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We propose a method for obtaining effective lifetimes of scattering electronic states for avoiding the
artificially confinement of the wave function due to the use of incomplete basis sets in time-dependent
electronic-structure calculations of atoms and molecules. In this method, using a fitting procedure,
the lifetimes are extracted from the spatial asymptotic decay of the approximate scattering wave
functions obtained with a given basis set. The method is based on a rigorous analysis of the
complex-energy solutions of the Schrödinger equation. It gives lifetimes adapted to any given basis
set without using any empirical parameters. The method can be considered as an ab initio version of
the heuristic lifetime model of Klinkusch et al. [J. Chem. Phys. 131, 114304 (2009)]. The method
is validated on the H and He atoms using Gaussian-type basis sets for calculation of high-harmonic-
generation spectra.

I. INTRODUCTION

Motivated by experimental advances in attosecond sci-
ence [1–7], there is currently a lot of interest in devel-
oping time-dependent electronic-structure computational
methods for studying laser-driven electron dynamics in
atomic and molecular systems (see, e.g., Ref. 8). Ex-
amples of such methods include time-dependent density-
functional theory (TDDFT) [9], time-dependent Hartree-
Fock (TDHF) [10], multiconfiguration time-dependent
Hartree-Fock (MCTDHF) [11], time-dependent configu-
ration interaction (TDCI) [12], and time-dependent cou-
pled cluster [13]. These methods involve orbitals which
are often expanded on basis functions such as Gaussian-
type functions [12, 14–19], and an important question is
whether the continuum scattering states which are ex-
plored at high laser intensity, e.g. in the high-harmonic
generation (HHG) process, are sufficiently well described.

The description of the continuum scattering states can
be much improved by using specially designed Gaussian-
type basis sets, such as the one proposed by Kaufmann et

al. [20], as demonstrated recently in Refs. 17, 19. How-
ever, even with these basis sets, only an incomplete dis-
crete set of scattering states which decay too fast away
from the nucleus is obtained, with the consequences that
ionization processes cannot be properly described and
the time-dependent wave function undergoes artificial re-
flections. These problems can be alleviated with ad hoc

lifetime models as proposed by Klinkusch et al. [21] or
Lopata et al. [22] which introduce an imaginary part to
the energy of each scattering state. This has the effect
of partially absorbing the time-dependent wave function
which limits artificial reflections and simulates ionization.
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However, these lifetime models have the disadvantage
of being empirical and of depending on adjustable pa-
rameters. Alternative methods to these lifetime mod-
els include approaches using a complex-absorbing po-
tential (CAP) [23–27], an absorbing mask function [28],
or exterior-complex scaling [29–33] to absorb the time-
dependent wave-function beyond a certain distance, but
all these techniques also inevitably imply some empiri-
cism in the choice of the involved parameters. In the
present work, we develop an ab initio lifetime correc-
tion to scattering states based on a rigorous analysis of
the complex-energy solutions of the Schrödinger equa-
tion. This ab initio correction gives lifetimes adapted
to each particular incomplete basis set without any free
parameters.

More specifically, we start from the exact complex-
energy solutions of the Schrödinger equation of a
hydrogen-like atom, obtained by relaxing the boundary
conditions on the wave function, making the Hamilto-
nian a non-Hermitian operator. For a complex-energy
state, we show that the value of the corresponding life-
time is encoded in the spatial asymptotic behavior of the
associated wave function. We thus propose, for a given
Gaussian-basis set, to extract an effective lifetime associ-
ated with an approximate scattering state of real energy
by matching its spatial asymptotic decay with the one
of the exact complex-energy wave function having the
same real part of the energy. In practice, this is done
with a fit of the spatial asymptotic decay of each scatter-
ing wave function and leads to parameter-free lifetimes
for the one-electron scattering states, which compensate
for the incompleteness of the basis set in time-dependent
calculations. We then show how the procedure can be ex-
tended to many-electron atoms and molecules to define
lifetimes for N -electron scattering states used in TDCI
calculations. Interestingly, the lifetimes defined in the
heuristic model of Klinkusch et al. [21] are recovered as
simple approximations of our lifetimes, which clarifies the
theoretical grounds of this model.
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The paper is organized as follows. In Section II, we
present in detail the theory of our ab initio lifetime cor-
rection. In Section III, we give computational details for
the tests performed on the H and He atoms. In Sec-
tion IV, we give and discuss the results. In particular,
we show the effect of using the ab initio lifetime correc-
tion for calculating HHG spectra and we compare with
the heuristic lifetime model. Finally, Section V contains
our conclusions. Unless otherwise stated, Hartree atomic
units are used throughout the paper.

