6)A(ǫ1)

2

−(3A2E6 + 5B2E4)A(ǫ1)B(ǫ1) + 4A1B(ǫ1)2] + (ǫ1 ↔ ǫ2). (7.7)

The two terms are the contributions to a sum over Young diagrams as in (7.1), stemming

from ν = and ν = . The Ai, Bi are the E8 Jacobi forms with index i and modular

weights 4, 6 respectively already encountered above. Here again, a pole arises on the

diagonal ǫ1 = ǫ2. To show that it too is spurious, as required to match our result (5.18),

we invoke the following identities to substitute for A(ǫ1)
2, A(ǫ1)B(ǫ1), and B(ǫ1)2 in the

first, second, and third term in square brackets in (7.7) respectively:

A(ǫ1)
2ϑ1(2ǫ2)−A(ǫ2)

2ϑ1(2ǫ1)

=
ϑ1(ǫ1 − ǫ2)

10368
(A+B− −A−B+)(3A+B−B2

+ +A−B3
+ − 9A−A2

+B+E4 − 3A3
+B−E4

+8A3
+A−E6) ,

A(ǫ1)B(ǫ1)ϑ1(2ǫ2)−A(ǫ2)B(ǫ2)ϑ1(2ǫ1) (7.8)

=
ϑ1(ǫ1 − ǫ2)

10368
(A+B− −A−B+)[B−(B3

+ + 3A2
+B+E4 − 4A3

+E6) + 3A−A+(B2
+E4

+3A2
+E

2
4 − 4A+B+E6)] ,
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B(ǫ1)2ϑ1(2ǫ2)− B(ǫ2)2ϑ1(2ǫ1)

=
ϑ1(ǫ1 − ǫ2)

10368
[−B2

−B+(B3
+ − 9A2

+B+E4 + 8A3
+E6) + 6A−A+B−B+(B2

+E4 + 3A2
+E

2
4

−4A+B+E6) +A2
−A+(27A+B2

+E
2
4 − 8B3

+E6 − 24A2
+B+E4E6 +A3

+(−27E3
4 + 32E2

6))] .

The validity of the identities (7.8) can be shown directly via manipulations involving the

ϑ-function identities reviewed in appendix A.3. We do this for the first identity in (7.8) in

appendix B. The rest can be proved analogously.

8 The E-string and a generalizion of the blowup equation

Recently, there has been a lot of progress on the quantization of the mirror curve to a toric

Calabi-Yau threefold X. One perspective on this problem is to view the mirror curve as the

spectral curve of a quantum integrable system constructed by Goncharov and Kenyon [62].

The spectrum of this system can be solved exactly by a quantization condition that is based

on the refined free energy in the Nekrasov-Shatashvili limit of the topological string on

X [39, 63, 64]. This quantization condition is notably invariant under the transformation

~ 7→ 4π2/~ (with appropriate transformations of the Kähler moduli ti, related to the

Hamiltonians of the integrable system by quantum mirror maps). A second perspective,

following [24, 65–67], extracts trace-class difference operators from the quantum mirror

curve. The exact form of the Fredholm determinant of these operators, which allows for a

Fermi gas and matrix model interpretation, has been obtained in [68, 69]. The compatibility

of these two perspectives on the quantum spectral curve implies an identity from which an

infinite number of constraints on the BPS invariants ofX can be extracted [70]. We call this

identity the compatibility formula. It can be formulated for any toric Calabi-Yau threefold.

As we have discussed above, the massive E-string is associated to the local 1
2K3 geom-

etry, which is not toric. However, generalizing work on Seiberg-Witten curves with E-type

flavor symmetry [71], a mirror curve has also been formulated for this geometry [72]. It is

natural to ask whether a proper quantization of this curve leads to an equally rich story

as in the toric case. If the two perspectives on the quantization of the mirror curve in the

toric case generalize, then the BPS spectrum of the E-string should satisfy a generalization

of the compatibility formula to the non-toric case.

In [40], it was shown that if the local Calabi-Yau manifold X is the space Y N,m,

i.e. the resolution of the cone over a Y N,m singularity, the compatibility formula is the

Nekrasov-Satashvili limit of the Göttsche-Nakajima-Yoshioka K-theoretic blowup equation

for Nekrasov partition functions [41–43]. We will here propose a generalization of this

formula, pre-NS limit, which can be applied to all local Calabi-Yau manifolds X which

permit the refinement of the topological string, i.e. exhibit a C∗ isometry. In particular, X

need not be toric.

We will show that the BPS invariants of local 1
2K3 satisfy the constraints implied by

this generalization of the blowup equation.

8.1 Generalizing the blowup equation

To formulate the blowup equation and its generalization, we separate the nX irreducible

compact curve classes Ci into two sets, based on their intersections with the gX irreducible
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compact divisor classes Dj in the geometry. These are captured by the nX×gX intersection

matrix −C

− Cij = Ci ·Dj . (8.1)

We distinguish between those Ci which intersect at least one compact divisor, and those

which do not. In the toric setting, gX corresponds to the genus of the mirror curve. When

the geometry engineers a supersymmetric gauge theory, the Kähler parameters ti of the

former set map to moduli of the gauge theory, while the parameters mi of the latter map

to masses of hypermultiplets. We will retain this nomenclature and refer to the mi as mass

parameters.

We will also need to specify an nX dimensional integral vector B such that non-

vanishing BPS invariants Nd
j−,j+

occur only at

2j− + 2j+ + 1 ≡ B · d mod 2 . (8.2)

This condition specifies B only mod 2. The existence of such a vector B is guaranteed by

the fact that the non-vanishing BPS invariants follow a so-called checkerboard pattern, as

first observed in [2].

We define the twisted refined free energies F̂ref(t, ǫ1, ǫ2) via

F̂ref(t; ǫ1, ǫ2) = F pert
ref (t; ǫ1, ǫ2) + F inst

ref (t+ πiB; ǫ1, ǫ2) . (8.3)

Here, the perturbative contributions are given by

F pert
ref (t; ǫ1, ǫ2) =

1

ǫ1ǫ2


1

6

nX∑

i,j,k=1

aijktitjtk + 4π2
nX∑

i=1

bNS
i ti


+

nX∑

i=1

biti −
(ǫ1 + ǫ2)

2

ǫ1ǫ2

nX∑

i=1

bNS
i ti ,

(8.4)

where aijk and bi are related to the topological intersection numbers in X, and bNS
i can be

obtained from the refined genus one holomorphic anomaly equation [7, 73]. The instanton

contributions are given by the refined Gopakumar-Vafa formula (3.11).

