D. Akhmetshina, A. Zakharov, D. Vinokurova, A. Nasretdinov, G. Valeeva et al., The serotonin reuptake inhibitor citalopram suppresses activity in the neonatal rat barrel cortex in vivo, Brain Research Bulletin, vol.124, pp.48-54, 2016.
DOI : 10.1016/j.brainresbull.2016.03.011

A. Assali, P. Gaspar, and A. Rebsam, Activity dependent mechanisms of visual map formation - From retinal waves to molecular regulators, Seminars in Cell & Developmental Biology, vol.35, pp.136-146, 2014.
DOI : 10.1016/j.semcdb.2014.08.008

J. Balog, U. Matthies, L. Naumann, M. Voget, C. Winter et al., Social experience modulates ocular dominance plasticity differentially in adult male and female mice, NeuroImage, vol.103, pp.454-461, 2014.
DOI : 10.1016/j.neuroimage.2014.08.040

L. Baroncelli, A. Sale, A. Viegi, M. Vetencourt, J. F. De-pasquale et al., Experience-dependent reactivation of ocular dominance plasticity in the adult visual cortex, Experimental Neurology, vol.226, issue.1, pp.100-109, 2010.
DOI : 10.1016/j.expneurol.2010.08.009

M. Benekareddy, K. C. Vadodaria, A. R. Nair, and V. A. Vaidya, Postnatal Serotonin Type 2 Receptor Blockade Prevents the Emergence of Anxiety Behavior, Dysregulated Stress-Induced Immediate Early Gene Responses, and Specific Transcriptional Changes that Arise Following Early Life Stress, Biological Psychiatry, vol.70, issue.11, pp.1024-1032, 2011.
DOI : 10.1016/j.biopsych.2011.08.005

S. Beshara, B. R. Beston, J. G. Pinto, M. , and K. M. , Effects of Fluoxetine and Visual Experience on Glutamatergic and GABAergic Synaptic Proteins in Adult Rat Visual Cortex, eNeuro, vol.2, issue.6, 2016.
DOI : 10.1523/ENEURO.0126-15.2015

A. Bonnin, N. Goeden, K. Chen, M. L. Wilson, J. King et al., A transient placental source of serotonin for the fetal forebrain, Nature, vol.154, issue.7343, pp.347-350, 2011.
DOI : 10.1016/j.placenta.2009.11.013

A. Bonnin and P. Levitt, Fetal, maternal, and placental sources of serotonin and new implications for developmental programming of the brain, Neuroscience, vol.197, 2011.
DOI : 10.1016/j.neuroscience.2011.10.005

A. Bonnin, M. Torii, L. Wang, P. Rakic, and P. Levitt, Serotonin modulates the response of embryonic thalamocortical axons to netrin-1, Nature Neuroscience, vol.18, issue.5, pp.588-597, 2007.
DOI : 10.1016/0092-8674(94)90009-4

L. H. Calizo, A. Akanwa, X. Ma, Y. Z. Pan, J. C. Lemos et al., Raphe serotonin neurons are not homogenous: Electrophysiological, morphological and neurochemical evidence, Neuropharmacology, vol.61, issue.3, pp.524-543, 2011.
DOI : 10.1016/j.neuropharm.2011.04.008

URL : http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3120045

O. Cases, I. Seif, J. Grimsby, P. Gaspar, K. Chen et al., Aggressive behavior and altered amounts of brain serotonin and norepinephrine in mice lacking MAOA, Science, vol.268, issue.5218, pp.1763-1766, 1995.
DOI : 10.1126/science.7792602

V. J. Cerpa, M. L. Aylwin, S. Beltrán-castillo, E. U. Bravo, I. R. Llona et al., The Alteration of Neonatal Raphe Neurons by Prenatal?Perinatal Nicotine. Meaning for Sudden Infant Death Syndrome, American Journal of Respiratory Cell and Molecular Biology, vol.53, issue.4, pp.489-499, 2015.
DOI : 10.1165/rcmb.2014-0329OC