II. THEORY

A. Schrödinger equation for a hydrogen-like atom

with complex energies

Consider the time-independent Schrödinger equation
for a hydrogen-like atom (with a nuclear charge Z)

(

−1

2
∇2

r
− Z

r

)

ψ(r) = Eψ(r), (1)

with a possibly complex energyE and the associated elec-
tronic wave function ψ(r) = R(r)Y m

ℓ (θ, φ) written as the
product of a radial part R(r) and a spherical harmonics
Y m
ℓ (θ, φ). The radial part is determined by the equation

R′′(r) +
2

r
R′(r) +

(

− ℓ(ℓ+ 1)

r2
+

2Z

r
+ 2E

)

R(r) = 0,

(2)
for a given angular momentum ℓ. The general solution
of Eq. (2), without imposing any boundary conditions, is
(as found, e.g., withMathematica [34]; see also Ref. 35)

R(r) = c1R1(r) + c2R2(r), (3)

where c1 and c2 are two arbitrary complex constants, and

R1(r) = L
(

ν, 2ℓ+ 1, 2
√
−2E r

)

rℓe−
√
−2E r, (4)

and

R2(r) = U
(

−ν, 2ℓ+ 2, 2
√
−2E r

)

rℓe−
√
−2E r, (5)

where ν = Z/
√
−2E − ℓ− 1. [36] In these expressions, L

is the generalized Laguerre function and U is the Tricomi
confluent hypergeometric function, both defined for pos-
sibly complex arguments. The function R1(r) is always
finite at r = 0

|R1(r = 0)| <∞, (6)

and, for generic values of the complex energy E, its
asymptotic behavior for r → ∞ is

R1(r) ∼
r→∞

1

Γ(−ν)
e
√
−2E r

r1+Z/
√
−2E

, (7)

where Γ(z) is the gamma function. For generic values of
E, the function R2(r) diverges at r = 0 as

R2(r) ∼
r→0

1

Γ(−ν)
1

rℓ+1
, (8)

while its asymptotic behavior for r → ∞ is

R2(r) ∼
r→∞

e−
√
−2E r

r1−Z/
√
−2E

. (9)

Let us consider first the case of real and negative en-
ergies, E = ε < 0. In this case, the function R1(r)

generally diverges as e
√
−2ε r for r → ∞ [Eq. (7)] and

the function R2(r) generally diverges as 1/rℓ+1 at r = 0
[Eq. (8)]. However, when ν is a negative or zero inte-
ger, i.e. for the discrete energy values ε = −Z2/(2n2)
where n is a positive integer with n ≥ ℓ + 1, the prefac-
tor 1/Γ(−ν) goes to 0 in Eq. (7) and the divergence of
the function R1(r) is avoided. In fact, Eq. (8) has the
same prefactor 1/Γ(−ν) and the divergence of the func-
tion R2(r) is also avoided for these discrete energy values,
as less well known [37]. For these particular energy val-
ues, it turns out that the functions R1(r) and R2(r) both
become proportional to the familiar associated Laguerre
polynomials, so that one is free to choose any linear com-
bination of R1(r) and R2(r) to obtain proper (finite and
normalizable) eigenfunctions. This case corresponds to
the discrete bound states.
Consider now the case of real and positive energies,

E = ε > 0. In this case, it can be seen from Eqs. (7)
and (9) that |R1(r)| and |R2(r)| both behave asymptoti-
cally as 1/r [multiplied by an oscillatory cosine term for
R1(r) due to an additional term not shown in Eq. (7)],
but the function R2(r) diverges as 1/rℓ+1 at r = 0
[Eq. (8)]. One thus has to set c2 = 0 to obtain finite
(but not normalizable) eigenfunctions. This case corre-
sponds to the continuum scattering states.
Finally, let us consider complex energies, E = ε−iγ/2,

with a positive real part, ε > 0, and a negative imagi-
nary part, −γ/2 < 0. The corresponding states are inter-
preted as decaying states with a finite lifetime τ = 1/γ in
the sense that the time-evolved wave function ψ(r, t) =
e−i(ε−iγ/2)tψ(r, 0) has a survival probability which de-
cays in time as |ψ(r, t)|2/|ψ(r, 0)|2 = e−γt. For determin-
ing the asymptotic behavior of the radial functions R1(r)
and R2(r), it is convenient to define the free-electron mo-
mentum

k =
√
2E = kr + iki, (10)

with a positive real part

kr =

√

2ε+
√

4ε2 + γ2

2
, (11)

and a negative imaginary part

ki = −

√

−2ε+
√

4ε2 + γ2

2
. (12)
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Using
√
−2E = ik = ikr + |ki| in Eq. (7), we thus find

that the function R1(r) diverges exponentially for r → ∞
as

|R1(r)| ∼
r→∞

e|ki|r

r1+Z|ki|/|k|2 , (13)

so it cannot be considered as a proper eigenfunction but it
is a kind of resonant state in which the electron “escapes”
at infinity (see, e.g., Refs. 38, 39). On the contrary, using
Eq. (9), we see that the function R2(r) goes exponentially
to zero for r → ∞,

|R2(r)| ∼
r→∞

e−|ki|r

r1−Z|ki|/|k|2 , (14)

but still diverges as 1/rℓ+1 at r = 0 [Eq. (8)] [40]. There-
fore, nor can it be considered as a proper eigenfunction
and again it may be thought of as a kind of resonant
state in which the electron “escapes” at the position of
the nucleus. Note that on the space of such diverging
functions, the Hamiltonian is not a self-adjoint operator,
which is why the eigenvalues can be complex.
From the above analysis, we thus see that one useful

property of a hydrogen-like electronic state with a com-
plex energy E = ε− iγ/2 and c1 = 0 is that the inverse
lifetime γ of the state can be obtained from [after invert-
ing Eq. (12)]