In terms of these quantities, we formulate the following generalization of the blowup

equation to arbitrary local Calabi-Yau manifolds with C∗ isometry:

∑

n∈ZgX

(−1)
∑gX

i=1 ni exp

(
F̂ref

(
t+ ǫ1

(
C · n+

1

2
r

)
, ǫ1, ǫ2 − ǫ1

)

+F̂ref

(
t+ ǫ2

(
C · n+

1

2
r

)
, ǫ1 − ǫ2, ǫ2

))
= 0 .

(8.5)

Here r is chosen among an appropriate subset of integer vectors satisfying (8.2), as (8.9)

depends on the explicit representative of the mod 2 class. Two different vectors r, r′ however
do yield the same constraints if there exists a gX dimensional integral vector m such that

r′ = r+ 2C ·m ; (8.6)

changing from r to r′ only amounts to a shift in the index vector n in the blowup equation.

It is conjectured in [70] that at least gX inequivalent choices for the vector r exist for toric
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Calabi-Yau geometries, such that the equation (8.5) is true. For the Y N,m geometry with

gX = N − 1, at least (N − 1)2 such vectors exist [40]. In the next section, we will find one

appropriate r vector for local 1
2K3, which has gX = 1.

We can separate the perturbative and non-perturbative contributions to (8.5) to obtain

a form of this equation more amenable to computation. Defining the invariants nd
g,n via

F inst
ref (t, ǫ1, ǫ2) =

∞∑

g,n=0

(ǫ1ǫ2)
g−1(ǫ1 + ǫ2)

2nnd

g,ne
−d·t (8.7)

and introducing

f(d,R, ǫ1, ǫ2)=
∑

g,n≥0

(−1)d·Bnd

g,n

(
(ǫ1(ǫ2−ǫ1))

g−1ǫ2n2 e−ǫ1d·R+(ǫ2(ǫ1−ǫ2))
g−1ǫ2n1 e−ǫ2d·R

)
,

(8.8)

we arrive at

0 =
∑

n∈ZgX

(−1)
∑gX

i=1 ni exp






nX∑

i=1

(bi − bNS
i )Ri −

1

6

nX∑

i,j,k=1

aijkRiRjRk


 (ǫ1 + ǫ2)




× e−
1
2

∑nX
i=1 aijktiRjRk exp

(
∑

d

e−d·tf(d,R, ǫ1, ǫ2)

)
,

(8.9)

where we have used the notation

Ri =

nX∑

j=1

Cijnj + rj/2 . (8.10)

Thus, in order to extract constraints on BPS invariants one needs, in addition to the

BPS invariants, the following perturbative data

C, B, aijk, bi, b
NS
i . (8.11)

8.2 Constraints on the BPS invariants of 1

2
K3

In this section, we verify that the constraints implied by (8.5) are satisfied by the BPS

invariants of local 1
2K3, with an appropriately chosen integer vector r. We begin by deter-

mining the perturbative data (8.11) for this geometry.

We have discussed the 1
2K3 surface in section 3.2, and in particular noted that it

exhibits an elliptic fibration. We will denote the Kähler moduli associated to the base C1

and elliptic fiber E of this fibration by tb and tf respectively.

Local 1
2K3, the total space of the canonical line bundle of 1

2K3, has a single compact

divisor, given by the zero section S = 1
2K3 of the line bundle. Using the adjunction formula,

we find that

S · C1 = 1 , S · E = S · ei = 0 , i = 1, . . . , 8 . (8.12)

Therefore, following the nomenclature introduced above, tf as well as all the mi are mass

parameters. The C matrix reads

C = (1, 0, 0, 0, 0, 0, 0, 0, 0, 0)t . (8.13)

– 42 –



J
H
E
P
0
5
(
2
0
1
7
)
1
3
0

By checking the pattern of the BPS numbers we have computed in the previous sections,

we can constrain the integer vector B via

B ≡ (1, 0, 0, 0, 0, 0, 0, 0, 0, 0) mod 2 . (8.14)

Due to the E8 Weyl symmetry acting on the mass parameters mi, it is convenient to keep

track of only tb, tf in the free energy (8.7), and hide the dependence on the masses mi in

n
db,df
g,n which decompose into E8 characters or E8 Weyl orbits. We can thus work with a

reduced intersection matrix and integer vector, which we continue to denote by the same

symbols,

C = (1, 0)t , B ≡ (1, 0) mod 2 . (8.15)

The coefficients aijk, bi of the perturbative free energy can in principle be computed

from the topological intersection numbers of divisors in the local 1
2K3. The coefficients bNS

i

however cannot be computed from the topology ofX; we will compute them by applying the

refined holomorphic anomaly equation to the mirror curve of X constructed by Sakai [72].

Indeed, we will extract all of the remaining perturbative data aijk, bi, b
NS
i from this curve.

For this calculation, we express Sakai’s mirror curve in the Weierstrass form

y2 = 4x3 − g2(u, τ,m)x− g3(u, τ,m) . (8.16)

The coefficient functions g2(u, τ,m) and g3(u, τ,m) are polynomials in u of degree 4 and

6 respectively. Their explicit forms are reproduced in appendix A.4. The modulus u is

chosen such that u → 0 is the large volume limit. τ is the elliptic modulus of the elliptic

fiber inside 1
2K3 in the limit u → 0. These parameters are related to the Kähler moduli

tb, tf of X by

− tb = log u+O(u) , q = e2πi τ = e−tf . (8.17)

The coefficients aijk can now be extracted from the prepotential which can be computed

through the special geometry relations following the procedure in [54]. We find

F0(tb, tf ,m) =
1

2
t2btf +

1

2
tbt

2
f +

1

6
t3f +O(e−t) . (8.18)

The coefficients of tbt
2
f and t3f are integral constants, and they are fixed by the requirement

that F0(tb, tf ,m) splits and reproduces the prepotential of the local del Pezzo E8 surface

in the blow down limit of the base e9:

tb → −∞, tb + tf =: t finite . (8.19)

Next, we fix the genus one refined holomorphic anomaly equations [7, 73] by the known

genus one BPS invariants and obtain11

F ST
1 (tb, tf ,m) = −1

2
tb +O(e−t) ,

FNS
1 (tb, tf ,m) = −1

2
tb +O(e−t) .

(8.20)

11The coefficients of tf can also be fixed by going to the blowdown limit. But they in fact do not

contribute to the blowup equation.
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We have thus computed all of the perturbative data needed in order to extract con-

straints on the BPS invariants of local 1
2K3 from the generalization (8.5) of the blowup

equation. Substituting (8.15) as well as aijk, bi, b
NS
i taken from (8.18), (8.20) into equa-

tion (8.9), we find that for r = (1, 0), the highly non-trivial identities for the refined

Gromov-Witten invariants extracted from equation (8.9) are satisfied. For instance, some

of these identities are

0 = 24− n1,1
0,0 + 24n1,1

0,1 + 24n1,1
1,0 ,

0 = 27n1,0
0,0 − n1,1

0,0 − 72n1,0
0,1 + 24n1,1

0,1 − 72n1,0
1,0 + 24n1,1

1,0 ,

0 = 27n1,1
0,0 − n1,2

0,0 − 72n1,1
0,1 + 24n1,2

0,1 − 72n1,1
1,0 + 24n1,2

1,0 ,

· · · · · · · · ·

(8.21)

Note that we have here absorbed the dependence on the mass parameters mi into the

invariants nd
g,n introduced in (8.7), so that the latter are linear combinations of Wi(m)

defined by

Wi(m) =
∑

w∈Oi

e2πim·w , (8.22)

where on the right hand side we sum over all the weights w in certain Weyl orbit Oi of e8.

