R. Alessi, Variational Approach to Fracture Mechanics with Plasticity, 2013.
URL : https://hal.archives-ouvertes.fr/pastel-00847970

R. Alessi, Energetic formulation for rate-independent processes: remarks on discontinuous evolutions with a simple example, Acta Mechanica, vol.282, issue.11
DOI : 10.1002/mana.200810803

R. Alessi and D. Bernardini, Analysis of localization phenomena in Shape Memory Alloys bars by a variational approach, International Journal of Solids and Structures, vol.73, issue.74, pp.73-74113, 2015.
DOI : 10.1016/j.ijsolstr.2015.06.021

R. Alessi, J. Marigo, and S. Vidoli, Gradient Damage Models Coupled with Plasticity and Nucleation of Cohesive Cracks Archive for Rational Mechanics and Analysis, pp.575-615, 2014.

R. Alessi, J. Marigo, and S. Vidoli, Gradient damage models coupled with plasticity: Variational formulation and main properties, Mechanics of Materials, vol.80, pp.351-367, 2015.
DOI : 10.1016/j.mechmat.2013.12.005

R. Alessi and K. Pham, Variational formulation and stability analysis of a three dimensional superelastic model for shape memory alloys, Journal of the Mechanics and Physics of Solids, vol.87, pp.150-176, 2016.
DOI : 10.1016/j.jmps.2015.11.006

E. L. Allgower and K. Georg, Introduction to Numerical Continuation Methods, 2003.
DOI : 10.1137/1.9780898719154

M. Alnaes, J. Blechta, J. Hake, A. Johansson, B. Kehlet et al., The FEniCS Project Version 1, 2015.

M. Ambati, T. Gerasimov, and L. De-lorenzis, Phase-field modeling of ductile fracture, Computational Mechanics, vol.92, issue.3?4, pp.1017-1040, 2015.
DOI : 10.1007/s00466-015-1151-4

M. Ambati, R. Kruse, and L. De-lorenzis, A phase-field model for ductile fracture at finite strains and its experimental verification, Computational Mechanics, vol.186, issue.4, pp.149-167, 2015.
DOI : 10.1007/s00466-015-1225-3

L. Ambrosio, A. Lemenant, and G. Royer-carfagni, A Variational Model for Plastic Slip and Its Regularization via ??-Convergence, Journal of Elasticity, vol.25, issue.8, pp.201-235, 2013.
DOI : 10.1007/s10659-012-9390-5

H. Amor, J. Marigo, and C. Maurini, Regularized formulation of the variational brittle fracture with unilateral contact: Numerical experiments, Journal of the Mechanics and Physics of Solids, vol.57, issue.8, pp.1209-1229, 2009.
DOI : 10.1016/j.jmps.2009.04.011

S. Balay, W. D. Gropp, L. C. Mcinnes, and B. F. Smith, Efficient Management of Parallelism in Object-Oriented Numerical Software Libraries, Modern Software Tools in Scientific Computing, pp.163-202, 1997.
DOI : 10.1007/978-1-4612-1986-6_8

G. I. Barenblatt, The mathematical theory of equilibrium of cracks in brittle fracture Advances in Applied Mechanics, pp.55-129, 1962.

A. A. Benzerga and J. Leblond, Ductile Fracture by Void Growth to Coalescence, Advances in Applied Mechanics, pp.169-305, 2010.
DOI : 10.1016/S0065-2156(10)44003-X

J. Besson, Continuum Models of Ductile Fracture: A Review, International Journal of Damage Mechanics, vol.19, issue.1, 2009.
DOI : 10.1177/1056789509103482

URL : https://hal.archives-ouvertes.fr/hal-00550957

M. J. Borden, T. J. Hughes, C. M. Landis, A. Anvari, and I. J. Lee, A phase-field formulation for fracture in ductile materials: Finite deformation balance law derivation, plastic degradation, and stress triaxiality effects, Computer Methods in Applied Mechanics and Engineering, vol.312, pp.130-166, 2016.
DOI : 10.1016/j.cma.2016.09.005

B. Bourdin, Une méthode variationnelle en mécanique de la rupture, théorie et applications numériques (A Variational Method for Brittle Fracture, Theory and Numerical Implementation ), 1998.

B. Bourdin, Numerical implementation of the variational formulation for quasi-static brittle fracture. Interfaces and Free Boundaries, pp.411-430, 2007.