γ = 2|ki|
√

2ε+ |ki|2, (15)

where |ki| can be extracted from the asymptotic behavior
of the radial function

|ki| = − lim
r→∞

ln |R(r)|
r

. (16)

In particular, in the case of a scattering state for which
|R(r)| ∼ 1/r as r → ∞, we correctly obtain |ki| = 0
and γ = 0. For physical interpretation of Eq. (15), we
note that 1/(2|ki|) can be thought of as a measure of the

spatial extension of the state and
√

2ε+ |ki|2 = kr can be
interpreted as the velocity of the escaping electron [41].
In the following, we exploit this link between the spatial
asymptotic decay of the state and its lifetime to formulate
an ab initio lifetime correction to scattering states for
compensating the use of incomplete basis sets.

B. Ab initio lifetime correction to one-electron

scattering states for incomplete basis sets

We still first consider a one-electron hydrogen-like
atom. In standard quantum chemistry programs, the
Schrödinger equation is solved using an incomplete
Gaussian-type basis set. For each state p, the radial func-
tion is expanded on M basis functions {χµ(r)}

Rp(r) =

M
∑

µ=1

cµ,p χµ(r), (17)

where cµ,p are the calculated orbital coefficients. Each
basis function χµ(r) of angular momentum ℓµ is generally
itself a contraction of Mµ primitive Gaussian-type basis
functions

χµ(r) =

Mµ
∑

i=1

di,µ r
ℓµ e−αi,µ r2 , (18)

where di,µ and αi,µ are the (fixed) coefficients and ex-
ponents, respectively, of the ith primitive in the contrac-
tion. Obviously, in addition to the bound states with
negative energies εp < 0, discrete states with positive en-
ergies εp > 0 are also obtained and they can be consid-
ered as approximations to the exact continuum scattering
states. These approximate positive-energy states usually
reproduce a number of oscillations of the exact scatter-
ing states, but they go to zero much faster than 1/r for
large r due to the limitation of the basis. When doing
time-dependent calculations with this basis, this too fast
decay of the approximate radial functions (and the fact
that only a limited discrete set of states is obtained) arti-
ficially confines the electron around the nucleus, with the
consequences that ionization processes cannot be prop-
erly described and the time-dependent wave function may
undergo artificial reflections at the boundary of the space
covered by the basis.
Clearly, beyond a large enough r, the approximate ra-

dial function Rp(r) decays as e
−αminr

2

where αmin is the
smallest exponent appearing in the expansion of Rp(r).
However, for an intermediate range of r, we have found
that the envelope of Rp(r) can be well described by
the asymptotic behavior of the complex-energy state in
Eq. (14), i.e.

envelope[Rp(r)] ≈ Ap
e−Bpr

rCp
for rmin < r < rmax,

(19)
where Ap, Bp, Cp are constants to be determined for each
positive-energy state p. Therefore, we reinterpret the (en-
velope of the) approximate positive-energy state Rp(r) as
an approximation to a complex-energy state with spatial
exponential decay, rather than an approximation to a
real-energy scattering state with 1/r asymptotic behav-
ior. Following Eq. (15), we thus assign an inverse effec-
tive lifetime γp to each such approximate state Rp(r),
obtained from the calculated energy of this state εp > 0
and the decay exponent Bp

γp = 2Bp

√

2εp +B2
p . (20)

Naturally, we extract γp from the constant Bp since it
dominates the asymptotic behavior, but we note that γp
may also be extractable from Cp, according to Eq. (14).
To obtain Bp, we fit the envelope of Rp(r) for each

state p. In principle, the envelope could be mathemati-
cally defined and obtained by the module of the analytic
representation A[Rp(r)] of Rp(r): envelope[Rp(r)] =
|A[Rp(r)]| where A[Rp(r)] = Rp(r) + iH[Rp(r)] and
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H[Rp(r)] is the Hilbert transform of Rp(r). However, we
decide to proceed in the following simpler manner. For
each positive-energy state p, we determine all the local
maxima ri of the absolute value of the oscillatory radial
function |Rp(r)| and perform a linear fit of ln |Rp(ri)|

ln |Rp(ri)| ≈ lnAp −Bp ri − Cp ln ri, (21)

to determine the constants lnAp, Bp, and Cp.
Equations (20) and (21) define an ab initio automa-

tizable procedure for determining the lifetime correction
to the one-electron scattering states for a given basis set.
Once the values for γp are determined, the complex ener-
gies εp−iγp/2 can be used in the time propagation of the
Schrödinger equation. The presence of the finite lifetimes
for the scattering states leads to a partial absorption of
the wave function which simulates ionization and reduces
artificial reflections of the time-dependent wave function.
We stress that we do not view these lifetimes as physi-
cal lifetimes (i.e., associated with a physical resonance
phenomenon), but rather as artificial lifetimes compen-
sating the missing part of the function space due to the
use of an incomplete basis set (see Ref. 42 for how to re-
late lifetimes to missing degrees of freedom). In the limit
of a complete basis set, the exact continuum scattering
states with 1/r asymptotic behavior would be obtained,
and the above procedure would lead to Bp = 0 and thus
γp = 0, as it should. On the contrary, if we use a bad
basis set containing basis functions which are too much
localized to represent the scattering states well, then the
above procedure would lead to large values for Bp and
thus large values for γp, as we would expect.
Interestingly, for small Bp (i.e., for good enough basis

sets and in the lower-energy part of the continuum), we
see that γp is proportional to

