N

N

IGPP6, I|b2 G2p2H PMHBM2 P|Q /BM; 6 K2
JO#BH2 1/;2 *QKTmiBM;
CQbO GX .XL2iQ-a2@uQmM: um-. MB2H 62 M M/2b
LQ:m2B - KB G M: "-ai27 MQ a2++B

hQ +Bi2 i?Bb p2 " bBQM,

CQbOGX . XL2iQ-a2@uQmM; um-. MB2H 62 M M/2bJ +2/Q-CQbli@J "+
IGPP6, |1b2° G2p2H PMHBM2 P|Q /BM; 6° K2rQ ' F7Q JQ#BH2 1/;2 *QKT
QM JQ#BH2 *QKTmiBM;- kyR3- Rd URRV- TTXkeey@ked9X RyXRRyNfh

> G A/, ? H@yR89dyje
?2iiTbh,ff? HXbQ #QMM2@mMMBp2 bBi2X7 f? H@YR
am#KBii2/ QM R9J " kyR3

> G Bb KmHiB@/Bb+BTHBM v GOT24WB p2 Dmbp2 "i2 THm B/BbBIBTHBN
"+?Bp2 7Q i?72 /2TQbBi M/ /Bbb2KIBEBMBR MNQ@T™+B2® " H /BzmbBQM /2 /
2MiB}+ "2b2 "+?2 /Q+mK2Mib- r?2i?@+B2MMiB}2mM2b#/@ MBp2 m "2+?22 +?22- T
HBb?2/ Q° MQiX h?2 /IQ+mK2Mib MK VW+RK2Z2EF IQKHBbb2K2Mib /62Mb2B;M
i2 +?BM; M/ "2b2 "+? BMbiBimiBQWER BM?8 7M#M2I @b Qm (i~ M;2 b- /2b H
#Q /-Q 7 QK Tm#HB+ Q T ' Bp i2T2HRAB+B @2MT2BIpXib X

https://hal.sorbonne-universite.fr/hal-01547036v2
https://hal.archives-ouvertes.fr

ULOOF: a User Level Online Of oading
Framework for Mobile Edge Computing

José L.D. Neto, Se-young Yu, Daniel F. Macedo, José M.S. Nogueira, Rami Langar, Stefano Secci

Abstract —Mobile devices are equipped with limited processing power |:| - = -
) . .) I 0) —

and battery charge. A mobile computation of oading framework is a mobil p & \// a0]
. . . . / \ s > @ ide area network g -

software that provides better user experience in terms of computation 2h) e o PRckRRU

time and energy consumption, also taking pro t from edge computing D private Bloudiel MEE fos frfemet. remale Claud

facilities. This article presents User-Level Online Of oading Framework o u¢

(ULOOF), a lightweight and ef cient framework for mobile computation WhFlacoess e —

of oading. ULOOF is equipped with a decision engine that minimizes | 4h @ /N '_

remote execution overhead, while not requiring any modi cation in the - operator ——

cellular access core network MEC host

device's operating system. By means of real experiments with Android
systems and simulations using large-scale data from a major cellular
network provider, we show that ULOOF can ofoad up to 73% of
computations, and improve the execution time by 50% while at the same
time signi cantly reducing the energy consumption of mobile devices.

Fig. 1. Mobile computation of oading scenarios

remote clouds. Cloudlet/MEC deployments are expected to favour
computation of oading that have not emerged yet with legacy
cloud deployments, thanks to their ability to strongly decrease the
access latency because of geographical vicinity between users and
servers. We assume that at each level the network provider or an
over-the-top service provides VMs running an of oading service.

1 INTRODUCTION . . .

_ o . . Acore element of any mobile computation of oading frame-
Mobile appllcatlons are e>'(pand|ng peyond our day-to-day activityork js the decision engine, since it determines when of oading
and mobile computation is becoming more frequent and intensgas to an external (MEC) server counterbalances the related
According to Chaffey's report 1], both the number of users angl,erhead; hence the of oading decision shall be based on predic-
the time spent using mobile devices exceeded the deskiop Yges of the energy and time required to of oad the task, among
Users spend at least 15% of their time playing mobile games agfer possible metrics. It is not trivial to predict the execution time
another 20% for entertainment that requires intense computatigiy energy consumption of an application method ahead of its
power and energy. o _ execution. An of oading framework addresses these challenges to