B. Bourdin, G. A. Francfort, and J. Marigo, Numerical experiments in revisited brittle fracture, Journal of the Mechanics and Physics of Solids, vol.48, issue.4, pp.797-826, 2000.
DOI : 10.1016/S0022-5096(99)00028-9

B. Bourdin, G. A. Francfort, and J. Marigo, The Variational Approach to Fracture, Journal of Elasticity, vol.125, issue.8, pp.5-148, 2008.
DOI : 10.1016/S1874-5717(06)80009-5

URL : https://hal.archives-ouvertes.fr/hal-00551079

B. Bourdin, J. Marigo, C. Maurini, and P. Sicsic, Morphogenesis and Propagation of Complex Cracks Induced by Thermal Shocks, Physical Review Letters, vol.112, issue.1, p.14301, 2014.
DOI : 10.1016/0377-0273(94)90092-2

URL : https://hal.archives-ouvertes.fr/hal-00911118

A. Braides, Minimizing Movements, pp.91-101, 2014.
DOI : 10.1007/978-3-319-01982-6_7

C. Comi, Computational modelling of gradient?enhanced damage in quasi?brittle materials, Mechanics of Cohesive-frictional Materials, pp.17-36, 1999.
DOI : 10.1002/(SICI)1099-1484(199901)4:1<17::AID-CFM55>3.0.CO;2-6

C. Comi and U. Perego, Fracture energy based bi-dissipative damage model for concrete, International Journal of Solids and Structures, vol.38, issue.36-37, pp.36-376427, 2001.
DOI : 10.1016/S0020-7683(01)00066-X

S. Conti, M. Focardi, and F. Iurlano, Phase field approximation of cohesive fracture models. Annales de l'Institut Henri Poincare (C) Non Linear Analysis, pp.1033-1067, 2016.
DOI : 10.1016/j.anihpc.2015.02.001

URL : http://arxiv.org/abs/1405.6883

V. Crismale, Globally stable quasistatic evolution for a coupled elastoplastic?damage model. ESAIM: Control, Optimisation and Calculus of Variations, 2015.
DOI : 10.1051/cocv/2015037

V. Crismale and G. Lazzaroni, Viscous approximation of quasistatic evolutions for a coupled elastoplastic-damage model, Calculus of Variations and Partial Differential Equations, vol.90, issue.2, p.17, 2016.
DOI : 10.1007/s00526-015-0947-6

G. Dal-maso, A. D. Simone, and M. G. Mora, Quasistatic Evolution Problems for Linearly Elastic?Perfectly Plastic Materials Archive for Rational Mechanics and Analysis, pp.237-291, 2006.

G. Dal-maso, G. Orlando, and R. Toader, Fracture models for elasto-plastic materials as limits of gradient damage models coupled with plasticity: the antiplane case, Calculus of Variations and Partial Differential Equations, vol.6, issue.3, p.45, 2016.
DOI : 10.1051/cocv/2015037

D. Dugdale, Yielding of steel sheets containing slits, Journal of the Mechanics and Physics of Solids, vol.8, issue.2, pp.100-104, 1960.
DOI : 10.1016/0022-5096(60)90013-2

L. C. Evans and R. F. Gariepy, Measure Theory and Fine Properties of Functions, 1991.

G. A. Francfort, A. Giacomini, and J. Marigo, A case study for uniqueness of elasto-plastic evolutions: The bi-axial test, Journal de Math??matiques Pures et Appliqu??es, vol.105, issue.2, pp.198-227, 2016.
DOI : 10.1016/j.matpur.2015.10.003

G. A. Francfort, A. Giacomini, and J. Marigo, The elastoplastic exquisite corpse: A Suquet legacy, Journal of the Mechanics and Physics of Solids, 2016.

F. Freddi and F. Iurlano, Numerical insight of a variational smeared approach to cohesive fracture, Journal of the Mechanics and Physics of Solids, vol.98, pp.156-171, 2017.
DOI : 10.1016/j.jmps.2016.09.003

F. Freddi and G. Royer-carfagni, Regularized variational theories of fracture: A unified approach, Journal of the Mechanics and Physics of Solids, vol.58, issue.8, pp.1154-1174, 2010.
DOI : 10.1016/j.jmps.2010.02.010

F. Freddi and G. Royer-carfagni, Phase-field slip-line theory of plasticity, Journal of the Mechanics and Physics of Solids, vol.94, 2016.
DOI : 10.1016/j.jmps.2016.04.024

A. A. Griffith, The Phenomena of Rupture and Flow in Solids, Containing Papers of a Mathematical or Physical Character, pp.163-198, 1920.
DOI : 10.1098/rsta.1921.0006

A. L. Gurson, Continuum Theory of Ductile Rupture by Void Nucleation and Growth: Part I?Yield Criteria and Flow Rules for Porous Ductile Media, Journal of Engineering Materials and Technology, vol.99, issue.1, pp.2-15, 1977.
DOI : 10.1115/1.3443401

W. Han, B. D. Reddy, and . Plasticity, Mathematical theory and numerical analysis, volume Springer V of Interdisciplinary applied mathematics: Mechanics and materials, 1999.