The identities (8.21) can be translated to constraints on the BPS invariants. Taking the

vanishing conditions on these invariants into account, we find from (8.21)

0 = −1 +N1,1
1/2,1/2 ,

0 = N1,0
0,0 −N1,1

1/2,1/2 ,

0 = N1,1
0,0 + 7N1,1

1/2,1/2 −N1,2
1/2,1/2 − 6N1,2

1,1 ,

· · · · · · · · ·

(8.23)

We have expanded equation (8.9) up to degree 5 in terms of e−tb , e−tf and total genus

g + n 6 4; all the constraints thus obtained are satisfied.

9 Conclusions

We have demonstrated that our approach to computing Ztop is sufficiently powerful to

completely solve Ztop on all local elliptically fibered Calabi-Yau 3-folds leading to super-

conformal 6d field theories without gauge symmetry. In forthcoming work [35], we will

extend this analysis to singularities in the elliptic fibration that lead to gauge symmetry.

While we have justified the general form of our ansatz based on the holomorphic

anomaly equations, we obtained the exact form of the index polynomial based on anomaly

considerations. To further our understanding of the refined topological string, it would be

important to derive the index purely from topological string considerations.

Regarding our proposed generalization of the blowup equation, much remains to be

done. Its range of validity should be determined, and a derivation provided within this

class of geometries. More ambitiously still, one should study to what extent the Grassi-

Hatsuda-Mariño conjecture or variants thereof can be extended to this class of geometries.
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One aspect of our approach that we find intriguing is that its justification lies in the

Witten form [29] of the holomorphic anomaly equations [28], which is formulated for the

partition function directly. The holomorphic anomaly equations in their BCOV incarna-

tion [9] on the other hand are formulated in terms of the coefficients Fn,g of the coupling

constant expansion of the topological string amplitudes. The two formulations yield com-

plementary results for Ztop; the former yields closed expressions for Zβ , coefficients of an

expansion in base classes, while the latter yields exact results for Fn,g, coefficients in cou-

pling constant expansions. Understanding the precise relation between the two formulations

might thus be a stepping stone towards understanding Ztop pre-expansion in any variables.
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A Definitions and properties of modular forms and weak Jacobi forms

In this appendix, we collect some facts regarding modular forms and weak Jacobi forms.

We follow closely the treatment of [74] for the former and [52] and [75] for the latter.

A.1 Modular forms

The Eisenstein series are defined as

E2m(τ) = 1 +
2

ζ(1− 2m)

∞∑

n=1

n2m−1qn

1− qn
m ≥ 1 , (A.1)

where

q = exp(2πiτ) , (A.2)

with τ taking values in the complex upper half plane H = {τ ∈ C|Im(τ) > 0}. For integer
m > 1, the Eisenstein series are modular forms of weight k = 2m. By definition a weight

k modular form fk(τ) transforms under an SL(2,Z) action

τ 7→ τγ =
aτ + b

cτ + d
, for γ =

(
a b

c d

)
∈ SL(2,Z) (A.3)

as

fk(τγ) = (cτ + d)kfk(τ) . (A.4)

The two modular forms

Q := E4, and R := E6 (A.5)
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generate the ring of holomorphic modular forms M∗ = ⊕k≥0Mk(Γ1) of the modular group

Γ1 = SL(2,Z).

The Dedekind η function is defined as

η(τ) = q
1
24

∞∏

n=1

(1− qn) . (A.6)

Its 24th power,

∆(τ) = η24(τ) =
E3

4 − E2
6

1728
, (A.7)

is a weight k = 12 modular form called the discriminant function. The modular invariant

j-function is defined as

j(τ) =
E3

4(τ)

∆(τ)
=

1

q
+ 744 + 196884q + 21493760q2 + 864299970q3 +O(q4) . (A.8)

Any modular function can be written as a rational function of j(τ).

The second Eisenstein series E2 is an interesting special case as it transforms under an

SL(2,Z) action with a shift

E2(τγ) = (cτ + d)2E2(τ)−
6i

π
c(cτ + d) . (A.9)

This Eisenstein series is an example of a quasimodular form (of weight k = 2). More gen-

erally P := E2, Q and R generate the ring of quasimodular forms M̃∗(Γ1) = M∗(Γ1)[E2]

of even weight. The ring M̃∗(Γ1) is closed under differentiation with respect to τ . Alter-

natively, one can define the almost holomorphic second Eisenstein series

Ê2(τ) = E2(τ)−
3

πIm(τ)
, (A.10)

which does transform as a modular function of weight k = 2. The ring of almost holo-

morphic modular forms is defined as M̂∗(Γ1) = M∗(Γ)[Ê2]. Quasimodular forms are the

holomorphic parts of almost holomorphic forms, but they are not necessarily modular

themselves.

A.2 Jacobi forms

Jacobi forms [52] are functions φ : H×C → C that depend on a modular parameter τ ∈ H

and an elliptic parameter z ∈ C. They transform under the action of the modular group

on H× C, given by

τ 7→ τγ =
aτ + b

cτ + d
, z 7→ zγ =

z

cτ + d
with

(
a b

c d

)
∈ SL(2;Z) , (A.11)

as

φ (τγ , zγ) = (cτ + d)ke
2πimcz2

cτ+d φ(τ, z) . (A.12)

Furthermore, they enjoy the property of quasi-periodicity,

φ(τ, z + λτ + µ) = e−2πim(λ2τ+2λz)φ(τ, z) ∀λ, µ ∈ Z . (A.13)
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k ∈ Z is called the weight and m ∈ N the index of the Jacobi form.

Due to the periodicity under τ 7→ τ + 1, z 7→ z + 1, the Jacobi forms enjoy a double

Fourier expansion

φ(τ, z) =
∑

n,r

c(n, r)qnyr, where q = e2πiτ , y = e2πiz . (A.14)

It is in fact more appropriate to write the coefficients as c(n, r) = C(4nm − r2, r) as the

combination 4nm − r2 is invariant under the transformation (A.13) and C(4nm − r2, r)

has a periodicity of 2m in r. Holomorphic Jacobi forms satisfy the constraint c(n, r) = 0

unless 4mn ≥ r2, cusp forms satisfy c(n, r) = 0 unless 4mn > r2, while for weak Jacobi

forms, one imposes the condition c(n, r) = 0 unless n ≥ 0.