√

2εp

γp ≈ 2Bp

√

2εp. (22)

If we set 2Bp = 1/d̃ for all states p, where d̃ is a sin-
gle parameter to be empirically chosen, Eq. (22) reduces
to the heuristic lifetime model of Klinkusch et al. [21].

In their reasoning, d̃ represents the characteristic escape
length that an electron in the state p with classical ve-
locity vp =

√

2εp can travel during the lifetime 1/γp.
Thus, Eq. (22) can be considered as an extension of their
heuristic model in which, for each scattering state and
each basis set, the parameter d̃ is determined ab initio

by setting it to 1/(2Bp), a measure of the spatial ex-
tension of the state. It seems natural indeed that the
parameter d̃ should be different for each state. In fact,
we recently proposed a slightly more flexible version of
the heuristic lifetime model in which two values of d̃ are
used for the lower-energy part and the upper-energy part
of the continuum spectrum [19]. The more general for-
mula for the inverse lifetime that we propose in Eq. (20)

corresponds to using vp =
√

2εp +B2
p which indeed, as

mentioned in Section IIA, represents the velocity of the
escaping electron in a complex-energy state.

C. Extension of the ab initio lifetime correction to

N-electron scattering states

We discuss now the extension of our ab initio lifetime
correction from one-electron hydrogen-like systems to N -
electron atomic and molecular systems.
The first step of an electronic-structure calculation

is usually to solve an effective one-electron mean-field
Schrödinger equation, i.e. the Hartree-Fock (HF) or
Kohn-Sham (KS) equations,

(

−1

2
∇2

r
+ veff(r)

)

ψp(r) = εpψp(r), (23)

where veff(r) is an effective one-electron potential (in
the case of HF, there is actually a different local ef-
fective potential for each orbital p, or equivalently an
unique nonlocal effective potential, see e.g. Ref. 43).
For systems with a radial effective potential veff(r) with
r = |r| (i.e., atoms with spherically symmetric states),
the long-range asymptotic behavior of veff(r) as r → ∞
is known: veff(r) ∼ −(Z − N + 1)/r for exact KS, and
veff(r) ∼ −(Z − N)/r for the virtual orbitals in HF or
KS with (semi)local density-functional approximations.
Therefore, the analysis of the asymptotic behavior of the
radial wave function done in Section IIA can be applied
here to the radial part of each positive-energy orbital
ψp(r) by just replacing Z with an effective nuclear charge
Zeff = Z−N+1 or Zeff = Z−N (which may be zero). We
can then straightforwardly apply the procedure of Sec-
tion II B for each positive-energy orbital p, i.e perform
the fit of Eq. (21) and obtain the inverse lifetime γp with
Eq. (20). For systems with non-spherically symmetric ef-
fective potential veff(r) (i.e., for molecules or atoms with
non spherically symmetric states), for large enough r,
any orbital ψp(r) also feels an effective potential −Zeff/r
where Zeff =

∑

I ZI −N + 1 or Zeff =
∑

I ZI −N (with
ZI being the charge of nucleus I) and r can be taken as
the radial coordinate around the center of mass of the
system. Thus, in this case as well, we can apply the
procedure of Section II B using for example the spherical
average of |ψp(r)|2 around the center of mass to obtain
the inverse lifetime γp for each positive-energy orbital p.
Once the one-electron orbitals have been determined,

the N -electron states can be determined in a second step
by a many-body electronic-structure calculation, and we
would like to define now lifetimes for these states. For
this, we note that attributing inverse lifetimes γp to the
orbitals ψp(r) (without changing them), i.e. just making
the replacement εp → εp − iγp/2 in Eq. (23), formally
corresponds to adding the following nonlocal one-electron
complex-absorbing potential (CAP) to the Hamiltonian

vCAP(r, r
′) = − i

2

∑

p

γp ψ
∗
p(r

′)ψp(r), (24)

where the sum is over the orthonormal positive-energy
orbitals, or equivalently over all orbitals with the under-
standing that γp = 0 if εp < 0. The CAP potential can
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also be conveniently expressed in second quantization

v̂CAP = − i

2

∑

p

γp â
†
pâp, (25)

where â†p and âp are creation and annihilation operators,
respectively. We then have to include this potential in
the many-body calculation.
For example, we consider the case of the configuration

interaction singles (CIS) method. In this method, the
nth N -electron state is written as