Mobile devices have limited processing power [2] and battefyaye ef cient of oading decisions and also to provide application
charge [[3] by nature. To overcome these limitations, mobilgyelopers and/or users a way to integrate their application into
computation of oading solutions were proposed [4]! [S]! [6] 1he of oading framework. Most of oading frameworks proposed
delegate intensive computation tasks to more capable computiigrar predict the available bandwidth or execution time, as done in
device(s). With the r_ecent advgnces_ln Moblle _Ed_ge CompUt"@ﬂoneCIOUd, MAUI and COSMOS proposals [8]] [5]] [9], without
(MEC) [7], computation of oading gains industrial interest aftetonsidering variable wireless network capacity over time. Another
more than a decade of academic research activities. common assumption is that the inputs of the computation do not

Computation of oading supports MEC by adjusting where thgary much, as ir([5]/[10], which can lead to imprecise estimations.
computation will take place based on the network and user context. This article presents an of oading framework called User-
Fig.[] presents the different characteristics of the networks. thaf &,el Online Of oading Framework (ULOOF). It is equipped with
user employs throughout the day. Eac.h network ha_s a differepjye algorithms aimed to estimate the execution time and energy
sojourn time (represented by the blue circles), and different assgisymption of application methods, as well as a location-aware
ciated processing and latency capabilities, due to the use of log@lajess network capacity estimator. This article improves the
operator clouds, private cloudlets (also called MEC hosts) apgs|iminary work described i [11] by a more detailed description
and analysis of the framework, an enhanced decision engine logic
J.L. D. Neto is with Google Inc, Brazil. Email: joseleal@google.com. in particular in the execution time and energy pro ling parts, and

S. Yu is with Northwestern U., USA. Email: young.yu@northwestern.ed : : : :
S Secci is with Sorbonne Univesit CNRS, LIP6. Email By conducting a novel set of experiments and simulations. Our

Index Terms —Computation Of oading, Edge Computing, Android.

Stefano_secci@Sorbonne_universite.fr Cont”buuons can be Summarized as fO||0WS

D.F. Macedo and J.M.S. Nogueira are with the Univ. Federal de Minas)))
Gerais, Brazil. Emailsf damacedo, jmarcag@dcc.ufmg.br. We designed and developed a comprehensive mobile of-
Rami Langar is with LIGM CNRS-UMR 8049, University Paris Est Marne- oading framework that does not require neither superuser

la-Vallee (UPEM), France. Email: rami.langar@u-pem.fr privileges on the mobile device nor modi cations to the

2

underlying operating system. historical execution data. Machine (device) execution time and
We conceived and developed a decision engine that penRergy consumption are learned and used to predict the method
vides accurate execution time and energy consumptiexecution behaviour. Our framework also demands minimal in-
estimations to support the of oading decision, while retervention to the normal application development, so neither it
quiring minimum user effort for the code instrumentationtequires the developer to understand how the framework operates
We evaluated our framework both by simulations usingor needs modi cations/privileges on the Android OS.

real cellular mobility data and by real-world experiments Our framework is explained in detail in the next section. As
using a proof-of-concept implementaﬁ)n a preliminary insight, let us rst report via Tabjé 1 how ULOOF

. o . is, positioned with respect to the above-mentioned existing mobile
The remainder of the article is organized as follows. Se¢fjon mputation of oading frameworks that were implemented and

discusses the state of the art. Secfign 3 species the ULO resented with an empirical evaluation. A cell is marked waH ”

framework. Sectiofi}4 describes the decision engine, the probl Hen the corresponding attributes are featured in the framework,

model and the prediction algorithms. Sectfph 5 describes t‘ﬁlfgerwise it is marked with7”. Intrusiveness corresponds to the

tested appl_|cat|ons. Sectiph 6 repor_t_s simulation results Obta'_r]gvel of intervention to the application development to permit a
by processing real large-scale mobility data. Sedfion 7 descnbgi}é
i

- . ven of oading framework to work; it can be either operating
expe_nmental result_s. Sectiph 8 conclude; the paper. An appen tem runtime modi cations or modi cations in the code and/or
provides more details on the energy pro ling.

development strategies such as programming methods into mod-
ules. Some works do not have a decision engine (marked with
2 RELATED WORK 7), choosing always to of oad when possible, while others have