J. L. Chen, W. C. Lin, J. W. Cha, P. T. So, Y. Kubota et al., Structural basis for the role of inhibition in facilitating adult brain plasticity, Nature Neuroscience, vol.19, issue.5, pp.587-594, 2011.
DOI : 10.1016/j.neuron.2006.02.017

X. Chen, E. I. Petit, K. Dobrenis, and J. Y. Sze, Spatiotemporal SERT expression in cortical map development, Neurochemistry International, vol.98, 2016.
DOI : 10.1016/j.neuint.2016.05.010

X. Chen, R. Ye, J. J. Gargus, R. D. Blakely, K. Dobrenis et al., Disruption of Transient Serotonin Accumulation by Non-Serotonin-Producing Neurons Impairs Cortical Map Development, Cell Reports, vol.10, issue.3, pp.346-358, 2015.
DOI : 10.1016/j.celrep.2014.12.033

L. K. Crawford, S. F. Rahman, and S. G. Beck, Social Stress Alters Inhibitory Synaptic Input to Distinct Subpopulations of Raphe Serotonin Neurons, ACS Chemical Neuroscience, vol.4, issue.1, pp.200-209, 2010.
DOI : 10.1021/cn300238j

A. Dayer, Serotonin-related pathways and developmental plasticity: relevance for psychiatric disorders, Dialogues Clin. Neurosci, vol.16, pp.29-41, 2014.

D. Vitry, F. Hamon, M. Catelon, J. Dubois, M. Thibault et al., Serotonin initiates and autoamplifies its own synthesis during mouse central nervous system development., Proceedings of the National Academy of Sciences, vol.83, issue.22, pp.8629-8633, 1986.
DOI : 10.1073/pnas.83.22.8629

L. Descarries, J. J. Soghomonian, S. Garcia, G. Doucet, and J. P. Bruno, Ultrastructural analysis of the serotonin hyperinnervation in adult rat neostriatum following neonatal dopamine denervation with 6-hydroxydopamine, Brain Research, vol.569, issue.1, pp.1-13, 1992.
DOI : 10.1016/0006-8993(92)90363-E

Z. R. Donaldson, D. A. Piel, T. L. Santos, J. Richardson-jones, E. D. Leonardo et al., Developmental Effects of Serotonin 1A Autoreceptors on Anxiety and Social Behavior, Neuropsychopharmacology, vol.9, issue.2, pp.291-302, 2014.
DOI : 10.1111/j.1601-183X.2009.00531.x

R. H. Dyck and M. S. Cynader, Autoradiographic localization of serotonin receptor subtypes in cat visual cortex: transient regional, laminar and columnar distributions during postnatal development, J. Neurosci, vol.13, pp.4316-4338, 1993.

K. Dzirasa, S. Kumar, B. D. Sachs, M. G. Caron, and M. A. Nicolelis, Cortical-Amygdalar Circuit Dysfunction in a Genetic Mouse Model of Serotonin Deficiency, Journal of Neuroscience, vol.33, issue.10, pp.4505-4513, 2013.
DOI : 10.1523/JNEUROSCI.4891-12.2013

R. S. Erzurumlu and P. Gaspar, Development and critical period plasticity of the barrel cortex, European Journal of Neuroscience, vol.29, issue.Pt 9, pp.1540-1553, 2012.
DOI : 10.1523/JNEUROSCI.5646-08.2009

S. P. Fernandez, B. Cauli, C. Cabezas, A. Muzerelle, J. Poncer et al., Multiscale single-cell analysis reveals unique phenotypes of raphe 5-HT neurons projecting to the forebrain, Brain Structure and Function, vol.30, issue.Suppl 1, pp.4007-4025, 2016.
DOI : 10.1523/JNEUROSCI.4656-09.2010

