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Understanding how genetic variation translates into phenotypic 
diversity is a central theme in biology. With the rapid advancement of 
sequencing technology, genetic variation in large natural populations 
has been explored extensively for humans and several model organ-
isms1–9. However, current knowledge of natural genetic variation is 
heavily biased toward single nucleotide variants (SNVs). Large-scale 
structural variants (SVs) such as inversions, reciprocal translocations, 
transpositions, novel insertions, deletions and duplications are not as 
well characterized owing to technical difficulties in detecting them 
with short-read sequencing data. This is a critical problem to address 
given that SVs often account for a substantial fraction of genetic vari-
ation and can have significant implications in adaptation, speciation 
and disease susceptibility10–12.

The long-read sequencing technologies from Pacific Biosciences 
(PacBio) and Oxford Nanopore offer powerful tools for high-quality 
genome assembly13. Their recent applications provided highly con-
tinuous genome assemblies with many complex regions correctly 
resolved, even for large mammalian genomes14,15. This is especially 
important in characterizing SVs, which are frequently embedded in 
complex regions. For example, eukaryotic subtelomeres, which con-
tribute to genetic and phenotypic diversity, are known hot spots of 
SVs due to rampant ectopic sequence reshuffling16–19.

Baker’s yeast, S. cerevisiae, is a leading biological model system with 
great economic importance in agriculture and industry. Discoveries in 
S. cerevisiae have helped shed light on almost every aspect of molecular  

biology and genetics. It was the first eukaryote to have its genome 
sequence, population genomics and genotype–phenotype map exten-
sively explored1,20,21. Here we applied PacBio sequencing to 12 repre-
sentative strains of S. cerevisiae or its wild relative S. paradoxus and 
identified notable interspecific contrasts in structural dynamics across 
their genomic landscapes. This study brings long-read sequencing 
technologies to the field of population genomics, studying genome 
evolution using multiple reference-quality genome sequences.

RESULTS
End-to-end population-level genome assemblies
We applied deep PacBio (100×–300×) and Illumina (200×–500×) 
sequencing to seven S. cerevisiae and five S. paradoxus strains rep-
resenting evolutionarily distinct subpopulations of both species1,6 
(Supplementary Tables 1 and 2). The raw PacBio de novo assem-
blies of both nuclear and mitochondrial genomes showed compel-
ling completeness and accuracy, with most chromosomes assembled 
into single contigs, and highly complex regions accurately assembled 
(Supplementary Fig. 1). After manual gap filling and Illumina-read-
based error correction (Online Methods), we obtained end-to-end 
assemblies for almost all the 192 chromosomes, with only the rDNA 
array on chromosome XII and 26 of 384 (6.8%) chromosome ends 
remaining not fully assembled. We estimate that only 45–202 base-
level sequencing errors remain across each 12-Mb nuclear genome 
(Supplementary Tables 3 and 4). For each assembly, we annotated 
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centromeres, protein-coding genes, tRNAs, Ty retrotransposable ele-
ments, core X elements, Y′ elements and mitochondrial RNA genes 
(Supplementary Tables 5–7). Chromosomes were named according 
to their encompassed centromeres.

When evaluated against the current S. cerevisiae and S. paradoxus 
reference genomes, our PacBio assemblies of the same strains (S288C 
and CBS432, respectively) show clean collinearity for both nuclear and 
mitochondrial genomes (Fig. 1a,b) with only a few discrepancies at 
finer scales, which were caused by assembly problems in the reference 
genomes. For example, we found five nonreference Ty1 insertions on 
chromosome III in our S288C assembly (Fig. 1a, inset), which were 
corroborated by previous studies22–24 as well as our own long-range 
PCR amplifications. Likewise, we found a misassembly on chromo-
some IV (Fig. 1b, inset) in the S. paradoxus reference genome, which 
was confirmed by Illumina and Sanger reads1. Moreover, we checked 
several known cases of copy number variants (CNVs) (for example, 
Y′ elements25, the CUP1 locus6 and ARR6 gene clusters) and SVs (for 

example, those in the Malaysian S. cerevisiae UWOPS03-461.4)26 and 
they were all correctly recaptured in our assemblies.

The final assembly sizes of these 12 strains ranged from 11.73 
to 12.14 Mb for the nuclear genome (excluding rDNA gaps) and 
from 69.95 to 85.79 kb for the mitochondrial genome (Fig. 1c,d 
and Supplementary Tables 8 and 9). The abundance of Ty and Y′ 
elements substantially contributed to the nuclear genome size dif-
ferences (Fig. 1c and Supplementary Table 8). For example, we 
observed strain-specific enrichment of full-length Ty1 in S. cer-
evisiae S288C, Ty4 in S. paradoxus UFRJ50816 and Ty5 in S. para-
doxus CBS432, whereas no full-length Ty was found in S. cerevisiae 
UWOPS03-461.4 (Supplementary Table 6). Similarly, >30 cop-
ies of the Y′ element were found in S. cerevisiae SK1 but none in  
S. paradoxus N44 (Supplementary Table 5). Mitochondrial genome 
size variation is heavily shaped by the presence or absence of group I 
and group II introns in COB1, COX1 and 21S rRNA (rnl) (Fig. 1d and 
Supplementary Tables 9 and 10). Despite large-scale interchromosomal  
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rearrangements in a few strains (S. cerevisiae UWOPS03-461.4,  
S. paradoxus UFRJ50816 and S. paradoxus UWOPS91-917.1), all 12 
strains maintained 16 nuclear chromosomes.

Molecular evolutionary rate and diversification timescale
To gauge structural dynamics in a well-defined evolutionary con-
text, we performed phylogenetic analysis for the 12 strains and 6 
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Saccharomyces sensu stricto outgroups based on 4,717 one-to-one 
orthologs of nuclear protein-coding genes (Supplementary Data Set 1).  
The resulting phylogeny is consistent with our prior knowledge about 
these strains (Fig. 1e). Analyzing this phylogenetic tree, we found 
the entire S. cerevisiae lineage to have evolved faster than the S. para-
doxus lineage, as indicated by the overall longer branch from the com-
mon ancestor of the two species to each tip of the tree (Fig. 1e). We  
confirmed such rate differences by Tajima’s relative rate test27 for all  
S. cerevisiae–S. paradoxus strain pairs, using Saccharomyces mikatae 
as the outgroup (P < 1 × 10−5 for all pairwise comparisons). In con-
trast, molecular dating analysis shows that the cumulative diversifica-
tion time for the five S. paradoxus strains was 3.87-fold that for the 
seven S. cerevisiae strains, suggesting a much longer time span for  

accumulating species-specific genetic changes in the former 
(Supplementary Fig. 2a). This timescale difference was further supported 
by the synonymous substitution rate (dS) (Supplementary Fig. 2b).