According to [52], the ring of weak Jacobi forms of integer index is freely generated

over the ring of modular forms by the two generators φ−2,1(τ, z) and φ0,1(τ, z) of index 1.

Introducing the notation

A(τ, z) = φ−2,1(τ, z) and B(τ, z) = φ0,1(τ, z) , (A.15)

we see that the vector space of weak Jacobi forms of weight k and index m is equal to

Jweak
k,m =

m⊕

j=0

Mk+2j(Γ1)A
jBm−j . (A.16)

The generators A and B are of index m = 1 and weight −2 and 0 respectively. They can

be defined as

A(τ, z) = −θ1(τ, z)
2

η6(τ)

B(τ, z) = 4

(
θ2(τ, z)

2

θ2(τ, 0)2
+

θ3(τ, z)
2

θ3(τ, 0)2
+

θ4(τ, z)
2

θ4(τ, 0)2

)
. (A.17)

Our conventions for the theta functions associated to the spin structure on the torus are

Θ
[a
b

]
(τ, z) =

∑

n∈Z
eπi(n+a)2τ+2πi(z+b)(n+a) . (A.18)

The Jacobi theta functions are then θ1 = −Θ

[
1
2
1
2

]
, θ2 = Θ

[
1
2
0

]
, θ3 = Θ

[
0
0

]
and θ4 = Θ

[
0
1
2

]
.

In particular, we have

θ1(τ, z) = z · η(τ)3 exp
( ∞∑

k=1

B2k

2k(2k)!
(iz)2kE2k(τ)

)
. (A.19)

In order to accommodate our convention for the normalization of ǫi, we will also use the

notation

A(τ, 2πz) := A(τ, z) , B(τ, 2πz) := B(τ, z) , ϑi(τ, 2πz) := θi(τ, z), i = 1, . . . , 4 . (A.20)
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Using the Jacobi triple product for θ1 and the notation

xm = (2 sinπmz)2 = −(y
m
2 − y−

m
2 )2 , y = exp(2πiz) , (A.21)

one finds that the weak Jacobi form A has a simple product form

A(τ, z) = (y
1
2 − y−

1
2 )2

∞∏

n=1

(1− qny)2(1− qn

y )2

(1− qn)4
(A.22)

= −x1

∞∏

n=1

(1 + x1q
n − 2qn + q2n)2

(1− qn)4
. (A.23)

The weight zero index one weak Jacobi form B is one half of the elliptic genus of K3,

χ(K3; q, y) = 2B(τ, z) =

(
2y + 20 +

2

y

)
+

(
20

y2
− 128

y
+ 216− 128y + 20y2

)
q +O(q2) ,

(A.24)

and it enjoys the following expansion in x1

B(τ, z) = −x1(1− 10x1q + x21q
2) +

∞∑

n=0

qngn(x1) , (A.25)

with gn(x1) a polynomial in x1 of order n. Note that A(τ, z) vanishes when z = 0, while

B(τ, 0) = 12, as can be seen from the expansion of these Jacobi forms in z with quasi

modular coefficients

A(τ, z) = −z2 +
E2

12
z4 +

−5E2
2 + E4

1440
z6 +

35E3
2 − 21E2E4 + 4E6

362880
z8 +O(z10),

B(τ, z) = 12− E2z
2 +

E2
2 + E4

24
z4 +

−5E3
2 − 15E2E4 + 8E6

4320
z6 +O(z8). (A.26)

The real zeros of A coincide with the zeros of x1. All complex zeros are obtained as

SL(2,Z) images of these zeros.

The weak Jacobi forms A(τ, nz) of index n2 will play an important role in this pa-

per. A(τ, n1z) is divisible by A(τ, n2z) if the integer n1 is divisible by n2. Based on this

observation, it is convenient to define a more primitive weak Jacobi form, due to Zagier,

Pd(τ, z) =
∏

k|d
A(τ, kz)µ(d/k), (A.27)

where µ(n) is the Möbius function. The first few Pd are given by

P1 = A1 , P2 =
A2

A1
, P3 =

A3

A1
. . . . (A.28)

For any d, one can show that Pd(τ, z) has no poles and vanishes only at primitive d-torsion

points, i.e. at z = 2π(n1 + τn2)/d for integers n1, n2 with the greatest common divisor

gcd(n1, n2, d) = 1. So Pd(τ, z) is a weak Jacobi form and can be written as a polynomial

in A(τ, z), B(τ, z), E4, E6. These polynomials Pd will feature prominently in a forthcoming

paper [28]. We can express A(τ, nz) in terms of these more basic building blocks via

A(τ, nz) =
∏

k|n
Pk(τ, z). (A.29)
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A.3 Some useful identities for Jacobi theta functions

We review some basic identities for Jacobi theta functions in this appendix, which can be

found e.g. in [76]. For simplicity of notation, we will only indicate the elliptic argument of

theta functions, and use the notation ϑi := ϑi(τ, 0). Apart from the odd function ϑ1(z), all

other Jacobi functions ϑi(z), i = 2, 3, 4 are even functions of the elliptic argument. When

the elliptic argument is set to zero, the Jacobi theta functions satisfy the famous abstruse

identity,

ϑ4
4 = ϑ4

3 − ϑ4
2 . (A.30)

Only two of the four theta functions are algebraically independent, as they satisfy the

relations

ϑ2
2(z)ϑ

2
4 = ϑ2

4(z)ϑ
2
2 − ϑ2

1(z)ϑ
2
3, ϑ2

3(z)ϑ
2
4 = ϑ2

4(z)ϑ
2
3 − ϑ2

1(z)ϑ
2
2. (A.31)

Denoting ǫ± ≡ 1
2(ǫ1 ± ǫ2) and ϑi± ≡ ϑi(ǫ±), the following formulae express theta functions

with elliptic arguments ǫ1,2 in terms of theta functions with elliptic arguments ǫ±:

ϑ1(ǫ1)ϑ1(ǫ2)ϑ
2
4 = ϑ2

3+ϑ
2
2− − ϑ2

2+ϑ
2
3− = ϑ2

1+ϑ
2
4− − ϑ2

4+ϑ
2
1−,

ϑ2(ǫ1)ϑ2(ǫ2)ϑ
2
4 = ϑ2

4+ϑ
2
2− − ϑ2

1+ϑ
2
3− = ϑ2

2+ϑ
2
4− − ϑ2

3+ϑ
2
1−,

ϑ3(ǫ1)ϑ3(ǫ2)ϑ
2
4 = ϑ2

4+ϑ
2
3− − ϑ2

1+ϑ
2
2− = ϑ2

3+ϑ
2
4− − ϑ2

2+ϑ
2
1−,

ϑ4(ǫ1)ϑ4(ǫ2)ϑ
2
4 = ϑ2

3+ϑ
2
3− − ϑ2

2+ϑ
2
2− = ϑ2

4+ϑ
2
4− − ϑ2

1+ϑ
2
1−,

ϑ1(ǫ1)ϑ2(ǫ2)ϑ3ϑ4 = ϑ1+ϑ2+ϑ3−ϑ4− + ϑ3+ϑ4+ϑ1−ϑ2−,

ϑ1(ǫ1)ϑ3(ǫ2)ϑ2ϑ4 = ϑ1+ϑ3+ϑ2−ϑ4− + ϑ2+ϑ4+ϑ1−ϑ3−,

ϑ1(ǫ1)ϑ4(ǫ2)ϑ2ϑ3 = ϑ1+ϑ4+ϑ2−ϑ3− + ϑ2+ϑ3+ϑ1−ϑ4−,

ϑ2(ǫ1)ϑ3(ǫ2)ϑ2ϑ3 = ϑ2+ϑ3+ϑ2−ϑ3− − ϑ1+ϑ4+ϑ1−ϑ4−,

ϑ2(ǫ1)ϑ4(ǫ2)ϑ2ϑ4 = ϑ2+ϑ4+ϑ2−ϑ4− − ϑ1+ϑ3+ϑ1−ϑ3−,

ϑ3(ǫ1)ϑ4(ǫ2)ϑ3ϑ4 = ϑ3+ϑ4+ϑ3−ϑ4− − ϑ1+ϑ2+ϑ1−ϑ2−.

(A.32)

These identities are not entirely independent. For example, we can transform the product

ϑ1(ǫ1)ϑ1(ǫ2)ϑ2(ǫ1)ϑ2(ǫ2) with either the first two formulae or the fifth formula above, and

obtain the the same result due to (A.31). We can also derive the duplication formulas from

the above (A.32). For example, set ǫ1 = 2z, ǫ2 = 0 in the 5th formula we obtain

ϑ1(2z) =
2ϑ1(z)ϑ2(z)ϑ3(z)ϑ4(z)

ϑ2ϑ3ϑ4
. (A.33)

The Eisenstein series can be expressed in terms of the the Jacobi theta functions. We have

E4 =
1

2
(ϑ4

2 + ϑ4
3 + ϑ4

4) , E6 =
1

2
(−3ϑ8

2(ϑ
4
3 + ϑ4

4) + ϑ12
3 + ϑ12

4 ) . (A.34)

Finally, the product of the three even theta functions yields twice the Dedekind eta function,

2η = ϑ2ϑ3ϑ4 . (A.35)
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A.4 E8 Weyl invariant Jacobi forms

E8 Weyl invariant Jacobi forms φk,m : H × C8 → C of weight k and index m depend on

a modular parameter τ ∈ H and an element m ∈ Φe8 ⊗ C = C8 of the complexified root

lattice of e8. They are invariant under the action of the Weyl group of E8 on m, and satisfy

the modular and quasi-periodicity relations

φk,m

(
aτ + b

cτ + d
,

m

cτ + d

)
= (cτ + d) exp

(
mπi

c

cτ + d
(m,m)e8

)
φk,m(τ,m) , (A.36)

and

φk,m(τ,m+ µ+ τν) = exp
(
−mπi

(
τ(ν,ν)e8 + 2(µ,ν)e8

))
φk,m(τ,m) , (A.37)

for µ,ν ∈ Γe8 = Φe8⊗Z. Note that if we embed Γe8 →֒ C8 as in subsection 3.3, the Euclidean

inner product with regard to which the vectors ei introduced there are orthonormal induces

the inner product (·, ·)e8 on Φe8 .

The ring of E8 Weyl invariant Jacobi forms is generated by the following forms [72]:

A1=Θ(τ,m) =
1

2

4∑

k=1

8∏

j=1

θ4(τ,mj) , A4 = Θ(τ, 2m) ,

An=
n3

n3 + 1

(
Θ(nτ, nm) +

1

n4

n−1∑

k=0

Θ

(
τ + k

n
,m

))
, n = 2, 3, 5 ,

B2=
8

15

(
(θ43 + θ44)Θ(2τ, 2m) +

1

24
(−θ42 − θ43)Θ

(τ
2
,m

)
+

1

24
(
θ42 − θ44

)
Θ

(
τ + 1

2
,m

))
,

B3=
81

80

(
h(τ)2Θ(3τ, 3m)− 1

35

2∑

k=0

h

(
τ + k

3

)2

Θ

(
τ + k

3
,m

))
,

B4=
16

15

(
θ4(2τ)

4Θ(4τ, 4m)− 1

24
θ4(2τ)

4Θ

(
τ+

1

2
, 2m

)
− 1

45

3∑

k=0

θ2

(
τ+k

2

)4

Θ

(
τ+k

4
,m

))
,

B6=
9

10

(
h(τ)2Θ(6τ, 6m)+

h(τ)2

24

1∑

k=0

Θ

(
3τ+3k

2
, 3m

)
− 1

35

2∑

k=0

h

(
τ+k

3

)2

Θ

(
2τ+2k

3
, 2m

)

− 1

3 · 64
5∑

k=0

h

(
τ + k

3

)2

Θ

(
τ + k

6
,m

))
, (A.38)

where we have set m =
∑8

i=1miei and

h(τ) = θ2(2τ)θ2(6τ) + θ3(2τ)θ3(6τ) . (A.39)

An and Bn have index n and weight 4 and 6 respectively.

B Proof of some identities involving ϑ-functions and Jacobi forms

In this appendix, we prove two identities invoked in section 7.

– 50 –



J
H
E
P
0
5
(
2
0
1
7
)
1
3
0

To prove the identity (7.6), which we reproduce in the following

A
(
3

2
ǫ1 +

1

2
ǫ2

)
ϑ1(2ǫ2)−A

(
1

2
ǫ1 +

3

2
ǫ2

)
ϑ1(2ǫ1)

=
ϑ1(ǫ2 − ǫ1)A−

1492992
[B6

+ − 15A2
+B4

+E4 − 45A4
+B2

+E
2
4 + 40A3

+B3
+E6 + 24A5

+B+E4E6

+A6
+(27E

3
4 − 32E2

6)] , (B.1)

we begin with the first term: we multiply the numerator and the denominator by ϑ2
1−,

pair this factor with ϑ1(
3
2ǫ1 +

1
2ǫ2)

2 via (A.32), and replace ϑ1(2ǫ2) using the duplication

formula (A.33). We find

A
(
3

2
ǫ1 +

1

2
ǫ2

)
ϑ1(2ǫ2) (B.2)

= −2ϑ1(ǫ2)ϑ2(ǫ2)ϑ3(ǫ2)ϑ4(ǫ2)

η6ϑ2
1−ϑ2ϑ3ϑ5

4

(
ϑ3(ǫ1)

4ϑ4
2+ + ϑ2(ǫ1)

4ϑ4
3+ − 2ϑ2(ǫ1)

2ϑ3(ǫ1)
2ϑ2

2+ϑ
2
3+

)
.