|Ψn〉 = c0 |Φ0〉+
occ
∑

i

vir
∑

a

cai,n |Φa
i 〉 , (26)

where |Φ0〉 is the reference HF state, |Φa
i 〉 = â†aâi |Φ0〉

is the state obtained by the single excitation from the
occupied HF orbital i to the virtual HF occupied a, and
the coefficients c0 and cai,n are obtained by diagonalizing
the Hamiltonian in this space. In principle, one could
think of rediagonalizing the Hamiltonian including the
CAP potential. A simpler approach is to just calculate
the first-order correction due to the CAP potential to
the energy En of each scattering CIS state, i.e. states
such that En > E0 + IP where E0 is the ground-state
energy and IP is the ionization potential. Noting that
since occupied orbitals have negative energies they do
not contribute in Eq. (25), the action of v̂CAP on |Φ0〉
is zero and 〈Φa

i | v̂CAP

∣

∣Φb
j

〉

= −(i/2)γaδabδij . We thus
easily find

〈Ψn| v̂CAP |Ψn〉 = − i

2
Γn , (27)

where Γn is given by

Γn =
occ
∑

i

vir
∑

a

|cai,n|2 γa, (28)

with again γa 6= 0 only if εa > 0. Thus, within first
order, the action of the CAP potential is to attribute
inverse lifetimes Γn to the scattering CIS states, i.e.

En → En − i

2
Γn, (29)

for En > E0 + IP.
Equation (28) exactly corresponds to the expression

used in the heuristic lifetime model of Klinkusch et

al. [21] for CIS states. We have thus provided a theoreti-
cal derivation of their expression, giving stronger support
for it and allowing generalizations. For example, for con-
figuration interactions singles doubles (CISD), it is easy
to find that Eq.(28) now becomes

Γn =

occ
∑

i

vir
∑

a

|cai,n|2 γa +
occ
∑

i,j

vir
∑

a,b

|cabij,n|2 (γa + γb), (30)

and so on. Alternatively, one could use directly the CAP
potential of Eq. (24) or (25) in time-dependent methods
such as TDDFT or TDHF.

III. COMPUTATIONAL DETAILS

We test our ab initio lifetime correction on the H
and He atoms. We start with standard Gaussian-type
correlation-consistent polarized valence-triple-zeta Dun-
ning basis sets [44], n-fold augmented with diffuse basis
functions to describe Rydberg states [16], denominated
by n-aug-cc-pVTZ. For the atoms considered, these basis
sets contain s, p, and d basis functions. For each angu-
lar momentum, we then add m Gaussian-type functions
adjusted to represent low-lying continuum states, as pro-
posed by Kaufmann et al. [20] and used in Refs. 17, 19.
The resulting basis sets are referred to as n-aug-cc-
pVTZ+mK where K stands for “Kaufmann”. Specifi-
cally, we consider n = 6 or n = 8 and m = 3 or m = 8 for
the H atom, and n = 6 and m = 7 for the He atom. Note
that m = 8 and m = 7 for H and He, respectively, are
the largest numbers of Kaufmann functions that we have
been able to use before running into linear-dependency
problems. We have recently extensively studied the con-
vergence of the HHG spectrum of the H atom with such
basis sets and found that the 6-aug-cc-pVTZ+8K basis
set with a two-parameter heuristic lifetime model already
gives a HHG spectrum in good agreement with the ref-
erence grid-based one (for laser intensities up to 1014

W/cm2) [19].

Using a development version of the Molpro software
package [45], we perform a Hartree-Fock calculation to
obtain the orbitals with these different basis sets. To
obtain the inverse lifetime γp for each positive-energy or-
bital p, we numerically determine the local maxima of the
absolute value of the radial part of the orbital using a spa-
tial grid with step 0.05 bohr extending from rmin = 0.05
bohr to rmax = 2/

√
αmin,s where αmin,s is the exponent of

the most diffuse s-function in the basis set [18]. With the
largest basis sets used, we have rmax = 419 bohr with
the 6-aug-cc-pVTZ+8K basis set for the H atom, and
rmax = 295 bohr with the 6-aug-cc-pVTZ+7K basis set
for the He atom. We then perform the fit in Eq. (21).

We perform a CIS calculation (for the H atom, this is
of course identical to HF) to obtain CIS total energies
En and coefficients cai,n, as well as transition moments,
and calculate the CIS inverse lifetimes Γn according to
Eq. (28) for the states n such that En > E0 + IP where
E0 is the HF ground-state energy. For the ionization
potential, we take IP = −εHOMO calculated with the
considered basis set, giving IP = 0.5 Ha for H and IP =
0.918 Ha for He.