Core–subtelomere chromosome partitioning
Conceptually, linear nuclear chromosomes can be partitioned into 
internal chromosomal cores, interstitial subtelomeres and terminal 
chromosome ends. However, their precise boundaries are challeng-
ing to demarcate without a rigid subtelomere definition. Here we  
propose an explicit way to pinpoint yeast subtelomeres on the basis 
of multi-genome comparison, which can be further applied to other 
eukaryotic organisms. For each subtelomere, we located its proximal 
boundary on the basis of the sudden loss of synteny conservation and 
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S288C, which is free from large-scale interchromosomal rearrangements. White diamonds indicate positions of centromeres. Different colors are used  
to differentiate gene contents in different ancestral S. cerevisiae chromosomes.
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demarcated its distal boundary by the telomere-associated core X  
and Y′ elements (Online Methods and Supplementary Fig. 3). The 
partitioning for the left arm of chromosome I is illustrated in Figure 2a.  
The strict gene synteny conservation is lost after GDH3, thus  
marking the boundary between the core and the subtelomere for 
this chromosome arm (Fig. 2a). All chromosomal cores and subte-
lomeres and 358 out of 384 chromosome ends across the 12 strains 
could be defined in this way (Supplementary Tables 11–13 and 
Supplementary Data Sets 2 and 3). For the remaining 26 chro-
mosome ends, X and Y′ elements and telomeric repeats (TG1–3)  
were missing. We assigned the orthology of subtelomeres from dif-
ferent strains on the basis of the ancestral chromosomal identity 
of their flanking chromosomal cores (Online Methods). Here we  
use Arabic numbers to denote such ancestral chromosomal identi-
ties and the associated subtelomeres, taking into account the large-
scale interchromosomal rearrangements that have occurred in some  
strains (Supplementary Fig. 4 and Supplementary Table 12). Such 
accurately assigned subtelomere orthology, together with explicit 
chromosome partitioning, allows an in-depth examination of sub
telomeric evolutionary dynamics.

Our analysis captures distinct properties of chromosomal  
cores and subtelomeres. All previously defined essential genes in  
S. cerevisiae S288C28 fell into the chromosomal cores, whereas  
all previously described subtelomeric duplication blocks in S288C 

(http://www2.le.ac.uk/colleges/medbiopsych/research/gact/images/
clusters-fixed-large.jpg) were fully enclosed in our defined S288C 
subtelomeres. Furthermore, the genes from our defined subtelom-
eres showed 36.6-fold higher CNV accumulation than those from the  
cores (one-sided Mann–Whitney U test, P < 2.2 × 10−16) (Fig. 2b,c). 
When considering only one-to-one orthologs, the subtelomeric genes 
showed 8.4-fold higher gene order loss (GOL)29–31 than their core coun-
terparts (one-sided Mann–Whitney U test, P < 2.2 × 10−16) (Fig. 2d,e).  
Additionally, subtelomeric one-to-one orthologs also showed signifi-
cantly higher nonsynonymous-to-synonymous substitution rate ratio 
(dN/dS) than those from the cores in the S. cerevisiae–S. cerevisiae and 
S. cerevisiae–S. paradoxus comparisons (one-sided Mann–Whitney 
U test, P < 2.2 × 10−16), although no clear trend was found in the  
S. paradoxus–S. paradoxus comparison (one-sided Mann–Whitney  
U-test, P = 0.936). These observations fit well with known properties 
of cores and subtelomeres and provide the first quantitative assess-
ment of the core–subtelomere contrasts in genome dynamics. Notably, 
aside from such core–subtelomere contrasts, we also observed clear 
interspecific differences in all three measurements. S. cerevisiae strains 
showed faster CNV accumulation (one-sided Mann–Whitney U-test;  
P = 6.7 × 10−5 for cores, P = 5.1 × 10−5 for subtelomeres) and more 
rapid GOL (one-sided Mann–Whitney U-test, P = 5.5 × 10−5 for 
cores and P = 2.6 × 10−5 for subtelomeres) than S. paradoxus strains 
in both core and subtelomeres, respectively (Fig. 2c,e). Similarly,  
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S. cerevisiae subtelomeric genes also showed higher dN/dS than their 
S. paradoxus counterparts (one-sided Mann–Whitney U-test, P = 
4.3 × 10−4), although their core genes appear to have similar dN/dS 

(one-sided Mann–Whitney U-test, P = 1.000). These observations  
collectively suggest accelerated evolution in S. cerevisiae relative to  
S. paradoxus, especially in subtelomeres.
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Figure 5  Evolutionary dynamics of subtelomeric duplications. (a) An example of subtelomeric duplication blocks shared among the chromosome  
01-L (chr01-L), chr01-R and chr08-R subtelomeres in S. cerevisiae S288C. Gray shading indicates shared homologous regions with ≥90% sequence 
identity. (b) Subtelomeric duplication signals shared across strains. For each subtelomere pair, the number of strains showing strong sequence  
homology (BLAT score ≥5,000 and identity ≥90%) is indicated in the heat map. (c) Hierarchical clustering based on the proportion of conserved 
orthologous subtelomeres in cross-strain comparisons within S. cerevisiae and S. paradoxus. (d) Subtelomere reshuffling intensities (log10 scale)  
within S. cerevisiae (S.c.–S.c.) and within S. paradoxus (S.p.–S.p.), adjusted by the diversification time of the compared strain pair. Center lines, 
median; boxes, interquartile range (IQR); whiskers, 1.5× IQR. Data points beyond the whiskers are outliers.
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Structural rearrangements in chromosomal cores
Structural rearrangements can be balanced (as with inversions, 
reciprocal translocations and transpositions) or unbalanced (as with 
large-scale novel insertions, deletions and duplications) depending on 
whether the copy number of genetic material is affected10. We iden-
tified 35 balanced rearrangements in total, including 28 inversions,  
6 reciprocal translocations and 1 massive rearrangement (Fig. 3a, 
Supplementary Fig. 5a–c and Supplementary Data Set 4). All events 
occurred during the species-specific diversification of the two species, 
with 29 events occurring in S. paradoxus and only 6 in S. cerevisiae. 
Factoring in the cumulative evolutionary time difference, S. paradoxus  
still showed 1.25-fold faster accumulation of balanced rearrange-
ments than S. cerevisiae. Six inversions were tightly packed into a 
~200-kb region on chromosome VII of South American S. paradoxus 
UFRJ50816, indicating a strain-specific inversion hot spot (Fig. 3b). 
With regard to interchromosomal rearrangements, six were recipro-
cal translocations that occurred in two S. paradoxus strains (Fig. 3c 
and Supplementary Fig. 5a,b). The remaining one, in the Malaysian  
S. cerevisiae UWOPS03-461.4, was particularly notable: chromosomes 
VII, VIII, X, XI and XIII were heavily reshuffled, confirming recent 
chromosomal contact data26 (Fig. 3c and Supplementary Fig. 5c). 
We describe this as a massive rearrangement because it cannot be 
explained by typical independent reciprocal translocations but is 
more likely to result from a single catastrophic event resembling the 
chromothripsis observed in tumor cells32,33. This massive rearrange-
ment in the Malaysian S. cerevisiae and the rapid accumulation of 
inversions and translocations in the South American S. paradoxus 
resulted in extensively altered genome configurations, explaining 
the reproductive isolation of these two lineages34,35. As previously 
observed in yeasts on larger divergence scales36,37, the breakpoints of 