We review relevant works on mobile computation of oadingthe'r_own 3%'2?: engine totdemde thelfexeclutlor; plat;‘orm gf a
positioning our framework with the state of the art. speci ¢ code. €r parameters are sefl-explanatory. According

Cuenvo et al.[[5] propose a framework called MAUI, whicH© this analysis, MAUI is the most similar proposal to ULOOF,

focuses on energy saving. It uses a pro ler that measures ene ever we were not able to access its implementation therefore

consumption and a solver that decides whether to of oad or no goutls not perf(iqum quanntattl;]/e C(t)mparls?ns. ks T .
method based on the measurements provided by the pro ler. T urthermore, nere are other ypes of works focusing on

ocating computation resources for of oading and optimizing
t

authors evaluate MAUI using three mobile applications, revealifg " : .
that computation of oading not only saves energy, but also that eir allocation. Esteves et al. [13] allocate computation resources
' using the capital-budgeting technique, typically used in the eld

allows applications to run faster. ¢ il ot luation. Such a techni I to ch
Chun et al.[[8] propose CloneCloud, which partitions the appl?— nsnc:a op |;)n valuation. such a tec ngqueda ows 1o C} oodse

cation binary with a set of execution points. The execution poin € DES remole Servers among many, based on an otoading

are determined so that the resulting partitions are executedc%St (execution time) and a transmission cost (transmission time).

the most ef cient execution environment. As a result, Cloneclo ristensen et al. [14] approach the resource allocation problem

can determine the most ef cient execution points and executi Y ft?lr agollng_ Compﬁtat'i?] rgsourﬁezlfrom different rgoblrlle gelv ICt(:\S.'
con guration for each partition. obile devices share their available resource and schedule their

Kemp et al. [[4] propose Cuckoo, a simple of oading frameWVork based on their available computation resources. ULOOF

work that always of oads a method when the remote server h inspired by these resource allocation works, employing a

available. Cuckoo implements a library to manage the communié’g?thc’d'lev(al code of oading solution that constantly improves

tion between the mobile device and a communication middlewaf’g decisions by learning from previous outputs. Our framework

Verbelen et al.[[T2] propose AIOLOS, an of oading frame-prbVideS computation resource information of both mobile devices

. .) - and nearby cloud servers to the decision engine, hence allocatin
work focusing on class-level of oading using an OSGi framework y gine, 9

.) . .computation to the most suitable computing element.
They provide an Eclipse IDE plugin that helps developers to buife? One of the challenging parts of developing a framework for

an AIOLOS-enabled application bundle in Android. The bundle is bil tati f oading is t i
executed to update the execution time and to return a size pro FST° e computation of oading 1s to measure energy consumption
of a mobile device. Cignetti et al[_[lL5] provide efcient and

The pro le is then used to predict future executions. .
&ccurate energy models for speci ¢ models of phones. However,

Kosta et al.[[10] propose ThinkAir. It generates a wrapper f) :
methods to be -of c]):fdeg so that an exegc];ution controlIerlotg)ecid'és!s dif cult to calculate the method energy consumption from a
ser-level point of view[[16],[[17], i.e., with the limited system

whether to of oad the method based on execution time, ener his and APIs given to a standard mobile application. Zhang et
and cost. They modelled the execution time and energy usiﬂé rls g e appiication. 9
[18] provide a general power model using device dependent

historical data from previous executions. A client handlermanag%‘_;‘?rameterS and measuring each component enerav separatel
the connection to the remote VM and is also responsible f " . 9 e por Ty sep Y-

. . owever, this requires a periodic and active monitoring of the
managing the VM con guration.

Shi et al. [9] propose the COSMOS framework; it determineCsomponer.Y[S.as a bacquound service, which Increases energy
. . sage. Miettinen et al[[19] analyze energy consumption usage

the benet of of oading based on argument size, upload band-
%[mobile devices to nd a comparison between radio and CPU,

width, result size and download bandwidth using a prede ne | bressing one part as a function of the other. We complement
threshold. The predictions are re ned at the end of every executiﬁpp 9 P) P

by adjusting the predicted upload and download bandwidth. ese worl_<s with & non |_ntru3|ve energy pro ling methodology
Our proposed of oading framework employs a decision engin%XpIalned in the next sections,
Additional research works on mobile computation of oading

that can model execution time and energy consumption based o
9y P aofg)pt as evaluation methodology discrete-time or ad-hoc simu-