Now we can pair each of the four factors ϑi(ǫ2) in the prefactor with the four ϑj(ǫ1) in

each term inside the parentheses and apply (A.32). The result involves theta functions

of elliptic argument ǫ−, ǫ+ only, and we denote it by P [ϑi(ǫ+), ϑi(ǫ−)]. The second term

on the l.h.s. of (B.1) can be transformed in exactly the same manner, and the result

is P [ϑi(ǫ+), ϑi(−ǫ−)]. Since ϑ1(z) is an odd function, while ϑ2(z), ϑ3(z), ϑ4(z) are even

functions, all terms with even powers of ϑ1− in P [ϑi(ǫ+), ϑi(ǫ−)] drop out of the difference

P [ϑi(ǫ+), ϑi(ǫ−)]− P [ϑi(ǫ+), ϑi(−ǫ−)]. The surviving terms take the form

− 4

η6ϑ2
1−ϑ

3
2ϑ

3
3ϑ

9
4

(
ϑ5
1−ϑ2−ϑ3−ϑ4−(. . .) + ϑ3

1−ϑ2−ϑ3−ϑ
3
4−(. . .)+ (B.3)

+ϑ3
1−ϑ

3
2−ϑ3−ϑ4−(. . .)+ϑ3

1−ϑ2−ϑ
3
3−ϑ4−(. . .)+ϑ1−ϑ

3
2−ϑ3−ϑ

3
4−(. . .)+ϑ1−ϑ2−ϑ

3
3−ϑ

3
4−(. . .)

)
,

where (. . .) are polynomials in ϑi, ϑi+. Next we can reduce the number of products of ϑi−
by using (A.31) to transfer the powers of ϑ2−, ϑ3− to ϑ1−, ϑ4−. The result is

− 4

η6ϑ2
1−ϑ

3
2ϑ

3
3ϑ

11
4

(
ϑ5
1−ϑ2−ϑ3−ϑ4−(. . .) + ϑ3

1−ϑ2−ϑ3−ϑ
3
4−(. . .) + ϑ1−ϑ2−ϑ3−ϑ

5
4−(. . .)

)
.

(B.4)

Using (A.31) and similar relations

ϑ1(z)
2ϑ2

4 = ϑ3(z)
2ϑ2

2 − ϑ2(z)
2ϑ2

3 , ϑ4(z)
2ϑ2

4 = ϑ3(z)
2ϑ2

3 − ϑ2(z)
2ϑ2

2 , (B.5)

it is easy to see the coefficients of ϑ1−ϑ2−ϑ3−ϑ5
4− and ϑ3

1−ϑ2−ϑ3−ϑ3
4− vanish. For instance,

the coefficient of ϑ1−ϑ2−ϑ3−ϑ5
4− reads

ϑ2
2ϑ

2
1+ϑ

2
2+ − ϑ2

3ϑ
2
1+ϑ

2
3+ − ϑ2

3ϑ
2
2+ϑ

2
4+ + ϑ2

2ϑ
2
3+ϑ

2
4+ = −ϑ2

1+ϑ
2
4+ϑ

2
4 + ϑ2

4+ϑ
2
1+ϑ

2
4 = 0 . (B.6)

Now all the theta functions of ǫ− can be factored out. We are left with the following

coefficient of the factor ϑ1(ǫ2 − ǫ1)A−:

− 2

ϑ2
2ϑ

2
3ϑ

10
4

(−ϑ2
3ϑ

2
1+ϑ

8
2+ϑ

2
3++2ϑ2

3ϑ
2
1+ϑ

4
2+ϑ

6
3+−ϑ2

2ϑ
2
1+ϑ

2
2+ϑ

8
3+−ϑ2

4ϑ
2
1+ϑ

8
2+ϑ

2
4+−ϑ2

2ϑ
8
2+ϑ

2
3+ϑ

2
4+

−2ϑ2
4ϑ

2
1+ϑ

4
2+ϑ

4
3+ϑ

2
4++ϑ2

4ϑ
2
1+ϑ

8
3+ϑ

2
4++ϑ2

3ϑ
2
2+ϑ

8
3+ϑ

2
4+−2ϑ2

4ϑ
2
2+ϑ

6
3+ϑ

4
4+) . (B.7)
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Equality with

1

1492992
(B6

+ − 15A2
+B4

+E4 − 45A4
+B2

+E
2
4 + 40A3

+B3
+E6 + 24A5

+B+E4E6

+A6
+(27E

3
4 − 32E2

6)) (B.8)

now can either be seen directly by expressing both (B.7) and (B.8) in terms of algebraically

independent ϑ functions, or by noting that both expressions define weak Jacobi forms with

the same weight and index, and fixing coefficients by comparing their small q expansion to

sufficiently high order.12

We next prove the first formula in (7.8), which we also reproduce here

A(ǫ1)
2ϑ1(2ǫ2)−A(ǫ2)

2ϑ1(2ǫ1)

=
ϑ1(ǫ1 − ǫ2)

10368
(A+B− −A−B+)(3A+B−B2

+ +A−B3
+ − 9A−A2

+B+E4 − 3A3
+B−E4

+8A3
+A−E6) . (B.9)

First, we use the duplication formula (A.33) to obtain

A(ǫ1)
2ϑ1(2ǫ2)−A(ǫ2)

2ϑ1(2ǫ1)

=
2ϑ1(ǫ1)ϑ1(ǫ2)

ϑ2ϑ3ϑ4η12
[ϑ2(ǫ2)ϑ3(ǫ2)ϑ4(ǫ2)ϑ

3
1(ǫ1)− ϑ2(ǫ1)ϑ3(ǫ1)ϑ4(ǫ1)ϑ

3
1(ǫ2)] . (B.10)

Using the formulae in (A.32), we obtain the identity

ϑ1(ǫ1)ϑ1(ǫ2) = −η6

12
(A+B− −A−B+) . (B.11)

Applying the formulae in (A.32) to the pairs ϑ1(ǫ1)ϑi(ǫ2), i = 2, 3, 4 in the first term, and

likewise with ǫ1 and ǫ2 exchanged in the second term, we find

ϑ2(ǫ2)ϑ3(ǫ2)ϑ4(ǫ2)ϑ
3
1(ǫ1)− ϑ2(ǫ1)ϑ3(ǫ1)ϑ4(ǫ1)ϑ

3
1(ǫ2) (B.12)

=
ϑ1−ϑ2−ϑ3−ϑ4−

2η6
[ϑ2

1+ϑ
2
2+ϑ

2
3+ϑ

2
4− + ϑ2

1+ϑ
2
2+ϑ

2
3−ϑ

2
4+ + ϑ2

1+ϑ
2
2−ϑ

2
3+ϑ

2
4+ + ϑ2

1−ϑ
2
2+ϑ

2
3+ϑ

2
4+] .