those balanced rearrangements are associated with tRNAs and Tys, 
highlighting the roles of these elements in triggering genome insta-
bility and suggesting nonallelic homologous recombination as the 
mutational mechanism.

Considering unbalanced structural rearrangements in chromo-
somal cores, we identified 7 novel insertions, 32 deletions, 4 dis-
persed duplications and at least 7 tandem duplications (Fig. 3a and 
Supplementary Data Set 5). There were two additional cases of 
which the evolutionary history could not be confidently determined 
owing to multiple potential independent origins or secondary dele-
tions (Supplementary Data Set 5). Although this is a conservative 
estimate, our identified unbalanced structural rearrangements clearly 
outnumbered the balanced ones, as recently reported in Lachancea 
yeasts38. We found that S. cerevisiae accumulated as many unbalanced 
rearrangements as S. paradoxus despite its much shorter cumulative 
diversification time. We noticed that the breakpoints of these unbal-
anced rearrangements (except for tandem duplications) were also fre-
quently associated with Tys and tRNAs, mirroring our observation for 
balanced rearrangements. Finally, we found genes involved in unbal-
anced rearrangements to be significantly enriched for Gene Ontology 
(GO) terms related to the binding, transporting and detoxification of 
metal ions (for example, Na+, K+, Cd2+ and Cu2+) (Supplementary 
Table 14), hinting that these events are probably adaptive.

Structural evolutionary dynamics of subtelomeres
The complete assemblies and well-defined subtelomere boundaries 
enabled us to examine subtelomeric regions with unprecedented reso-
lution. We found both the size and gene content of the subtelomere to be 
highly variable across different strains and chromosome arms (Fig. 4a  
and Supplementary Data Set 3). The subtelomere size ranged from 
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0.13 to 76 kb (median = 15.6 kb), the number of genes enclosed in 
each subtelomere varied between 0 and 19 (median = 4), and the total 
number of subtelomeric genes varied between 134 and 169 (median =  
146) per strain. Whereas the very short subtelomeres (for example, 

chromosome 04-R and chromosome 11-L) can be explained by an 
unexpected high degree of synteny conservation extending all the way 
to the end, some exceptionally long subtelomeres are the products of 
multiple mechanisms. For example, the chromosome 15-R subtelomere  
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of S. cerevisiae DBVPG6765 has been drastically elongated by a 65-
kb horizontal gene transfer (HGT)39 (Fig. 4b and Supplementary 
Fig. 6a). The chromosome 07-R subtelomere of S. paradoxus CBS432 
was extended by a series of tandem duplications of MAL31-like and 
MAL33-like genes, as well as the addition of the ARR cluster (Fig. 4c 
and Supplementary Fig. 6b). The chromosome 15-L subtelomere of  
S. paradoxus UFRJ50816 increased size by duplications of subtelomeric 
segments from two other chromosomes (Fig. 4d and Supplementary 
Fig. 6c). Inversions have also occurred in subtelomeres, including 
one affecting the HMRA1–HMRA2 locus in UFRJ50816 and another 
affecting a MAL11-like gene in CBS432 (Supplementary Fig. 7).

The enrichment of segmental duplication blocks occurring via 
ectopic sequence reshuffling is a common feature of eukaryotic 
subtelomeres; however, incomplete genome assemblies have pre-
vented population-level quantitative analysis of this phenomenon. 
Here we identified subtelomeric duplication blocks based on pair-
wise comparisons of different subtelomeres within the same strain 
(Fig. 5a and Supplementary Data Set 6). In total, we identified  
173 pairs of subtelomeric duplication blocks across the 12 strains, 
with 8–26 pairs for each strain (Supplementary Table 15). Among 
the 16 pairs of subtelomeric duplication blocks previously identi-
fied in S288C (mentioned above), all the 12 larger pairs passed our 
filtering criteria. Notably, the Hawaiian S. paradoxus UWOPS91-
917.1 had the most subtelomeric duplication blocks, and half of 
these were strain-specific, suggesting unique subtelomere evolu-
tion in this strain. The duplicated segments always maintained the 
same centromere–telomere orientation, supporting a mutational 
mechanism of double-strand break (DSB) repair like those pre-
viously suggested in other species40,41. We further summarized 
those 173 pairs of duplication blocks according to the orthologous 
subtelomeres involved. This led to 75 unique duplicated subte-
lomere pairs, 59 (78.7%) of which have not been described before 
(Supplementary Data Set 7). We found 31 (41.3%) of these unique 
pairs to be shared between strains or even between species with 
highly dynamic strain-sharing patterns (Fig. 5b and Supplementary 
Fig. 8a). Most (87.1%) of this sharing pattern could not be explained 
by the strain phylogeny (Supplementary Data Set 7). This sug-
gests a constant gain-and-loss process of subtelomeric duplications  
throughout evolutionary history.