1. Proof-of-concept applications, using a running server at LIP6, is malors, _instead of actual system imp|ementati0n_ with em_pi"ical
available in[[26], along with a demo video. evaluation. Mach et all [33] surveyed 22 of oading algorithms

TABLE 1
Comparison between state of the art frameworks and the ULOOF framework

Name | Intrusiviness | Decision Engine | OS/Language| Energy Model | User-Level | Plug-and-play
MAUI [5] Low Imprecise prediction Win/C# Online 3 3
CloneCloud[[8] | Runtime modi cation | Ofine instrumentation | Android/Java Ofine 7 7
Cuckoo [4] Development in AIDL 7 Android/Java 7 3 3
AIOLOS [12] Development in OSGi 3 Android/Java 7 3 7
ThinkAir [10] Runtime modi cation Imprecise prediction | Android/Java Online 7 3
COSMOS|[9] Code modi cation Android/Java 7 3 7
ULOOF | Low } 3 [Android/Java | Online | 3 [3

Mobile
device

Remote platform
Framework.jar

Method call

— >(Annotated.apk)—' Post-Compiler

Modified.apk

Fig. 3. Preparation of an of oading-enabled application

Cy
A such methods are called, it intercepts the call and makes

execution time and energy consumption estimations for
both local and remote method execution cases. Then, the
decision engine chooses whether to execute the method
locally or remotely based on the estimation.

The remote execution platforrtakes care of the remote
execution of the of oadable computation, by means of a
connector module. It executes the requested of oading and
returns the result to the mobile device.

Android.apk

Interceptor

Instrumentation

[Decision Engine Remote execution manager

-0
J

J

J
&

1

.

1
v

Connector
- ULOOF server

&

<

To enable this instrumentation, an of oading-enabled Android
application (or APK) needs to be prepared. Fig. 3 shows the APK
preparation process. First, of oadable methods are marked with
for computation of oading and classi ed them into two of oading an explicit annotation (*@Of oadCandidate”). Then the applica-
types, full and partial of oading. In particular, 6 algorithmstion is compiled with annotations, and a post-compiler creates a
classi ed as partial of oading algorithms have joint optimizationmodi ed APK integrating the of oading logic in the application.
on execution time and energy consumption similarly to ULOOF.The ULOOF post-compiler uses the Soot framework [20].
Moreover, a recurrent approach is integrating wireless channel in- We also developed a remote execution environment using
formation in the of oading decision-making. For instance [in|[36]an Android VM to create an execution environment similar to
[34] authors propose algorithms to optimize computation of oadhe mobile device. The remote execution environment runs an
ing with wireless interference information, also based on physicaihdroid-x86 VM [38] with an of oading platform that receives
resource block allocations. 10 [35] time division multiplexing igf oading requests from an ULOOFed application. Since ULOOF
taken into consideration, while assuming the actual execution tikgguests of oading in terms of Java method level and the execution
of a method in the remote server as negligible.[In| [37], authofgrmat on Dalvik and ART is identical, our framework is equally
address the computation of oading problem considering multipeompatible with both Dalvik and ART as long as the library on
AP scenarios, where moreover the of oading is done in multiplde remote server contains the method to be of oaded, regardless
remote servers. Besides the different evaluation methodology, s@étihe Android API level. The library of the application code is
approaches strongly differ from the choice of working at user-leverovided when the instrumentation of application happens.
we adopt for ULOOF, i.e., working at user-level it not possible to To establish a communication between the of oading-enabled
retrieve wireless channel and resource reservation information.application and the remote method execution environment, we
used HTTP to transport serialized objects. Because HTTP is a
stateless protocol, it is suitable for a remote execution application.