URL : https://hal.archives-ouvertes.fr/hal-01541354

D. Gagnon, L. Gregoire, D. Paolo, T. Parent, and M. , Serotonin hyperinnervation of the striatum with high synaptic incidence in parkinsonian monkeys, Brain Structure and Function, vol.40, issue.Suppl 2, pp.3675-3691, 2016.
DOI : 10.1016/j.nbd.2010.08.004S0969-9961(10)00256-1

P. D. Ganzer, K. A. Moxon, E. B. Knudsen, and J. S. Shumsky, Serotonergic pharmacotherapy promotes cortical reorganization after spinal cord injury, Experimental Neurology, vol.241, pp.84-94, 2013.
DOI : 10.1016/j.expneurol.2012.12.004

URL : http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4470269

A. L. Garcia-garcia, Q. Meng, S. Canetta, A. M. Gardier, B. P. Guiard et al., Serotonin signaling through prefrontal cortex 5-HT 1A receptors during adolescence can determine baseline mood-related behaviors. Cell Rep, pp.1144-1156, 2017.
DOI : 10.1016/j.celrep.2017.01.021

URL : http://doi.org/10.1016/j.celrep.2017.01.021

P. Gaspar, O. Cases, and L. Maroteaux, The developmental role of serotonin: news from mouse molecular genetics, Nature Reviews Neuroscience, vol.17, issue.12, pp.1002-1012, 2003.
DOI : 10.1161/01.CIR.103.24.2973

URL : https://hal.archives-ouvertes.fr/hal-01274960

P. Gaspar, A. Febvret, C. , and J. , Serotonergic sprouting in primate MTP-induced hemiparkinsonism, Experimental Brain Research, vol.556, issue.1, pp.100-106, 1993.
DOI : 10.1016/0006-8993(91)90553-8

N. M. Goodfellow, D. Sargin, M. S. Ansorge, J. A. Gingrich, and E. K. Lambe, Mice with Compromised 5-HTT Function Lack Phosphotyrosine-Mediated Inhibitory Control over Prefrontal 5-HT Responses, Journal of Neuroscience, vol.34, issue.17, pp.6107-6111, 2014.
DOI : 10.1523/JNEUROSCI.3762-13.2014

URL : http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3996227

C. Gross, R. Hen, C. Gross, X. Zhuang, K. Stark et al., The developmental origins of anxiety, Nature Reviews Neuroscience, vol.23, issue.7, pp.545-552, 1038.
DOI : 10.1016/0166-4328(96)00071-X

Q. Gu and W. Singer, Involvement of Serotonin in Developmental Plasticity of Kitten Visual Cortex, European Journal of Neuroscience, vol.26, issue.Suppl., pp.1146-1153, 1995.
DOI : 10.1111/j.1476-5381.1989.tb11831.x

L. Gutknecht, J. Waider, S. Kraft, C. Kriegebaum, B. Holtmann et al., Deficiency of brain 5-HT synthesis but serotonergic neuron formation in Tph2 knockout mice, Journal of Neural Transmission, vol.41, issue.8, pp.1127-1132, 2008.
DOI : 10.1007/s00702-008-0096-6

A. L. Hawthorne, H. Hu, B. Kundu, M. P. Steinmetz, C. J. Wylie et al., The Unusual Response of Serotonergic Neurons after CNS Injury: Lack of Axonal Dieback and Enhanced Sprouting within the Inhibitory Environment of the Glial Scar, Journal of Neuroscience, vol.31, issue.15, pp.5605-5616, 2011.
DOI : 10.1523/JNEUROSCI.6663-10.2011

J. R. Homberg, D. Schubert, and P. Gaspar, New perspectives on the neurodevelopmental effects of SSRIs, Trends in Pharmacological Sciences, vol.31, issue.2, pp.60-65, 2010.
DOI : 10.1016/j.tips.2009.11.003

G. Jafari, Y. Xie, A. Kullyev, B. Liang, and J. Y. Sze, Regulation of Extrasynaptic 5-HT by Serotonin Reuptake Transporter Function in 5-HT-Absorbing Neurons Underscores Adaptation Behavior in Caenorhabditis elegans, Journal of Neuroscience, vol.31, issue.24, pp.8948-8957, 2011.
DOI : 10.1523/JNEUROSCI.1692-11.2011