Given the rampant subtelomere reshuffling, we investigated to what  
extent the similarity in orthologous subtelomere composition reflects 
the intra-species phylogenies. We measured the proportion of con-
served orthologous subtelomeres in all strain pairs within the same 
species and performed hierarchical clustering accordingly (Fig. 5c). 
The clustering in S. paradoxus correctly recapitulated the true phyl-
ogeny, whereas the clustering in S. cerevisiae showed a different topol-
ogy, and only the relationship of the most recently diversified strain 
pair (DBVPG6044 versus SK1) was correctly recovered. Notably, 
the distantly related Wine/European (DBVPG6765) and Sake (Y12)  
S. cerevisiae strains were clustered together, suggesting possible con-
vergent subtelomere evolution during their respective domestica-
tion for alcoholic beverage production. The proportion of conserved 
orthologous subtelomeres among S. cerevisiae strains (56.3–81.3%) is 
comparable to that among S. paradoxus strains (50.0–81.3%), despite 
the much smaller diversification timescales of S. cerevisiae. This trans-
lates into a 3.8-fold difference in subtelomeric reshuffling intensity 
between the two species during their respective diversifications (one-
sided Mann–Whitney U-test, P = 2.93 × 10−8) (Fig. 5d). The frequent 
reshuffling of subtelomeric sequences often has drastic impacts on 
gene content, both qualitatively and quantitatively. For example, four 

genes (PAU3, ADH7, RDS1 and AAD3) were lost in S. cerevisiae Y12 
owing to a single subtelomeric duplication event (chromosome 08-L  
to chromosome 03-R) (Supplementary Fig. 8b). Therefore, the accel-
erated subtelomere reshuffling in S. cerevisiae is likely to have impor-
tant functional implications.

Native noncanonical chromosome end structures
S. cerevisiae chromosome ends are characterized by two telomere-
associated sequences: the core X and the Y′ element42. The core X ele-
ment is present in nearly all chromosome ends, whereas the number 
of Y′ elements varies across chromosome ends and strains. The two 
previously described chromosome end structures have (i) a single 
core X element or (ii) a single core X element followed by 1–4 distal 
Y′ elements42. S. paradoxus chromosome ends also contain core X and 
Y′ elements43, but their detailed structures and genome-wide distri-
butions have not been systematically characterized. Across our 12 
strains, most (~85%) chromosome ends had one of the two structures  
described above, but we also discovered novel chromosome ends 
(Supplementary Table 13). We found several examples of tandem 
duplications of the core X element in both species. In most cases, 
including the ones in the S. cerevisiae reference genome (chromo-
some VIII-L and chromosome XVI-R), the proximal duplicated core 
X elements had degenerated, but we found two examples where intact 
duplicated copies were retained: chromosome XII-R in S. cerevisiae 
Y12 and chromosome III-L in S. paradoxus CBS432. The latter was 
especially notable, with six core X elements (including three com-
plete copies) arranged in tandem. We discovered five chromosome 
ends consisting of only Y′ elements (one or more copies) but no core  
X elements. This was unexpected given the importance of core X ele-
ments in maintaining genome stability44,45. The discovery of these 
noncanonical chromosome end structures offers a new paradigm to 
investigate the functional role of core X elements.

Mitochondrial genome evolution
Despite being highly repetitive and AT-rich, the mitochondrial 
genomes of the S. cerevisiae strains showed high degrees of collinear-
ity (Fig. 6a). In contrast, S. paradoxus mitochondrial genomes showed 
lineage-specific structural rearrangements. The two Eurasian strains 
(CBS432 and N44) share a transposition of the entire COX3–RPM1 
(rnpB)–15s rRNA (rns) segment, in which 15s rRNA was further 
inverted (Fig. 6b–d). In addition, given the gene order in two outgroups, 
the COB gene was relocated in the common ancestor of S. cerevisiae  
and S. paradoxus (Fig. 6e). The phylogenetic tree inferred from mito-
chondrial protein-coding genes showed clear deviation from the 
nuclear tree (Fig. 6e). In particular, the Eurasian S. paradoxus lineage 
(CBS432 and N44) clustered with the seven S. cerevisiae strains before 
joining with the other S. paradoxus strains, which supports the idea of 
mitochondrial introgression from S. cerevisiae46 (Fig. 6e). We found 
low topology consensus (normalized quartet score = 0.59, versus 0.92 
for the nuclear gene tree) across different mitochondrial gene loci, 
suggesting heterogeneous phylogenetic histories. Together with the 
drastically dynamic presence and absence patterns of mitochondrial  
group I and group II introns (Supplementary Table 10), this rein-
forces the argument for extensive cross-strain recombination in yeast 
mitochondrial evolution47. In addition, the COX3 gene in S. para-
doxus UFRJ50816 and UWOPS91-917.1 started with GTG rather than 
the typical ATG start codon, which was further supported by Illumina 
reads. This suggests either an adoption of an alternative ATG start 
codon nearby (for example, 45 bp downstream) or a rare case of a 
near-cognate start codon48–50.
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Fully resolved SVs illuminate complex phenotypic traits
SVs are expected to account for a substantial fraction of phenotypic 
variation; fully resolved SVs can therefore be crucial in understand-
ing complex phenotypic traits. We used the copper tolerance–related 
CUP1 locus and the arsenic tolerance–related ARR cluster as examples 
of associations between fully characterized genomic compositions 
(i.e., copy numbers and genotypes) and conditional growth rates. The 
PacBio assemblies precisely resolved these complex loci, and pheno-
type associations were consistent with previous findings based on 
copy number analysis6,21,51 (Fig. 7a–d and Supplementary Note). We 
further illustrated their phenotypic contributions via linkage mapping 
using 826 phased outbred lines (POLs) derived from crossing the 
North American (YPS128) and West African (DBVPG6044) S. cer-
evisiae52 (Online Methods). The linkage analysis accurately mapped 
a large-effect quantitative trait locus (QTL) at the chromosome 
03-R subtelomere (the location of the ARR genes in DBVPG6044), 
but showed no arsenic resistance association with the YPS128 ARR 
locus on the chromosome 16-R subtelomere (Fig. 7e). This profile is 
consistent with the relocation of an active ARR cluster to the chro-
mosome 03-R subtelomere in DBVPG6044 and the presence of del-
eterious mutations predicted to inactivate the ARR cluster in YPS128  
(refs. 6,35). Thus, a full understanding of the relationship between 
genome sequence and arsenic resistance phenotype is not provided 
by the knowledge of copy number alone but rather requires the com-
bined knowledge of genotype, genomic location and copy number as 
provided by our end-to-end assemblies (Fig. 7f).

DISCUSSION
The landscape of genetic variation is shaped by multiple evolutionary 
processes, including mutation, drift, recombination, gene flow, natu-
ral selection and demographic history. The combined effect of these 
factors can vary considerably both across the genome and between 
species, resulting in different patterns of evolutionary dynamics. The 
complete genome assemblies that we generated for multiple strains 
from both domesticated and wild yeasts provide a unique data set for 
exploring such patterns with unprecedented resolution.