Fig. 2. Diagram of the ULOOF of oading framework modules

3 ULOOF GENERAL FRAMEWORK

ULOOF is a computation of oading framework that of oads) .
method calls in a user application. Each of oading decision &1 ©On the Of oading Granularity
made based on the energy and execution time estimations. Thépeof oading decision must be applied at a speci ¢ computing
estimations are updated after every local or remote execution,gs@nularity. For example, AIOLOS [12] partitions the application
that the framework adapts to changes in the environment. on a per-class basis. Others such as CloneCloud and Cuckoo [8],
ULOOF does not require changes in the operating system,[d}, [5] apply the of oading decision at the method level. We
special user privileges (i.e., without ‘rooting' the device). Thishoose to run our framework at the method level because class in-
allows us to modify the application without requiring additionastances may contain both of oadable and non-of oadable methods
knowledge on the depending Android libraries, and decreadesg., methods that read/write on the mobile phone's storage).
security risks due to rooting.
Fig.[4 presents a diagram with the key elements of ULOOF:3.2 Of oadable Method Selection

In the mobile device, thénstrumentation componeim- In ULOOF, an application method is considered as of oadable
struments the candidate methods for of oading. Whenevdérit has an annotation label (e.g., “@Of oadCandidate”). One

4

could expect that the best performance could be reached when itwhere M is the set of methods of the mobile application,

is the developer of the application who explicitly speci es whichm 2 M is the of oading candidate method, : M ! R
methods could gain from of oading, based on expert knowledggnd R : M ! R are the estimated cost functions in case of
of the code. However, in some cases, it may be unfeasible focal and remote execution, respectively. The two components
a user that is willing to run task of oading for an applicationof each cost function are the execution timg &nd consumed

to ask developers to deliver a manual annotation of of oadab&nergy €) related to the local or remote execution of methmnd
methods. While allowing manual annotation (which would be theower values for make the decision tending towards saving
approach taken by application providers), we also explored in [32hergy, while higher values do improve computing responsiveness.
the alternative path of automatically selecting methods to mark @gviously, functiong ande are not working on the same images,

of oadable for an arbitrary application on the market, for which it.e., the output ranges are not normalized on the same scale. In this
may be unfeasible to solicit developers for manual annotations.respect, also works as a normalization factor, and its values may
The automated of oadable method selection algorithm[inl [32je skewed to either one or zero depending onethadt images.
works as follows: it scans the application structure, detectir@ne may develop an algorithm to adjustbased on the variable
non-of oadable methods: they are part of the Android systemetwork latency, with however a certain impact on the computing
method, or purely internal (i.e., initializer methods), methodsverhead and falls outside of the scope of this work. ULOOF
accessing hardware speci c features or problematic methodstoggers method of oading if the following condition holds:
variables. The remaining methods are then further analyzed to

check if they call non-of oadable methods and, if so, they are R(m) <L (m) 3

also discarded. Finally, the remaining methods are annotated aSThat is if the remote execution cost is lower than the local
of oadable. We report in Fig.}4 the distribution of of oadable vs S . . .

non-of oadable categories (including also the ratio of methooesXeCUtlon .COSt' we deta'l how t|_me and energy functions are
using non-of oadable classes) for the top-250 Google play aspmputed in the following subsections.

plications applying such automated method selection, showing a

median of more than 25% of of oadable methods. 4.2 Execution time prediction
In ULOOF, annotated methods need to be proled so that ex-
1.0 — STEAAAMTTER ecution time and energy consumption gures can be predicted
7 ! ’ properly when each method is called to decide whether to of oad it
0.8 I or not. There are two possible methodologies to pro le the method
{ execution time for computation of oading; either analyzing the
, 0.6 , : target method structure to model the execution time, or predicting
o T — Android System it based on the previous executhn rfesylts anq dynamically adjust
0.4 . Initializer the prediction at each call. While it is possible to compute a
! — . No-Off Class method complexity, e.g., using cyclomatic structural complex-
0.2) .+ No-Off.Methods Calls ity [28], this comes at the risk of big gap with the actual execution
/ - Offloadable time of the method [29]. Hence we follow the latter approach.
0.0 In ULOOF, every time an annotated method is called, the

0 10 20 30 40 50 60 70
Methods (%)

Fig. 4. Of oadable vs non-of oadable methods distribution for top-250
Google Play applications

execution time and energy consumption for that method are pre-
dicted based on the interpolation of historical execution logs. This
data is updated upon execution to possibly improve the prediction
accuracy at the next execution.
For the very beginning (i.e., after post-compiled application
4 ULOOF DECISION ENGINE ?nstallatiorj),_we set a number of initigl execgt_ions_ for which there
is no prediction made and the of oading decision is taken as a ran-
This section details the design of the ULOOF decision engine. \Y8m choice. This number is set to 5 in our tests, for both local and
expose the design rationale of the framework, execution time agnote executions. Then, after 5 local and 5 remote executions,

energy consumption prediction algorithms and limitations. the decision engine starts using the ULOOF utility functions for
taking the of oading decision. To avoid high prediction error in the
4.1 Of oading Cost Functions early executions, the threshold can be increased to any arbitrary