To test the obtained lifetimes, we calculate HHG spec-
tra (in the dipole form) induced by a cos2-shape laser
electric field by performing TDCIS calculations with the
real-time propagation code Light [16] using a time step
∆t = 2.42 as (0.1 a.u.) and the same set up as in Ref. 19.
Specifically, for H we use a laser intensity of I = 1014

W/cm2 with a wavelength of λ0 = 800 nm, and for He
we use a laser intensity of I = 5 × 1014 W/cm2 with a
wavelength of λ0 = 456 nm [46]. In both cases, the time
propagation has been carried out for 20 optical cycles.
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FIG. 1: Comparison of the radial wave function R(r) of the
exact s-symmetry (ℓ = 0) scattering state of energy 0.5175
Ha of the H atom with the radial wave function of the ap-
proximate scattering state of closest energy obtained with the
6-aug-cc-pVTZ, 6-aug-cc-pVTZ+3K, or 6-aug-cc-pVTZ+8K
basis set (energy of 0.4805 Ha, 0.4323 Ha, and 0.5175 Ha,
respectively). The curves are normalized such that they (ap-
proximately) have the same amplitude at the first minimum.

IV. RESULTS

A. Hydrogen atom

We start by showing the typical radial wave functions
of scattering states of the H atom that we obtain with
Gaussian-type basis sets. In Fig. 1, we compare the radial
wave function R(r) of the exact s-symmetry scattering
state of energy 0.5175 Ha with the radial wave function
of the approximate scattering state of closest energy ob-
tained with the 6-aug-cc-pVTZ, 6-aug-cc-pVTZ+3K, or
6-aug-cc-pVTZ+8K basis set (0.4805 Ha, 0.4323 Ha, and
0.5175 Ha, respectively). As observed in Ref. 19, the 6-
aug-cc-pVTZ basis set does not reproduce the long-range
oscillatory behavior of the exact scattering wave func-
tion. The situation is improved when adding Kaufmann
functions, i.e. with the 6-aug-cc-pVTZ+3K and 6-aug-
cc-pVTZ+8K basis sets. The more Kaufmann functions
are added, the more long-range oscillations are obtained
in the radial wave functions. However, even with the
6-aug-cc-pVTZ+8K basis set, the amplitude of these os-
cillations decay much too fast at long distance in com-
parison with the exact 1/r behavior. It is not easy to
continue to improve the 6-aug-cc-pVTZ+8K basis set by
adding more and more Kaufmann functions because of
linear dependencies. Instead, we will compensate for this
wrong asymptotic behavior using our ab initio lifetime
correction.

We consider now the fit of the envelope of the ra-
dial wave functions with the logarithmic expression of

TABLE I: Evolution of the values of the parameters Bp and
Cp, and of the coefficients of determination R2 for the fit in
Eq. (21) when removing a number of maxima ri that are the
largest distances (indicated with the number of total maxima
Nmax and the position of the last maximum rlastmax used for
the fit) for the s, p, and, d states of the H atom considered
in Fig. 2. The 6-aug-cc-pVTZ+8K basis set has been used.
There are no maxima beyond r = 228.7 bohr.

Nmax rlastmax (bohr) Bp (bohr−1) Cp R2

s state at ε = 0.343 Ha
11 228.7 0.013 2.022 0.97
10 111.6 0.037 1.436 0.97
9 59.5 0.087 0.633 0.99
8 37.9 0.130 0.106 0.99

p state at ε = 0.306 Ha
9 112.1 0.043 1.220 0.96
8 57.9 0.096 0.518 0.98
7 34.0 0.150 -5×10−4 0.99

d state at ε = 0.371 Ha
8 102.4 0.045 1.495 0.97
7 50.0 0.120 0.406 0.98

Eq. (21). In Fig. 2, we compare the values ln |Rp(ri)|
where ri are the maxima of |Rp(r)| with the fitted curve
lnAp − Bp r − Cp ln r for s, p, and d scattering wave
functions of similar energies (0.343 Ha, 0.306 Ha, and
0.371 Ha, respectively [47]) calculated with the 6-aug-cc-
pVTZ+8K basis set. As mentioned in the Computational
details, the fit was performed within the radial window
[rmin = 0.05; rmax = 419] bohr in which there are 11, 9,
and 8 maxima of |Rp(r)| for the s, p, and d states consid-
ered, respectively. In Table I, we also report the values of
the parameters Bp and Cp, and the coefficients of deter-
mination R2 of the fits, obtained with different numbers
of maxima included, corresponding to using smaller val-
ues of rmax. The quality of the fit is satisfactory with
R2 ≥ 0.96 in all cases, but the value of Bp appears to
be quite sensitive to the number of maxima included and
increases significantly when reducing rmax. The value
rmax = 2/

√
αmin,s = 419 bohr chosen in this work thus

gives the smallest value ofBp and consequently the small-
est value of the inverse lifetime γp. This is in a sense a
“safe” choice since it minimizes the lifetime correction.
Let us discuss now the inverse lifetimes γp for each scat-

tering state obtained with the fit from Eq. (20). In Fig. 3
we show γp obtained with 6-aug-cc-pVTZ+8K and 8-aug-
cc-pVTZ+8K basis sets as a function of the orbital ener-
gies εp. Consider first the 6-aug-cc-pVTZ+8K basis set.
The inverse lifetimes for the s scattering states and the
ones for the p and d scattering states both roughly follow
a
√
εp trend. What is striking is that the inverse lifetimes

of the p and d scattering states are much larger than the
inverse lifetimes of the s scattering states. Since the in-
verse lifetimes should be zero in the limit of a complete
basis set, this must mean that the 6-aug-cc-pVTZ+8K
basis set is much worse for the p and d scattering states
in comparison to the s scattering states. Consider now
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FIG. 2: Fit to the logarithmic formula of Eq. (21) of the en-
velope of the s, p, and d radial wave functions R(r) of the H
atom with positive energies of 0.343 Ha, 0.306 Ha, and 0.371
Ha, respectively, calculated with the 6-aug-cc-pVTZ+8K ba-
sis set. The points defining the envelope are defined as the
maxima ri of |R(r)|. The coefficients of determination R2 of
the fit are 0.97, 0.96 and 0.96, respectively.