Y. Jin, S. E. Dougherty, K. Wood, L. Sun, R. H. Cudmore et al., Regrowth of Serotonin Axons in the Adult Mouse Brain Following Injury, Neuron, vol.91, issue.4, pp.748-762, 2016.
DOI : 10.1016/j.neuron.2016.07.024

S. Jitsuki, K. Takemoto, T. Kawasaki, H. Tada, A. Takahashi et al., Serotonin Mediates Cross-Modal Reorganization of Cortical Circuits, Neuron, vol.69, issue.4, pp.780-792, 2011.
DOI : 10.1016/j.neuron.2011.01.016

URL : https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3503249/pdf

V. Kiyasova, P. Bonnavion, S. Scotto-lomassese, V. Fabre, I. Sahly et al., A Subpopulation of Serotonergic Neurons That Do Not Express the 5-HT1A Autoreceptor, ACS Chemical Neuroscience, vol.4, issue.1, pp.89-95, 1981.
DOI : 10.1021/cn300157s

URL : https://hal.archives-ouvertes.fr/hal-01544146

A. Laurent, J. Goaillard, O. Cases, C. Lebrand, P. Gaspar et al., Activity-dependent presynaptic effect of serotonin 1B receptors on the somatosensory thalamocortical transmission in neonatal mice, J. Neurosci, vol.22, pp.886-900, 2002.

C. Lebrand, O. Cases, R. Wehrlé, R. D. Blakely, R. H. Edwards et al., Transient developmental expression of monoamine transporters in the rodent forebrain, J. Comp. Neurol, vol.401401, pp.506-524, 1998.

L. Lee, W. Chen, Y. Chuang, and W. , Neonatal whisker trimming causes long-lasting changes in structure and function of the somatosensory system, Experimental Neurology, vol.219, issue.2, pp.524-532, 2009.
DOI : 10.1016/j.expneurol.2009.07.012

A. Lira, M. Zhou, N. Castanon, M. S. Ansorge, J. A. Gordon et al., Altered depression-related behaviors and functional changes in the dorsal raphe nucleus of serotonin transporter-deficient mice, Biological Psychiatry, vol.54, issue.10, pp.960-971, 2003.
DOI : 10.1016/S0006-3223(03)00696-6

J. P. Liu and J. M. Lauder, Serotonin and nialamide differentially regulate survival and growth of cultured serotonin and catecholamine neurons, Developmental Brain Research, vol.62, issue.2, pp.297-305, 1991.
DOI : 10.1016/0165-3806(91)90180-Q

J. Luo, Q. Feng, L. Wei, and M. Luo, Optogenetic activation of dorsal raphe neurons rescues the autistic-like social deficits in Shank3 knockout mice, Cell Research, vol.21, 2017.
DOI : 10.1002/dvg.20228

O. Marín, Developmental timing and critical windows for the treatment of psychiatric disorders, Nature Medicine, vol.6, issue.11, 2016.
DOI : 10.1016/j.neuron.2013.01.011

M. Vetencourt, J. F. Sale, A. Viegi, A. Baroncelli, L. De-pasquale et al., The Antidepressant Fluoxetine Restores Plasticity in the Adult Visual Cortex, Science, vol.10, issue.4, pp.385-388, 2008.
DOI : 10.1034/j.1601-183X.2003.00037.x

S. Miceli, N. Nadif-kasri, J. Joosten, C. Huang, L. Kepser et al., Reduced Inhibition within Layer IV of Sert Knockout Rat Barrel Cortex is Associated with Faster Sensory Integration, Cerebral Cortex, vol.27, issue.2, pp.933-949, 2017.
DOI : 10.1093/cercor/bhx016