The ULOOF decision engine uses cost functions that estimate fifMPer at the risk of causing unnecessary remote executions when
energy and time required to run the methods. These cost functiéig ©f 0ading cost s high. The prediction accuracy is expected to
make use of empirical traces to express the cost of runnind”&rease as the historical execution logs grow, especially after the

method in the remote execution application. rst exegutlo(r;s usehd for tralnmg.f - , del th
Since the of oading problem is a multi-criteria decision prob- Ve introduce the concept of “input assessment’ to model the

lem, we employ a scaling factor,, to prioritize either time or execution time as a function of the method arguments. It converts

energy in the decision engine. In that waycan be used to either 2 /ISt Of arguments into a numerical value usingaasesgargs)

prioritize saving execution time or battery charge. The equatioffd’ction. This function is monotonically increasing with the
for the of oading binary decision are: method time complexity; a higher value agsessindicates that

the method should take longer to nish. ULOOF is able to provide
L(m) = t,(m) + (1) a(m) @ mpgt assessment of pr|m|t_|ve _type arguments, however the app!|-

cation developer may provide its own assessment pro les for their
R(m) = tr(m)+(1) e(m) (2) own data structure as akssessmentConverter interface. The

5

prediction of the execution time uses an interpolation approach. ¢py : R M | R is the execution time component, a
We generate an initial curve of the execution time after a fefunction of the methodn and its CPU usagk,,. The CPU usage
executions (ve in our prototype), and each subsequent executigrexpressed in CPU ticks. More precisely, the estimated execution
updates the model to improve the prediction accuracy. In ordertime is computed as follows:

bootstrap the decision engine, it randomly chooses between local
and remote execution until it gathers ve executions for each case.
The decision also depends on the network state: obviously, if there \whereruntime , is the local execution time for methad.

is no Internet connectivity the decision is not to of oad. lepu is an estimated energy consumption function based on the tick
To avoid recalculating the curves at each new execution, Wequency (number of ticks divided by the known execution time);

use a low-complexity “lazy" update in our interpolatian [[21]: at js expressed in watt per second. This quantity is then multiplied

data point from a recent execution does not trigger an updag the execution time to estimate the consumption for the whole

of the entire curve. Instead, only the region of the curve nePﬁethod.Icpu is method-independent and is device-speci c.

to that point is updated. We chose the Akima Spline function Cadol :R M ! RandGagor : R M ! R give

as interpolator[[22] rather than a cubic spline because we fougi consumption of a given methad, when executed locally and

frequent uctuations through our initial experiments. The Akimgemotely, respectively (it is considered also for local executions to

spline can maintain value locality and avoid interference of nearcount for methods using the network regardless of the of oading
points [23]. One Akima spline series is maintained for loc&irocedure). They are computed as:

executions and one for remote executions; we refer to them as,

Cepu (M) = lepu (km =runtime) runtime n, 9)

(N Nand ,:N! N,respectively. Cradio (M) = lradio () di(m) (10)
Therefore, the local execution tinigm) is de ned as follows: Gradior (M) = lragio () dr (M) (11)
ti(m) = | (assesgargsm)) (4) where l;agi0 is the energy consumption in watt per second,

Wh is th f ¢ hot which is a function of the radio interface throughpuflo estimate
ereargsm Is the set of arguments from met the overall consumptior,gio is multiplied by the estimated time

Since ULO.OF ams at maX|m|z|ngf; thﬁ user exielrlence, g%'f)ent for transferring datal (m) andd; (m) are the time spent
remote execution time must account for the network latency transferring data in a local and remote execution, as explained

o the uploading of the method arguments and downloading reSU%he next section. When the method is executed locally, it is:
as well as the running time of the method on the remote platform.