The four factors of ϑi− in front are proportional via the duplication identity (A.33) to the

expected factor ϑ1(ǫ1−ǫ2) required to cancel the pole in (7.7). It is straightforward to work

out the rest by re-expressing the weak Jacobi forms in (7.8) and the r.h.s. of (B.12) in terms

of an independent set of theta functions, and invoking the identities (A.34) and (A.35).

This then completes the proof of the first identity in (7.8). The proof of the others follows

the same pattern.

C BPS invariants from the modular approach

C.1 Massless E-string nb = 4, 5

Here in tables 11, 12 we give the unrefined BPS indices for massless E-string at base degree

nb = 4, 5 respectively.

12Note that we cannot prove the identity (7.6) using the same argument because both sides depend on

two elliptic parameters.
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I4,eg e =4 5 6

g =0 -114265008 -23064530112 -1972983690880

1 76413833 27863327760 3478600320920

2 -26631112 -18669096840 -3493725635712

3 5889840 8744913564 2548788575530

4 -835236 -3051708946 -1455980703978

5 69587 804336322 669294682633

6 -2642 -158420138 -249630702534

7 11 22611609 75407691994

8 -2209196 -18284982166

9 132731 3503417329

10 -3828 -517711576

11 15 56863333

12 -4374392

13 211796

14 -5068

15 19

Table 11. Unrefined BPS indices Inb,ne
g for massless E-string at nb = 4.

I5,eg e =5 6 7

g =0 18958064400 5105167984850 594537323257800

1 -23436186176 -9930641443350 -1585090167772500

2 16150498760 11074858711765 2457788116576020

3 -7785768630 -8996745286730 -2835031032258700

4 2795423986 5741344855169 2636754649061672

5 -757807700 -2964403762286 -2045465858241700

6 153448015 1252200262512 1344639656186269

7 -22499836 -433368495468 -754544640140708

8 2255437 122266349837 362345939803835

9 -138768 -27823676688 -148816360041566

10 4085 5022627207 52113548906686

11 -16 -701630204 -15479922392000

12 73076867 3871431860954

13 -5347102 -806989428116

14 247076 138311499769

15 -5670 -19134877318

16 21 2082390360

17 -171656442

18 10099677

19 -381760

20 7340

21 -26

Table 12. Unrefined BPS indices Inb,ne
g for massless E-string at nb = 5.
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(3, 1) 2j+ =0 1 2 3 4 5 6

2j
−

=0 2 4 2

1 1 2 1

(3, 2) 2j+ =0 1 2 3 4 5 6 7 8 9

2j
−

=0 10 9 8 19 36 40 26 10 2

1 5 6 10 20 31 36 31 18 5

2 1 4 7 10 16 20 15 6 1

3 1 4 6 6 5 2

4 1 2 1

(3, 3) 2j+ =0 1 2 3 4 5 6 7 8 9 10 11 12

2j
−

=0 70 128 176 243 322 345 270 147 58 19 4

1 75 138 200 286 384 428 370 242 118 40 7

2 36 69 112 171 236 285 292 240 144 56 12 1

3 7 16 33 56 84 120 152 154 115 60 21 4

4 1 4 8 16 32 50 62 62 47 24 6

5 1 4 8 14 22 24 16 6 1

6 1 4 6 6 5 2

7 1 2 1

Table 13. BPS numbers of massless M-string at base degree 3 and fiber degree up to 3.

(4, 1) 2j+ =0 1 2 3 4 5 6 7 8

2j
−

=0 2 4 2

1 1 2 1

(4, 2) 2j+ =0 1 2 3 4 5 6 7 8 9 10 11 12

2j
−

=0 2 9 16 19 28 45 58 61 48 22 4

1 1 6 14 20 27 40 57 70 62 34 11 2

2 1 4 7 10 17 28 38 40 32 18 5

3 1 4 7 10 16 20 15 6 1

4 1 4 6 6 5 2

5 1 2 1

(4, 3) 2j+ =0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

2j
−

=0 106 243 406 556 680 818 964 987 794 491 244 103 34 6

1 124 284 475 664 848 1056 1262 1336 1175 836 471 202 62 12 1

2 74 167 282 414 570 753 934 1058 1060 890 584 283 100 26 4

3 25 54 94 154 239 344 459 580 673 662 519 314 142 44 7

4 4 8 16 34 62 100 154 227 302 347 338 265 152 57 12 1

5 1 4 8 16 34 60 91 128 159 158 116 60 21 4

6 1 4 8 16 32 50 62 62 47 24 6

7 1 4 8 14 22 24 16 6 1

8 1 4 6 6 5 2

9 1 2 1

Table 14. BPS numbers of massless M-string at base degree 4 and fiber degree up to 3.

C.2 Massless M-string nb = 3, 4 and ne ≤ 3

We give here the BPS numbers for the massless M-string at base degree 3, 4 and fiber degree

up to 3 in tables 13, 14 respectively. In the head of each table, (nb, ne) means base degree

nb and fiber degree ne. Conspicuously, the checkerboard pattern disappears in these tables.

C.3 Massive M-string nb = 2, 3 and ne ≤ 3

Here we display the BPS numbers for massive M-string with base degree 2 and 3 and

fiber degree up to 3 in tables 15, 16, 17, 18. In the head of each table (nb, ne, nm) means

base degree nb, fiber degree ne, and degree nm in the mass parameter. Noticeably, the

checkerboard pattern is recovered in every table.
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(2, 1, 0) 2j+ =2 3 4

2j
−

=0 2

1 1 1

(2, 1, 1) 2j+ =2 3 4

2j
−

=0 1 1

1 1

(2, 1, 2) 2j+ =3

2j
−

=0 1

(2, 2, 0) 2j+ =0 1 2 3 4 5 6

2j
−

=0 5 10 3

1 1 8 8 1

2 1 4 3

3 1 1

(2, 2, 1) 2j+ =0 1 2 3 4 5 6

2j
−

=0 1 7 6

1 3 8 3

2 2 3 1

3 1

(2, 2, 2) 2j+ =1 2 3 4 5

2j
−

=0 2 4 1

1 3 3

2 1 1

(2, 2, 3) 2j+ =2 3 4

2j
−

=0 1 1

1 1

Table 15. BPS numbers of massive M-string with base degree 2 and fiber degree 1 or 2.