S. Miceli, M. Negwer, F. Van-eijs, C. Kalkhoven, I. Van-lierop et al., High serotonin levels during brain development alter the structural input-output connectivity of neural networks in the rat somatosensory layer IV, Frontiers in Cellular Neuroscience, vol.7, 2013.
DOI : 10.3389/fncel.2013.00088

S. Migliarini, G. Pacini, B. Pelosi, G. Lunardi, and M. Pasqualetti, Lack of brain serotonin affects postnatal development and serotonergic neuronal circuitry formation, Molecular Psychiatry, vol.6, issue.10, pp.1106-1118, 2013.
DOI : 10.1002/hipo.20759

R. A. Morton, Y. Yanagawa, F. Valenzuela, and C. , Electrophysiological Assessment of Serotonin and GABA Neuron Function in the Dorsal Raphe during the Third Trimester Equivalent Developmental Period in Mice, eNeuro, vol.2, issue.6, pp.79-94, 2015.
DOI : 10.1523/ENEURO.0079-15.2015

A. Müllner, R. R. Gonzenbach, O. Weinmann, L. Schnell, T. Liebscher et al., Lamina-specific restoration of serotonergic projections after Nogo-A antibody treatment of spinal cord injury in rats, European Journal of Neuroscience, vol.23, issue.2, pp.326-333, 2008.
DOI : 10.1177/002215549804601005

V. Narayanan, R. S. Heiming, F. Jansen, J. Lesting, N. Sachser et al., Social Defeat: Impact on Fear Extinction and Amygdala-Prefrontal Cortical Theta Synchrony in 5-HTT Deficient Mice, PLoS ONE, vol.191, issue.Pt 2, 2011.
DOI : 10.1371/journal.pone.0022600.s003

URL : http://doi.org/10.1371/journal.pone.0022600

N. Narboux-nême, G. Angenard, V. Mosienko, F. Klempin, P. M. Pitychoutis et al., Postnatal Growth Defects in Mice with Constitutive Depletion of Central Serotonin, ACS Chemical Neuroscience, vol.4, issue.1, pp.171-181, 1021.
DOI : 10.1021/cn300165x

K. L. Ng, E. M. Gibson, R. Hubbard, J. Yang, B. Caffo et al., Fluoxetine Maintains a State of Heightened Responsiveness to Motor Training Early After Stroke in a Mouse Model, Stroke, vol.46, issue.10, pp.2951-2960, 2015.
DOI : 10.1161/STROKEAHA.115.010471

L. Olson, L. O. Boréus, and A. Seiger, Histochemical demonstration and mapping of 5-hydroxytryptamine- and catecholamine-containing neuron systems in the human fetal brain, Zeitschrift f?r Anatomie und Entwicklungsgeschichte, vol.367, issue.Suppl. 247, pp.259-28250128, 1973.
DOI : 10.1111/j.1365-201X.1971.tb10998.x

M. Pratelli, S. Migliarini, B. Pelosi, F. Napolitano, A. Usiello et al., Perturbation of Serotonin Homeostasis during Adulthood Affects Serotonergic Neuronal Circuitry, eneuro, vol.4, issue.2, pp.376-392, 2017.
DOI : 10.1523/ENEURO.0376-16.2017

T. J. Rebello, Q. Yu, M. K. Caffrey-cagliostro, A. Teissier, E. Morelli et al., Postnatal Day 2 to 11 Constitutes a 5-HT-Sensitive Period Impacting Adult mPFC Function, Journal of Neuroscience, vol.34, issue.37, pp.12379-12393, 2014.
DOI : 10.1523/JNEUROSCI.1020-13.2014

URL : http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4160773

A. Rebsam, I. Seif, and P. Gaspar, Refinement of thalamocortical arbors and emergence of barrel domains in the primary somatosensory cortex: a study of normal and monoamine oxidase a knock-out mice, J. Neurosci, vol.22, pp.8541-8552, 2002.

R. W. Rhoades, C. A. Bennett-clarke, M. Y. Shi, and R. D. Mooney, Effects of 5-HT on thalamocortical synaptic transmission in the developing rat, J. Neurophysiol, vol.72, pp.2438-2450, 1994.