Considering the evolutionary dynamics across the genome, eukary-
otic subtelomeres are exceptionally variable compared to chromo-
somal cores40,53,54, with accelerated evolution manifest in extensive 

CNV accumulation, rampant ectopic reshuffling and rapid functional 
divergence6,41,55–57. Our study provides a quantitative comparison of 
subtelomeres and cores in structural genome evolution and a high-
resolution view of the extreme evolutionary plasticity of subtelomeres. 
This rapid evolution of subtelomeres can substantially alter the gene 
repertoire and generate novel recombinants with adaptive potential57. 
Given that subtelomeric genes are highly enriched in functions medi-
ating interactions with external environments (for example, stress 
response, nutrient uptake and ion transport)6,55,58, it is tempting  
to speculate that the accelerated subtelomeric evolution reflects  
selection for evolvability, i.e., the ability to respond and adapt to 
changing environments59.

With regard to the genome dynamics between species, external fac-
tors such as selection and demographic history have important roles. 
The ecological niches and recent evolutionary history of S. cerevisiae  
have been intimately associated with human activities, with many 
strains isolated from human-associated environments such as brew-
eries, bakeries and even clinical patients60. Consequently, this wide 
spectrum of selection schemes could significantly shape the genome 
evolution of S. cerevisiae. In addition, human activities also promoted 
admixture and cross-breeding of S. cerevisiae strains from different 
geographical locations and ecological niches61, resulting in many 
mosaic strains with mixed genetic backgrounds1. In contrast, the 
wild-living S. paradoxus occupies very limited ecological niches, with 
most strains isolated from trees in the Quercus genus62. S. paradoxus 
strains from different geographical subpopulations are genetically 
well differentiated with partial reproductive isolations34,63. Such 
interspecific differences in their history could result in distinct evo-
lutionary genome dynamics, which is captured in our study (Fig. 8). 
In chromosomal cores, S. cerevisiae strains show slower accumulation 
of balanced structural rearrangements compared with S. paradoxus 
strains. This pattern might be explained by the admixture between 
different S. cerevisiae subpopulations during their recent association 
with human activities, which would considerably impede the fixation 
of balanced structural rearrangements. In contrast, geographical iso-
lation of different S. paradoxus subpopulations would favor relatively 
fast fixation of balanced structural rearrangements64. We observed 
an opposite pattern for unbalanced rearrangements in chromosomal 
cores. The S. cerevisiae strains accumulate such changes more rapidly 

Core

Evolutionary time

S. cerevisiae

S. paradoxus

Mitochondria

Good colinearity maintained

Lineage-specific SRs

Subtelomere

Faster ectopic sequence
reshuffling

Slower ectopic sequence
reshuffling

Slower balanced SR accumulation

Faster unbalanced SR accumulation

Faster balanced SR accumulation

Slower unbalanced SR accumulation

Faster molecular evolution

Slower molecular evolution

Last common ancestor of S. cerevisiae and S. paradoxus

Last common ancestor of S. cerevisiae

Last common ancestor of S. paradoxus

Lineage-specific
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Figure 8  Contrasting evolutionary dynamics across the genomic landscape between S. cerevisiae and S. paradoxus. The interspecific contrasts in 
nuclear chromosomal cores, subtelomeres and mitochondrial genomes are summarized. SR, structural rearrangement.
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than their S. paradoxus counterparts, which is probably driven by 
selection, considering the biological functions of those affected genes. 
Likewise, the more rapid subtelomeric reshuffling and higher dN/dS 
of subtelomeric genes in S. cerevisiae than in S. paradoxus are prob-
ably also driven by selection. As a consequence of such unbalanced 
rearrangements and subtelomeric reshuffling, S. cerevisiae strains 
show more rapid CNV accumulation and GOL, which reinforces 
this argument. In addition, the mitochondrial genomes of S. cerevi-
siae strains maintained high degrees of collinearity, whereas those of  
S. paradoxus strains showed lineage-specific structural rearrange-
ments and introgression, suggesting distinct modes of mitochon-
drial evolution. Taken together, many of these observed differences 
between S. cerevisiae and S. paradoxus probably reflect the influence 
of human activities on structural genome evolution, which sheds new 
light on why S. cerevisiae, but not its wild relative, is one of our most 
biotechnologically important organisms.

URLs. Previously identified subtelomeric duplication blocks in S. cer-
evisiae S288C, http://www2.le.ac.uk/colleges/medbiopsych/research/
gact/images/clusters-fixed-large.jpg; RepeatMasker, http://www.
repeatmasker.org; FastQC, http://www.bioinformatics.babraham.
ac.uk/projects/fastqc/; Picard tools, http://broadinstitute.github.
io/picard/; vcflib, https://github.com/vcflib/vcflib; MFannot, http://
megasun.bch.umontreal.ca/cgi-bin/mfannot/mfannotInterface.pl; 
The Saccharomyces Genome Database (SGD), http://www.yeastge-
nome.org; FigTree, http://tree.bio.ed.ac.uk/software/figtree/.

Methods
Methods, including statements of data availability and any associated 
accession codes and references, are available in the online version of 
the paper.

Note: Any Supplementary Information and Source Data files are available in the 
online version of the paper.
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ONLINE METHODS
Strain sampling, preparation and DNA extraction. On the basis of previous pop-
ulation genomics surveys1, we sampled seven S. cerevisiae and five S. paradoxus  
strains (all in the haploid or homozygous diploid forms) to represent major 
evolutionary lineages of the two species (Supplementary Table 1). The refer-
ence strains for S. cerevisiae (S288C) and S. paradoxus (CBS432) were included 
for quality control. All strains were taken from our strain collection stored at 
−80 °C and cultured on yeast extract–peptone–dextrose (YPD) plates. A single 
colony for each strain was picked and cultured in 5 mL YPD liquid at 30 °C 
220 r.p.m. overnight. DNA extraction was carried out using the MasterPure 
Yeast DNA Purification Kit (Epicentre).

PacBio sequencing and raw assembly. The sequencing center at the Wellcome 
Trust Sanger Institute performed library preparation and sequencing using 
the PacBio Single Molecule, Real-Time (SMRT) DNA sequencing technology 
(platform: PacBio RS II; chemistry: P4-C2 for the pilot phase and P6-C4 for 
the main phase). The raw reads were processed using the standard SMRT 
analysis pipeline (v2.3.0). The de novo assembly was carried out following 
the hierarchical genome-assembly process (HGAP) assembly protocol with 
Quiver polishing65.