(2, 3, 0) 2j+ =0 1 2 3 4 5 6 7 8

2j
−

=0 26 50 18 1

1 12 48 48 12

2 14 31 26 4

3 1 6 14 10 1

4 1 4 3

5 1 1

(2, 3, 1) 2j+ =0 1 2 3 4 5 6 7 8

2j
−

=0 9 36 31 4

1 23 46 23 2

2 4 19 26 11

3 2 7 11 3

4 2 3 1

5 1

(2, 3, 2) 2j+ =0 1 2 3 4 5 6 7

2j
−

=0 11 24 7

1 4 20 20 4

2 5 12 10 1

3 1 4 3

4 1 1

(2, 3, 3) 2j+ =0 1 2 3 4 5 6

2j
−

=0 1 7 6

1 3 8 3

2 2 3 1

3 1

(2, 3, 4) 2j+ =2 3 4

2j
−

=0 2

1 1 1

Table 16. BPS numbers of massive M-string with base degree 2 and fiber degree 3.

(3, 1, 0) 2j+ =4 5 6

2j
−

=0 2

1 1 1

(3, 1, 1) 2j+ =4 5 6

2j
−

=0 1 1

1 1

(3, 1, 2) 2j+ =5

2j
−

=0 1

(3, 2, 0) 2j+ =0 1 2 3 4 5 6 7 8 9

2j
−

=0 5 11 20 6

1 3 6 17 17 3

2 1 5 10 9 1

3 1 4 3

4 1 1

(3, 2, 1) 2j+ =0 1 2 3 4 5 6 7 8 9

2j
−

=0 4 4 15 11 1

1 3 9 16 8

2 2 5 9 3

3 2 3 1

4 1

(3, 2, 2) 2j+ =0 1 2 3 4 5 6 7 8

2j
−

=0 2 4 9 2

1 1 2 7 7 1

2 1 3 3

3 1 1

(3, 2, 3) 2j+ =0 1 2 3 4 5 6 7

2j
−

=0 1 3 2

1 1 2 1

2 1

(3, 2, 4) 2j+ =5

2j
−

=0 1

Table 17. BPS numbers of massive M-string at base degree 3 and fiber degree 1 or 2.
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(3, 3, 0) 2j+ =0 1 2 3 4 5 6 7 8 9 10 11 12

2j
−

=0 64 121 163 75 11

1 39 106 192 184 64 5

2 39 93 149 124 32 1

3 5 21 50 84 63 13

4 1 6 20 36 27 4

5 1 6 14 10 1

6 1 4 3

7 1 1

(3, 3, 1) 2j+ =0 1 2 3 4 5 6 7 8 9 10 11 12

2j
−

=0 29 74 130 109 26 2

1 59 121 175 102 18

2 16 50 102 124 62 6

3 8 26 54 67 27 2

4 2 8 23 28 11

5 2 7 11 3

6 2 3 1

7 1

(3, 3, 2) 2j+ =0 1 2 3 4 5 6 7 8 9 10 11

2j
−

=0 30 57 82 34 4

1 17 45 89 86 26 1

2 15 38 65 55 12

3 1 6 17 33 25 4

4 1 6 13 10 1

5 1 4 3

6 1 1

(3, 3, 3) 2j+ =0 1 2 3 4 5 6 7 8 9 10

2j
−

=0 6 14 30 25 3

1 10 22 38 19 2

2 2 6 16 22 10

3 2 6 10 3

4 2 3 1

5 1

(3, 3, 4) 2j+ =0 1 2 3 4 5 6 7 8

2j
−

=0 2 4 9 2

1 1 2 7 7 1

2 1 3 3

3 1 1

(3, 3, 5) 2j+ =4 5 6

2j
−

=0 1 1

1 1

Table 18. BPS numbers of massive M-string at base degree 3 and fiber degree 3.

C.4 Nκ
j
−
j+

for a mass deformation of T 2× the resolved D4 singularity

In table 19, we report on numbers Nκ
j−j+

for the massive D4 case as extracted from our

computations based on the methods explained in section 4. They satisfy basic consistency

requirements: they are positive integers, and they follow a checkerboard pattern.

D Sakai’s mirror curve for the massive E-string

The Sakai mirror curve for the massive E-string is given by (8.16), with coefficient functions

g2(u, τ,m), g3(u, τ,m) [72]

g2(u, τ,m) =
4∑

j=0

aju
j , g3(u, τ,m) =

6∑

j=0

bju
j . (D.1)
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N
(1,1,1,1;0,0)
j
−

j+
2j+ =0 1

2j
−

=0 0 1

N
(1,1,1,1;0,1)
j
−

j+
2j+ =0

2j
−

=0 1

N
(1,1,1,1;1,0)
j
−

j+
2j+ =0 1 2

2j
−

= 0 14

1 10 4

N
(1,1,1,1;1,1)
j
−

j+
2j+ =0 1 2

2j
−

= 0 13 4

1 7

N
(1,1,1,1;1,2)
j
−

j+
2j+ =0 1

2j
−

= 0 7

1 3

N
(1,1,1,1;1,3)
j
−

j+
2j+ =0

2j
−

= 0 3

N
(1,1,1,1;2,0)
j
−

j+
2j+ =0 1 2 3

2j
−

= 0 173 22

1 129 81

2 49 10

N
(1,1,1,1;2,1)
j
−

j+
2j+ =0 1 2 3

2j
−

= 0 133 74

1 126 16

2 30 22

N
(1,1,1,1;2,2)
j
−

j+
2j+ =0 1 2 3

2j
−

= 0 89 6

1 67 37

2 15

N
(1,1,1,1;2,3)
j
−

j+
2j+ =0 1 2

2j
−

= 0 40 15

1 27

2 3

N
(1,1,1,1;2,4)
j
−

j+
2j+ =0 1

2j
−

= 0 12

1 6

N
(1,1,1,1;2,5)
j
−

j+
2j+ =0

2j
−

= 0 3

Table 19. Refined BPS invariants of the massive D4 chain at base degrees β = (1, 1, 1, 1) and fiber

degree e ≤ 2.

The coefficients are

a0 =
1

12
E4 , b0 =

1

216
E6 ,

a1 = 0 , b1 = − 4

E4
A1 ,

a2 =
6 · 1728

E4(E3
4 − E2

6)
(−E4A2 +A2

1) ,

b2 =
5 · 1728

6E2
4(E

3
4 − E2

6)
(E2

4B2 − E6A
2
1) , (D.2)

· · · · · · · · · .

where we have used the nine generators of the ring of E8 Weyl invariant Jacobi forms

introduced in subsection A.4. The other coefficients a3, a4, b3, . . . , b6 of the Sakai curve are

not needed in our computations and can be found in [72]. Note that compared to Sakai’s

original notation, we have inverted u so that u → 0 is the large volume limit.
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