B. D. Rood, L. H. Calizo, D. Piel, Z. P. Spangler, K. Campbell et al., Dorsal Raphe Serotonin Neurons in Mice: Immature Hyperexcitability Transitions to Adult State during First Three Postnatal Weeks Suggesting Sensitive Period for Environmental Perturbation, Journal of Neuroscience, vol.34, issue.14, pp.4809-4821, 2014.
DOI : 10.1523/JNEUROSCI.1498-13.2014

A. Sale, M. Vetencourt, J. F. Medini, P. Cenni, M. C. Baroncelli et al., Environmental enrichment in adulthood promotes amblyopia recovery through a reduction of intracortical inhibition Excessive activation of serotonin (5-HT) 1B receptors disrupts the formation of sensory maps in monoamine oxidase a and 5-HT transporter knock-out mice, Nat. Neurosci. J. Neurosci, vol.1001, issue.21, pp.679-681, 1899.

D. Sargin, D. K. Oliver, and E. K. Lambe, Author response, eLife, vol.8, 2016.
DOI : 10.7554/eLife.21416.012

A. Sarkar, P. Chachra, and V. A. Vaidya, Postnatal Fluoxetine-Evoked Anxiety Is Prevented by Concomitant 5-HT2A/C Receptor Blockade and Mimicked by Postnatal 5-HT2A/C Receptor Stimulation, Biological Psychiatry, vol.76, issue.11, pp.858-868, 2013.
DOI : 10.1016/j.biopsych.2013.11.005

C. M. Silva, L. Gonçalves, R. Manhaes-de-castro, and M. I. Nogueira, Postnatal fluoxetine treatment affects the development of serotonergic neurons in rats, Neuroscience Letters, vol.483, issue.3, pp.179-183, 2010.
DOI : 10.1016/j.neulet.2010.08.003

M. S. Sodhi and E. Sanders-bush, Serotonin and brain development, Int. Rev. Neurobiol, vol.59, issue.04, pp.111-174, 2004.
DOI : 10.1016/S0074-7742(04)59006-2

M. Soiza-reilly, N. M. Goodfellow, E. K. Lambe, and K. G. Commons, Enhanced 5-HT1A receptor-dependent feedback control over dorsal raphe serotonin neurons in the SERT knockout mouse, Neuropharmacology, vol.89, pp.185-192, 2015.
DOI : 10.1016/j.neuropharm.2014.09.017

D. Suri, C. M. Teixeira, M. K. Cagliostro, D. Mahadevia, and M. S. Ansorge, Monoamine-Sensitive Developmental Periods Impacting Adult Emotional and Cognitive Behaviors, Neuropsychopharmacology, vol.56, issue.2, pp.88-112, 2014.
DOI : 10.1016/j.biopsych.2004.07.015

URL : http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4262911

J. Y. Sze, M. Victor, C. Loer, Y. Shi, and G. And-ruvkun, Food and metabolic signalling defects in a Caenorhabditis elegans serotonin-synthesis mutant, Nature, vol.2, issue.6769, pp.560-564, 2000.
DOI : 10.1038/35000609

A. Teissier, A. Chemiakine, B. Inbar, S. Bagchi, R. S. Ray et al., Activity of Raph?? Serotonergic Neurons Controls Emotional Behaviors, Cell Reports, vol.13, issue.9, pp.1965-1976, 2015.
DOI : 10.1016/j.celrep.2015.10.061

URL : http://doi.org/10.1016/j.celrep.2015.10.061

T. Teng, A. Gaillard, A. Muzerelle, and P. Gaspar, EphrinA5 Signaling Is Required for the Distinctive Targeting of Raphe Serotonin Neurons in the Forebrain, eneuro, vol.4, issue.1, pp.327-343, 2017.
DOI : 10.1523/ENEURO.0327-16.2017