Assembly evaluation and manual refinement. We retrieved the refer-
ence genomes (Supplementary Note) for both species to assess the quality 
of our PacBio assemblies. For each polished PacBio assembly, we first used 
RepeatMasker (v4.0.5) (URLs) to soft-mask repetitive regions (option: -species 
fungi -xsmall -gff). The soft-masked assemblies were subsequently aligned to 
the reference genomes using the nucmer program from MUMmer (v3.23)66 
for chromosome assignment. For most chromosomes, we have single contigs 
covering the entire chromosomes. For the cases where internal assembly gaps 
occurred, we performed manual gap closing by consulting the assemblies gen-
erated in the pilot phase of this project. The only gap we were unable to close 
is the highly repetitive rDNA array (usually consisting 100–200 copies of a 
9.1-kb unit) on chromosome XII. The S. cerevisiae reference genome used a 
17,357-bp sequence of two tandemly arranged rDNA copies to represent this 
complex region. For our assemblies, we trimmed off the partially assembled 
rDNAs around this gap and re-linked the two contigs with 17,357-bp Ns to keep 
consistency. The mitochondrial genomes of the 12 strains were recovered by 
single contigs in the raw HGAP assemblies. We further circularized them and 
reset their starting position as the ATP6 gene using Circlator (v1.1.4)67. The cir-
cularized mitochondrial genome assemblies were further checked by consulting 
the raw PacBio reads and manual adjustment was applied when necessary.

Illumina sequencing, read mapping and error correction. In addition to the 
PacBio sequencing, we also performed Illumina 151-bp paired-end sequenc-
ing for each strain at Institut Curie. We examined the raw Illumina reads 
via FastQC (v0.11.3) (URLs) and performed adaptor-removing and qual-
ity-based trimming by trimmomatic (v0.33)68 (options: ILLUMINACLIP:
adapters.fa:2:30:10 SLIDINGWINDOW:5:20 MINLEN:36). For each strain, 
the trimmed reads were mapped to the corresponding PacBio assemblies by 
BWA (v0.7.12)69. The resulting read alignments were subsequently processed 
by SAMTools (v1.2)70, Picard tools (v1.131) (URLs) and GATK (v3.5-0)71. On 
the basis of Illumina read alignments, we further performed error correction 
with Pilon (v1.12)72 to generate final assemblies for downstream analysis.

Base-level error rate estimation for the final PacBio assemblies. Eight of 
our twelve strains were previously sequenced using Illumina technology with 
moderate to high depths6. We retrieved those raw reads and mapped them 
to our PacBio assemblies (both before and after Pilon correction) follow-
ing the protocol described above. SNPs and indels were called by FreeBayes 
(v1.0.1-2)73 (option: -p 1) to assess the performance of the Pilon correction 
and estimate the remaining base-level error rate in our final assemblies. The 
raw SNP and indel calls were filtered by the vcffilter tool from vcflib (URLs) 
with the filter expression: QUAL > 30 & QUAL / AO > 10 & SAF > 0 & SAR 
> 0 & RPR > 1 & RPL > 1.

Assembly completeness evaluation. We compared our S288C PacBio assembly 
with three published S. cerevisiae assemblies generated by different sequencing 

technologies (PacBio, Oxford Nanopore and Illumina)74,75. We aligned these 
three assemblies as well as our S288C PacBio assembly to the S. cerevisiae refer-
ence genome using nucmer from MUMmer (v3.23)66. The nucmer alignments 
were filtered by delta-filter (from the same package) (option: -1). We converted 
the output file to BED format and used bedtools (v2.15.0)76 to calculate the 
intersection between our genome alignment and various annotation features 
(such as chromosomes, genes, retrotransposable elements, telomeres) of the  
S. cerevisiae nuclear reference genome. The percentage coverage of these anno-
tation features by different assemblies were summarized accordingly.

Annotation of the protein-coding genes, tRNA genes and other genomic fea-
tures. For nuclear genomes, we assembled an integrative pipeline that combines 
three existing annotation tools to form an evidence-leveraged protein-coding 
gene annotation. First, we used the RATT package77 for directly transferring the 
nondubious S. cerevisiae reference gene annotations to our PacBio assemblies on 
the basis of whole genome alignments. Furthermore, we used the Yeast Genome 
Annotation Pipeline (YGAP)78 to annotate our PacBio assemblies (default options 
without scaffolds reordering) based on gene sequence homology and synteny 
conservation. A custom Perl script (available on request) was used to remove  
redundant, truncated, or frameshifted genes annotated by YGAP. Finally, we 
used the Maker pipeline (v2.31.8)79 to perform de novo gene discovery with 
EST–protein alignment support (Supplementary Note). As a by-product, tRNA 
genes were also annotated via the tRNAscan-SE (v1.3.1)80 module of the Maker 
pipeline. Gene annotations produced by RATT, YGAP and Maker together 
with the EST–protein alignment evidences generated by Maker were further 
leveraged by EVidenceModeler (EVM)81 to form an integrative annotation. 
Manual curation was carried out for selected cases (for example, the CUP1 
and ARR clusters) and pseudogenes were manually labeled when verified. The 
same pipeline was used for upgrading the protein-coding gene annotation of  
S. arboricolus, for which the originally annotated coding sequences (CDSs) 
and protein sequences was used for initial EST–protein alignment. In addi-
tion, for the 12 strains, we systematically annotated other genomic features 
encoded in their nuclear genomes, such as centromeres, Ty retrotransposable 
elements and telomere-associated core X and Y′ elements (Supplementary 
Note). Protein-coding genes that overlap with truncated or full-length Tys, 
core X or Y′ elements were removed from our final annotation.

As for mitochondrial genomes, the protein-coding genes, tRNA genes and other 
mitochondrial RNA genes such as RPM1 (RNase P RNA), 15S rRNA (small) and 
21S rRNA (large) subunit rRNA were annotated by MFannot (URLs). The exon– 
intron boundaries of annotated mitochondrial genes were manually curated 
based on BLAST and the 12-way mitochondrial genome alignment generated 
by mVISTA82.

Orthology group identification. For nuclear protein-coding genes, we used 
Proteinortho (v5.15)83 to identify gene orthology across the 12 strains and 
six other sensu stricto outgroups: Saccharomyces mikatae (strain IFO1815), 
Saccharomyces kudriavzevii (strain IFO1802), Saccharomyces kudriavzevii 
(strain ZP591), Saccharomyces arboricolus (strain H6), Saccharomyces eubayanus  
(strain FM1318) and Saccharomyces bayanus var. uvarum (strain CBS7001). 
The orthology identification took into account both sequence homology and 
synteny conservation (the PoFF feature84 of Proteinortho). For each anno-
tated strain, the systematic names of nondubious genes in the Saccharomyces 
Genome Database (SGD) (URLs) were mapped to our annotated genes based 
on the orthology groups identified above.