C. Kuhn, T. Noll, and R. Müller, On phase field modeling of ductile fracture, GAMM-Mitteilungen, vol.108, issue.1, pp.35-54, 2016.
DOI : 10.1002/gamm.201610003

G. Lancioni, Modeling the Response of Tensile Steel Bars by Means of Incremental Energy Minimization, Journal of Elasticity, vol.54, issue.612, pp.25-54, 2015.
DOI : 10.1007/s10659-015-9515-8

G. Lancioni, T. Yalçinkaya, and A. Cocks, Energy-based nonlocal plasticity models for deformation patterning, localization and fracture, Proceedings of the Royal Society A: Mathematical, Physical and Engineering Science, p.471, 2015.
DOI : 10.1098/rspa.2015.0275

A. A. León-baldelli, J. F. Babadjian, B. Bourdin, D. Henao, and C. Maurini, A variational model for fracture and debonding of thin films under in-plane loadings, Journal of the Mechanics and Physics of Solids, vol.70, pp.320-348, 2014.
DOI : 10.1016/j.jmps.2014.05.020

A. Logg, K. Mardal, and G. Wells, Automated Solution of Differential Equations by the Finite Element Method: The FEniCS Book, 2012.
DOI : 10.1007/978-3-642-23099-8

J. Marigo, C. Maurini, and K. Pham, An overview of the modelling of fracture by gradient damage models, Meccanica, vol.63, issue.1, pp.3107-3128, 2016.
DOI : 10.1002/nme.5300

URL : https://hal.archives-ouvertes.fr/hal-01374814

C. Miehe, M. Hofacker, L. Schänzel, and F. , Phase field modeling of fracture in multi-physics problems. Part II. Coupled brittle-to-ductile failure criteria and crack propagation in thermo-elastic?plastic solids, Computer Methods in Applied Mechanics and Engineering, vol.294, pp.486-522, 2015.
DOI : 10.1016/j.cma.2014.11.017

C. Miehe, S. Teichtmeister, and F. , Phase-field modelling of ductile fracture: a variational gradient-extended plasticity-damage theory and its micromorphic regularization, Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences, vol.38, issue.220, p.374, 2016.
DOI : 10.1002/(SICI)1097-0207(19961015)39:19<3391::AID-NME7>3.0.CO;2-D

A. Mielke, A Mathematical Framework for Generalized Standard Materials in the Rate-Independent Case, Multifield Problems in Solid and Fluid Mechanics, pp.399-428, 2006.
DOI : 10.1007/978-3-540-34961-7_12

A. Mielke and T. Roubí?ek, Rate-Independent Systems: Theory and Application, 2015.
DOI : 10.1007/978-1-4939-2706-7

H. Petryk, Incremental energy minimization in dissipative solids, Comptes Rendus M?canique, vol.331, issue.7, pp.469-474, 2003.
DOI : 10.1016/S1631-0721(03)00109-8

K. Pham, H. Amor, J. Marigo, and C. Maurini, Gradient Damage Models and Their Use to Approximate Brittle Fracture, International Journal of Damage Mechanics, vol.30, issue.4, pp.618-652, 2011.
DOI : 10.1016/0029-5493(92)90094-C

URL : https://hal.archives-ouvertes.fr/hal-00549530

K. Pham and J. Marigo, Approche variationnelle de l'endommagement : II. Les mod?les ? gradient, Comptes Rendus M?canique, vol.338, issue.4, pp.199-206, 2010.
DOI : 10.1016/j.crme.2010.03.012

URL : https://hal.archives-ouvertes.fr/hal-00490520

K. Pham and J. Marigo, Stability of Homogeneous States with Gradient Damage Models: Size Effects and Shape Effects in the Three-Dimensional Setting, Journal of Elasticity, vol.30, issue.13, pp.63-93, 2012.
DOI : 10.1007/s10659-012-9382-5

URL : https://hal.archives-ouvertes.fr/hal-00655488

K. Pham, J. Marigo, and C. Maurini, The issues of the uniqueness and the stability of the homogeneous response in uniaxial tests with gradient damage models, Journal of the Mechanics and Physics of Solids, vol.59, issue.6, pp.1163-1190, 2011.
DOI : 10.1016/j.jmps.2011.03.010

URL : https://hal.archives-ouvertes.fr/hal-00578995

O. Roko?, J. Zeman, and M. Jirásek, Localization analysis of an energy-based fourth-order gradient plasticity model, European Journal of Mechanics - A/Solids, vol.55, pp.256-277, 2016.
DOI : 10.1016/j.euromechsol.2015.09.007

T. Roubí?ek and J. Valdman, Perfect plasticity with damage and healing at small strains, its modelling, analysis, and computer implementation, 2015.

G. Rousselier, Ductile fracture models and their potential in local approach of fracture, Nuclear Engineering and Design, vol.105, issue.1, pp.97-111, 1987.
DOI : 10.1016/0029-5493(87)90234-2

P. M. Suquet, Sur leséquationsleséquations de la plasticité: existence et régularité des solutions, Journal de Mécanique, vol.20, pp.3-40, 1981.

V. Tvergaard and A. Needleman, Analysis of the cup-cone fracture in a round tensile bar, Acta Metallurgica, vol.32, issue.1, pp.157-169, 1984.
DOI : 10.1016/0001-6160(84)90213-X

J. Ulloa, P. Rodríguez, and E. Samaniego, On the modeling of dissipative mechanisms in a ductile softening bar, Journal of Mechanics of Materials and Structures, vol.11, issue.4, pp.463-490, 2016.
DOI : 10.2140/jomms.2016.11.463