the 8-aug-cc-pVTZ+8K basis set. As expected, with this
improved basis set containing more diffuse functions, we
obtain much smaller inverse lifetimes for all scattering
states. However, the inverse lifetimes for p and d scat-
tering states with this basis set are still larger than the
ones for s scattering states. We thus conclude that both
basis sets are unbalanced in the description the s scatter-
ing states and the p and d scattering states. It is a nice
feature of our ab initio lifetime correction that it clearly
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FIG. 4: Inverse lifetimes γp obtained with the fit from Eq. (20)
for the H atom with the 6-aug-cc-pVTZ+8K and 6-aug-cc-
pVTZ+8K+pd(αmin,s) basis sets for s scattering states and p
and d scattering states. The 6-aug-cc-pVTZ+8K+pd(αmin,s)
basis set is obtained from the 6-aug-cc-pVTZ+8K basis set
by adding p and d basis functions with the αmin,s expo-
nent. The inverse lifetimes obtained from the heuristic life-
time model [21] with the 6-aug-cc-pVTZ+8K+pd(αmin,s) ba-

sis set and d̃ = 50 bohr are also shown.

reveals the imbalance of the basis set for scattering states
of different angular momenta.
This better description of the s scattering states than

the p and d scattering states may be explained by the
fact that the most diffuse basis functions of the n-aug-cc-
pVTZ+8K basis sets are of s symmetry. To confirm this
hypothesis, we have constructed a new basis set starting
from the 6-aug-cc-pVTZ+8K basis set and adding p and
d basis functions with the smallest exponent of the s ba-
sis functions in this basis, which is αmin,s = 2.28× 10−5

bohr−2. In Fig. 4, it is seen that the resulting basis
set, denoted by 6-aug-cc-pVTZ+8K+pd(αmin,s), gives
of course the same inverse lifetimes for the s scatter-
ing states, but much smaller inverse lifetimes for the p
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and d scattering states which are now comparable to the
inverse lifetimes of the s scattering states. The 6-aug-
cc-pVTZ+8K+pd(αmin,s) basis set is thus a more bal-
anced basis set. In Fig. 4, we also show the inverse
lifetimes obtained from the heuristic lifetime model of
Klinkusch et al. [21], i.e. γp =

√

2εp/d̃, with the 6-
aug-cc-pVTZ+8K+pd(αmin,s) basis set and the value of

d̃ = 50 bohr. This value of d̃ was empirically found in
a previous work [19] to give a good HHG spectrum of
the H atom with the aug-cc-pVTZ+8K basis set, in good
agreement with the reference HHG spectrum obtained
from grid calculations. Clearly, for the s scattering states,
the inverse lifetimes obtained from the heuristic lifetime
model with this value of d̃ are quite similar to the in-
verse lifetimes determined ab initio in the present work.
For the p and d scattering states, the heuristic lifetime
model gives inverse lifetimes that are a bit smaller than
the ab initio inverse lifetimes obtained with the 6-aug-
cc-pVTZ+8K+pd(αmin,s) basis set. Therefore, we can
consider that our ab initio lifetime correction provides a
first-principle justification for the value of d̃ empirically
chosen in Ref. 19.
Finally, we test our ab initio lifetime correction for

calculating the HHG spectrum of the H atom with a
laser intensity of I = 1014 W/cm2 using the 6-aug-cc-
pVTZ+8K+pd(αmin,s) basis set. We show the obtained
spectrum in Fig. 5 and compare it to the HHG spectra
calculated using either no lifetimes or lifetimes from the
heuristic lifetime model with d̃ = 50 bohr. All the spectra
present roughly the expected aspect of an atomic HHG
spectrum: a first intense peak at ω/ω0 = 1, followed by a
plateau of peaks at the odd harmonic orders until a cut-

off value beyond which the intensity of the peaks rapidly
decreases. The spectrum obtained with no lifetimes is
however very noisy, the signal not decreasing very much
between the peaks. Introducing the lifetimes results in
much clearer spectra with lower background and sharper
peaks. The spectrum obtained with the lifetimes from
the ab initio procedure and the one obtained the life-
times from the heuristic model are very similar to each
other, with the ab initio lifetimes giving a slightly lower
background (less than one unit on the logarithmic scale).
This test thus confirms the usefulness of introducing life-
times, and confirm that the heuristic lifetime model can
be replaced by our ab initio lifetime correction.