Phylogenetic reconstruction. For nuclear genes, we performed the phyloge-
netic analysis on the basis of one-to-one orthologs that are shared across all 
18 strains (seven S. cerevisiae + five S. paradoxus + six outgroups) using two 
complementary approaches: the concatenated tree approach and the consensus 
tree approach. For each one-to-one ortholog, we used MUSCLE (v3.8.1551)85 
to align protein sequences and PAL2NAL (v14)86 to align codons accord-
ingly. For the concatenated tree approach, we generated a concatenated codon 
alignment across all orthology groups and fed it into RAxML (v8.2.6)87 for 
maximum likelihood (ML) tree building. Alignment partition was configured 
by the first, second, and third codon positions. The GTRGAMMA model was 
used for phylogenetic inference. The rapid bootstrapping method built in 
RAxML was used to assess the stability of internal nodes (option: -# 100). The 
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final ML tree was visualized in FigTree (v1.4.2) (URLs). For the consensus tree 
approach, we built individual gene trees with RAxML using the same method 
described above, which were further summarized into a coalescent-based con-
sensus species tree by ASTRAL (v4.7.12)88. The normalized quartet score was 
calculated to assess the reliability of the final species tree given individual gene 
trees. For mitochondrial genes, we performed the same phylogenetic analysis 
based on the eight mitochondrial protein-coding genes.

Relative rate test. To test the rate heterogeneity between S. cerevisiae and  
S. paradoxus in molecular evolution, we constructed three-way sequence align-
ments by sampling one strain for each species together with S. mikatae as the 
outgroup. The sequences were drawn from the concatenated nuclear CDS 
alignment described above. The extracted sequences were fed into MEGA 
(v7.0.16)89 for Tajima’s relative rate test27. We conducted this test for all pos-
sible S. cerevisiae–S. paradoxus strain pairs.

Molecular dating. As no yeast fossil record can be used for reliable calibration, 
we performed molecular dating analysis using a relative time scale. We used the 
phylogenetic tree constructed from the nuclear one-to-one orthologs as the input 
and performed least-squares-based fast dating with LSD90 (options: -c -v -s).  
We specified S. bayanus var. uvarum CBS7001 and S. eubayanus FM1318 as 
outgroups for this analysis.

Conserved synteny block identification. We used SynChro from the 
CHROnicle package (January 2015 version)91,92 to identify conserved syn-
teny blocks. We prepared the input files for SynChro with custom Perl scripts 
(available on request) to provide the genomic coordinates of all annotated 
features together with the genome assembly and proteome sequences. SynChro 
subsequently performed exhaustive pairwise comparisons to identify synteny 
blocks shared in the given strain pair.

Subtelomere definition and chromosome partitioning. An often-used yeast 
subtelomere definition is 20–30 kb from the chromosome ends. However, 
this definition is arbitrary in the sense that it treats all subtelomeres indis-
criminately. In this study, we defined yeast subtelomeres on the basis of gene 
synteny conservation profiles across the 12 strains. For each chromosome 
arm, we examined all syntenic blocks shared across the 12 strains and used 
the most distal one to define the distal boundary for the chromosomal core 
(Supplementary Table 11). Meanwhile, we defined the proximal boundary of 
the chromosome end for this chromosome arm according to the first occur-
rence of core X or Y′ elements. The region between these two boundaries was 
defined as the subtelomere for this chromosome arm, with 400–bp interstitial 
transition zones on both sides (Supplementary Fig. 3).

Given that some strains (i.e., UWOPS03-461.4, UFRJ50816 and UWOPS91-
917.1) are involved in large-scale interchromosomal rearrangements, the 
current chromosomal identities (determined by centromeres) might not nec-
essarily agree with the ancestral chromosomal identities (determined by gene 
contents). Therefore, we used Roman and Arabic numbers, respectively, to 
denote these two identities for all 12 strains and avoid potential confusion 
about those interchromosomal rearrangements (Supplementary Fig. 4 and 
Supplementary Table 12). Each defined subtelomere was named according 
to the ancestral chromosomal identity of its flanking chromosomal core and 
denoted also using Arabic numbers (Supplementary Data Sets 2 and 3).

Identification of balanced and unbalanced structural rearrangements 
in chromosomal cores. To identify balanced rearrangements, we first used 
ReChro from CHROnicle (January 2015 version)91,92. We set the synteny block 
stringency parameter “delta=1” for the main analysis. A complementary run 
was performed with “delta=0” to identify single gene inversions. Alternatively, 
we started with the one-to-one ortholog gene pairs (identified by our orthol-
ogy group identification) in chromosomal cores between any given strain pair 
and examined their relative orientation and chromosomal locations. If the two 
one-to-one orthologous genes are located on the same chromosome but have 
opposite orientations, an inversion should be involved. If they reside on differ-
ent chromosomes, a translocation or transposition should be involved.

As for unbalanced rearrangements, we first generated whole-genome align-
ment for every strain pair by nucmer66 (options: -maxmatch -c 500) and used 

Assemblytics93 to identify potential insertions, deletions and duplications or 
contractions. All candidates were further intersected with our gene annota-
tions by bedtools intersect76 to only keep those encompassing at least one 
protein-coding gene. Alternatively, we started with all the genes enclosed 
in chromosomal cores of any given strain pair and filtered out those com-
pletely covered by unique genome alignment between this strain pair. All the  
remaining genes were classified as candidates potentially involved in  
unbalanced rearrangements.

All identified candidate cases were manually examined by dot plots using 
Gepard (v1.30)94. All verified rearrangements in chromosomal cores were fur-
ther mapped to the phylogeny of the 12 strains to reconstruct their evolution-
ary histories based on the maximum parsimony principle. The corresponding 
genomic regions in those six outgroups were also checked by dot plots to 
provide further support for our evolutionary history inferences.

Gene Ontology analysis. The CDSs of the S. cerevisiae nondubious reference 
genes were BLASTed against the NCBI nonredundant (nr) database using 
blastx (E-value = 1 × 10−3) and further annotated by BLAST2GO (v.3.2)95,96 to 
generate Gene Ontology (GO) mapping for each gene. We performed Fisher’s 
exact test97 to detect significantly enriched GO terms of our test gene set 
relative to the genome-wide background. False discovery rate (FDR) (cutoff 
0.05)98 was used for multiple correction. Significantly enriched GO terms were 
further processed by the ‘Reduce to most specific terms’ function implemented 
in BLAST2GO to keep only child terms.