E. Tiraboschi, R. Guirado, D. Greco, P. Auvinen, J. F. Maya-vetencourt et al., Gene Expression Patterns Underlying the Reinstatement of Plasticity in the Adult Visual System, Neural Plasticity, vol.258, issue.5084, p.605079, 2013.
DOI : 10.1038/nrn2132

T. Toda, D. Homma, H. Tokuoka, I. Hayakawa, Y. Sugimoto et al., Birth Regulates the Initiation of Sensory Map Formation through Serotonin Signaling, Developmental Cell, vol.27, issue.1, pp.32-46, 2013.
DOI : 10.1016/j.devcel.2013.09.002

E. F. Trakhtenberg and J. L. Goldberg, The Role of Serotonin in Axon and Dendrite Growth, Int. Rev. Neurobiol, vol.106, pp.105-126, 2012.
DOI : 10.1016/B978-0-12-407178-0.00005-3

E. S. Van-kleef, P. Gaspar, and A. Bonnin, Insights into the complex influence of 5-HT signaling on thalamocortical axonal system development, European Journal of Neuroscience, vol.425, issue.10, 2012.
DOI : 10.1002/1096-9861(20000911)425:1<130::AID-CNE11>3.0.CO;2-B

J. F. Vetencourt, E. Tiraboschi, M. Spolidoro, E. Castrén, L. Maffei et al., Serotonin triggers a transient epigenetic mechanism that reinstates adult visual cortex plasticity in rats Spontaneous axonal regeneration in rodent spinal cord after ischemic injury, Eur. J. Neurosci. J. Neuropathol. Exp. Neurol, vol.33, issue.6102, pp.49-57, 1016.

Y. Wang, Q. Gu, and M. S. Cynader, Blockade of serotonin-2C receptors by mesulergine reduces ocular dominance plasticity in kitten visual cortex, Experimental Brain Research, vol.114, issue.2, pp.321-328, 1997.
DOI : 10.1007/PL00005640

M. R. Warden, A. Selimbeyoglu, J. J. Mirzabekov, M. Lo, K. R. Thompson et al., A prefrontal cortex-brainstem neuronal projection that controls response to behavioral challenge Neonatal exposure to citalopram selectively alters the expression of the serotonin transporter in the hippocampus: dose-dependent effects, Nature Anat. Rec. Hoboken, vol.492, issue.293, pp.428-432, 1920.

C. L. Wellman, A. Izquierdo, J. E. Garrett, K. P. Martin, J. Carroll et al., Impaired Stress-Coping and Fear Extinction and Abnormal Corticolimbic Morphology in Serotonin Transporter Knock-Out Mice, Journal of Neuroscience, vol.27, issue.3, pp.684-6914595, 2007.
DOI : 10.1523/JNEUROSCI.4595-06.2007

URL : http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.325.1814

P. M. Whitaker-azmitia and E. C. Azmitia, Autoregulation of fetal serotonergic neuronal development: Role of high affinity serotonin receptors, Neuroscience Letters, vol.67, issue.3, pp.307-312, 1986.
DOI : 10.1016/0304-3940(86)90327-7

S. C. Wyler, W. C. Spencer, N. H. Green, B. D. Rood, L. Crawford et al., Pet-1 Switches Transcriptional Targets Postnatally to Regulate Maturation of Serotonin Neuron Excitability, Journal of Neuroscience, vol.36, issue.5, pp.1758-1774, 2016.
DOI : 10.1523/JNEUROSCI.3798-15.2016

C. J. Wylie, T. J. Hendricks, B. Zhang, L. Wang, P. Lu et al., Distinct Transcriptomes Define Rostral and Caudal Serotonin Neurons, Journal of Neuroscience, vol.30, issue.2, pp.670-684, 2010.
DOI : 10.1523/JNEUROSCI.4656-09.2010

URL : http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3403750

©. Copyright, . Teissier, and G. Soiza-reilly, This is an open-access article distributed under the terms of the Creative Commons Attribution License (CC BY)