B. Helium atom

We apply now our ab initio lifetime correction to the
He atom, as a first test on a system with more than one
electron. We consider first the one-electron inverse life-
times γp as a function of the orbital energies εp which
are reported in the left panel of Fig. 6 using the 6-aug-
cc-pVTZ+7K and 6-aug-cc-pVTZ+7K+pd(αmin,s) basis
sets. Similarly as for the H atom, the basis 6-aug-cc-
pVTZ+7K+pd(αmin,s) is constructed from the basis 6-
aug-cc-pVTZ+7K by adding p and d basis functions with
the smallest s-basis function exponent. With the 6-aug-
cc-pVTZ+7K basis set, the inverse lifetimes of the s scat-
tering states are much smaller than the ones of the p and
d scattering states. As for the H atom, the use of the 6-
aug-cc-pVTZ+7K+pd(αmin,s) basis set gives a more bal-
anced description of all the scattering states. The ob-
tained inverse lifetimes follow a similar trend as the one
observed for the H atom with a similar basis set, but tend
to be a bit larger. As a consequence, if we want to roughly
reproduce these ab initio lifetimes with the heuristic life-
time model, we need to choose a smaller value of the
parameter: d̃ = 30 bohr. We consider now the corre-
sponding two-electron CIS inverse lifetimes Γn [Eq. (28)]
as a function of the CIS total energies En, reported in
the right panel of Fig. 6. The CIS inverse lifetimes are
overall quite similar to the one-electron inverse lifetimes.
The most important difference is that, just above the
continuum threshold (εp & 0 or En & E0 + IP), the den-
sity of two-electron CIS states is higher than the density
of one-electron HF states, and the CIS inverse lifetimes
are significantly larger than the one-electron inverse life-
times.
Finally, we test our ab initio lifetime correction for

calculating the HHG spectrum of the He atom with a
laser intensity of I = 5×1014 W/cm2 using the 6-aug-cc-
pVTZ+7K+pd(αmin,s) basis set. Since the study of the
effect of electronic correlation on the HHG spectrum [50]
is beyond the scope of this work, we still use TDCIS
even though the He atom has two electrons, i.e. we ne-
glect double excitations. We show the obtained spectrum
in Fig. 7 and compare it to the HHG spectra calculated
using either no lifetimes or lifetimes from the heuristic
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sity I = 5 × 1014 W/cm2 calculated with the 6-aug-cc-
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lifetime model with d̃ = 30 bohr. As for the H atom,
the spectrum obtained with no lifetimes is very noisy,
whereas the spectra obtained with the lifetimes are much
clearer. Using the ab initio lifetimes gives a slightly lower
background than using the lifetimes from the heuristic
lifetime model. This test thus confirms the applicability
of our ab initio lifetime correction to two-electron sys-
tems.

V. CONCLUSIONS

We have developed a method for obtaining effective
lifetimes of scattering electronic states for avoiding the
artificially confinement of the wave function due to the
use of incomplete basis sets in time-dependent electronic-
structure calculations. In this method, using a fit-
ting procedure, the lifetimes are systematically extracted
from the spatial asymptotic decay of the approximate
scattering wave functions obtained with a given basis set.
The main qualities of this method are that (1) it is based
on a rigorous theoretical analysis, (2) it does not involve
any empirical parameters, (3) it is adapted to each par-
ticular basis set used. Interestingly, the method can be
considered as an ab initio version of the heuristic lifetime
model of Klinkusch et al. [21].

As first tests of our method, we have considered the
H and He atoms using Gaussian-type basis sets. We
have shown that reasonable lifetimes adapted to the basis
set are obtained. In particular, the inverse lifetimes cor-
rectly decrease when the size of the basis set is increased.
Moreover, the obtained lifetimes revealed an unbalanced
description of the scattering states of different angular
momentum with the standard basis sets used, which we
exploited to construct more balanced basis sets. There-
fore, the method is useful to diagnose the quality of a
basis set for describing scattering states. Finally, the ob-
tained lifetimes have been shown to lead to much clearer
HHG spectra (i.e., with a lower background and better
resolved peaks) in time-dependent calculations.

Future work includes testing the method on larger
systems including molecules, calculating other proper-
ties than HHG spectra, and possibly using different
types of basis sets. We believe that our approach could
help adapting quantum-chemistry methods for the study
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of electron dynamics induced by high-intensity laser in
atoms and molecules.

Acknowledgements

This work was supported by the LabEx MiChem part
of French state funds managed by the ANR within the In-

vestissements d’Avenir programme under reference ANR-
11-IDEX-0004-02. EC thanks L. Guidoni for support.

[1] P. B. Corkum and F. Krausz, Nat. Phys. 3, 381 (2007).
[2] F. Krausz and M. Ivanov, Phys. Mod. Rev. 81, 163

(2009).
[3] L. Gallmann, C. Cirelli, , and U. Keller, Annu. Rev.

Phys. Chem. 63, 447 (2012).
[4] Attosecond physics, in Springer Series in Optical Sci-

ences, edited by L. Plaja, R. Torres, and A. Zäır,
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