Molecular evolutionary rates, CNV accumulation and GOL estimation. For 
the one-to-one orthologs in each strain pair, we calculate synonymous substi-
tution rate (dS), nonsynonymous substitution rate (dN) and nonsynonymous-
to-synonymous substitution rate ratio (dN/dS) using the yn00 program from 
PAML (v4.8a)99 based on Yang and Nielsen100. We also measured the propor-
tion of genes involved in CNVs (i.e., those are not one-to-one orthologs) in 
any strain pair. We denoted this measurement as PCNVs, a quantity analogous 
to the P-distance in sequence comparison. To correct for multiple changes at 
the same gene loci, the Poisson distance DCNVs can be given by −ln (1 − PCNVs). 
This value can be further adjusted with evolutionary time by dividing 2T, 
where T is the diversification time of the two compared strains obtained from 
our molecular dating analysis. To further capture evolutionary dynamics in 
terms of gene order changes, we further measured GOL for those one-to-one 
orthologs using the method proposed by previous studies without allowing 
for intervening genes29–31. For GOL, we performed similar Poisson correction 
and evolutionary time adjustment as for CNV accumulation. The calculation 
values for dN/dS, CNV accumulation and GOL were further summarized 
by ‘core genes’ and ‘subtelomeric genes’ on the basis of genome partitioning 
described above.

Subtelomeric homology search. For each defined subtelomeric region, we 
hard-masked all the enclosed Ty-related features (i.e., full-length Ty, truncated 
Ty and Ty solo-LTRs) and then searched against all the other subtelomeric 
regions for shared sequence homology. The search was performed by BLAT101 
(options: -noHead -stepSize = 5 -repMatch = 2253 -minIdentity = 80 -t = dna 
-q = dna -mask = lower -qMask = lower). We used pslCDnaFilter (options: -
minId = 0.9 -minAlnSize = 1000 -bestOverlap -filterWeirdOverlapped) to filter 
out trivial signals and pslScore to calculate sequence alignment scores for those 
filtered BLAT matches. As the two reciprocal scores obtained from the same 
subtelomere pair are not symmetrical (depending on which sequence was used 
as the query), we took their arithmetic mean in our analysis. Such subtelom-
eric homology search was carried out for both within-strain and cross-strain 
comparisons, and subtelomere pairs with strong sequence homology (BLAT 
alignment score ≥5000 and sequence identity ≥90%) were recorded.

Hierarchical clustering analysis and reshuffling rate calculation for orthol-
ogous subtelomeres. For all strains within the same species, we performed 
pairwise comparisons of their subtelomeric regions to identify conserved 
orthologous subtelomeres in any given strain pairs on the basis of homol-
ogy search described above. For each strain pair, the proportion of conserved 
orthologous subtelomeres was calculated as a measurement of the overall 
subtelomere conservation between the two strains. Such measurements were 
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converted into a distance matrix by the dist() function in R (v3.1)102, based 
on which the hclust() function was further used for hierarchical clustering. 
We gauged the reshuffling intensity of orthologous subtelomeres similarly to 
how we measured CNV accumulation and GOL. For any given strain pair, we 
first calculated the proportion of the nonconserved orthologous subtelomeres 
in this strain pair as Preshuffling and then applied the Poisson correction and 
evolutionary time adjustment by −ln (1 − Preshuffling)/2T, in which T is the 
diversification time of the two compared strains.

Phenotyping the growth rates of yeast strains in copper- and arsenite-rich 
medium. The homozygous diploid versions of the 12 strains were pre-cultured 
in synthetic complete (SC) medium overnight to saturation. To examine their 
conditional growth rates in copper- and arsenite-rich environment, we mixed 
350 µl conditional medium (CuCl2 (0.38 mM) and arsenite (As(iii), 3 mM) 
for the two environment respectively) with 10 µl saturated culture to the wells  
of honeycomb plates. Oxygen-permeable films were placed on top of the plates 
to enable uniform oxygen distribution throughout the plate. The automatic 
screening was done with Bioscreen Analyser C (Thermo Labsystems Oy)  
at 30 °C for 72 h, measuring in 20-min intervals using a wide-band filter 
at 420–580 nm (ref. 103). Growth data pre-processing and phenotypic trait 
extraction were performed by PRECOG104.

Linkage analysis in diploid S. cerevisiae hybrids. A total of 826 phased out-
bred lines (POLs) were constructed and phenotyped as previously described52. 
Briefly, advanced intercrossed lines (AILs) were generated by successive rounds 
of mating and sporulation from the YPS128 and DBVPG6044 strains105. The 
resulting haploid AILs were sequenced106 and crossed in different combina-
tions to yield the 826 POLs used for the analysis. The POL diploid genotypes 
can be accurately inferred from the haploid AILs. Effectively, these 826 POLs 
constitute a subset of the larger set of POLs in Hallin et al.52 but were con-
structed and phenotyped independently. Phenotyping of the POLs, each with 
four replicates, was performed using Scan-o-Matic107 on solid agar plates 
(0.14% yeast nitrogen base, 0.5% ammonium sulfate, 2% (w/v) glucose and 
pH buffered to 5.8 with 1% (w/v) succinic acid, 0.077% complete supplement 
mixture (CSM, Formedium), 2% agar) supplemented with varying arsenite 
concentrations (0, 1, 2, and 3 mM). Using the deviations between the POL phe-
notype and the estimated parental mean phenotype in the mapping to combat 
population structure issues52, quantitative trait loci (QTLs) were mapped using 
the scanone() function in R/qtl108 with the marker regression method.

Statistics. Tajima’s relative rate test27 was performed in MEGA (v7.0.16)89. 
Fisher’s exact test97 with FDR correction98 was performed in BLAST2GO 
(v.3.2)95,96. The Mann–Whitney U-test was performed in R (v3.1)102 using 
the wilcox.test() function, with one.sided alternative hypothesis. P < 0.05 was 
considered statistically significant in all statistical tests.

Data availability. All genome sequencing, assembly and annotation data that 
support the findings of this study have been deposited in public repositor-
ies. The PacBio sequencing reads for this project has been deposed in the 
European Nucleotide Archive (ENA) under accession code PRJEB7245. 
Illumina sequencing reads have been deposed in Short Reads Archive (SRA) 
under accession code PRJNA340312. The genome assemblies and annotations 
generated by this study are available at https://yjx1217.github.io/Yeast_PacBio_
2016/data/ and in GenBank under accession code PRJEB7245.
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