In order to track the remote execution time, the framework di(m) = size(m;1)=b 12)
gathers the execution time from the server and interpolates the : N
execution time. The network latency depends on the netwo ere sm_e(m,l) is the amount of network trafc when the
being used at that time, so latency measurements are sto%%lhc’dm is executed locally. . .
on a per-network basis. When the mobile device is on Wi-Fi, lepu and lragio are therefore device-specic and method-
measurements are bound with the access pdiE€ address. For mdepgndent funct|on§. They cha'lracterlze the device energy con-
cellular networks, the tower unique cell identi er (LAC/CID) is SUmption Pro le. .If different radios are used (e.g., Wi-Fi anq
used as the unique identi er. ULOOF also estimates the bandwi FF’)’ specic fu.nct|ons are qeedgd. Those can be calculated using
b of each network (as detailed in Sectjon]4.4). Thus, the rem grdware pro ling, as explained in the appendix.
execution time prediction follows:

4.4 Network bandwidth estimation

tr(m)= [(assesqgargsm))+ dr(m) (5) ULOOF periodically measures available network capacity to im-
©) prove execution time and energy consumption predictions. The
transmission delay depends on the capacity available to the device
Wheresize(m; r) returns the amount of data required to sendthen an of oadable method is called, therefore measuring accu-
the arguments for remote execution and to retrieve the resulate network capacity is an important part of the decision engine.
Therefored; : M ! R gives the estimated transfer delay. The capacity estimation algorithm performs periodic measure-
ments. In order to account for variations in capacity over time,
we apply an Exponentially Weighted Moving Average (EWMA)
. . . function with the previous capacity measured to smooth the
The aim of the ULOOF energy model is to build an ENer¥ariation using Equatiofi 13; such a function is used because it

consumption pro le based on the empirical data measured in [W?as successfully employed to smooth noisy RTT values in [7].
device; such a pro le could be based on public device-specic

records or locally generated measures. tv1 = ¢ (1)+ 7 0 1 (13)
The proposed model does not consider energy consumption, . . .
from components such as the screen, GPS and le I/O nor of oad IS the network capacr[y_that was est_lmated _at .1 S the
methods which access these components. This is because of o%%qmate: netlwork _capac(ljty the nextr;un;]e, anx_$ an ferEplrlcally .
ing methods using these components provide a small beng t [3 mputed value. is used to smooth the naise of the capacity

We de ne the energy consumption for local and remote exghanges betwe(_an t|mets_ andt + 1 _The computation of Fhe_
cution ase (m) ande; (M), respectively, as follows: empirical capacity varies from Wi-Fi and cellular. On a Wi-Fi
T ’ ' '

network, the network capacity is computed as: 4d—t whered is

the size of data transferred over the network drtdis the time to

m) = Km;m) + Cradiox (M 7 .

& (M) = Cepu (kim ;M) + Cradios (M) () endireceive the data. Because cellular towers serve a much larger

e (M) = Cradior (M) (8) area than Wi-Fi access points, the capacity in a cellular network

dr (m) = size(m;r)=b

4.3 Energy consumption prediction

6

may vary signi cantly based on the location. We use the reversedl the of oaded methods, that for a given source-destination pair
Shannon-Hartley's theorem to estimate the user's capacity. Fiiist,a function of the distance between source and destination.

ULOOF derives the estimated network capa&tgs follows: With CityRoute, a city map is represented by an unweighted
B graph, where vertices are crossroads and edges are streets. For
S= logz(1 + SNR) 49 the tests, we generated a graph with 120000 edges using the

)))) "SNAP' dataset([24]. Each batch runs 36 route computations; in
WhereSNR 'is the signal-to-noise ratio. As the user moveg,ch computation, a destination is chosen so that the distance from
to a different position within the coverage of the same toweor, YRe source randomly ranges from 19 to 140 edges away. We can so
compute the new c_a_pacn;? using$S stored previously anBNR™ ohain 4 heterogeneous random set of executions. The CityRoute
at the current position. We use the Shannon-Hartley theoremotpoaded method is only one related to the breath- rst search
compute for a new location: algorithm (it loads the input graph and nds the shortest path).
°= S log,(1+ SNRY (15) Moreover, we developed a second application that calculates a
_ o o] xed set of Fibonacci numbers to assess the impact of different
Finally, ULOOF maintains historic capacity data for every nefrade-off values in the decision-making function; this second
work that it encounters. When the device is connected to a Wi-fpplication allows indeed an even ner correlation of the result
network, we associate the SSID of the Wi-Fi network with thg the time-complexity. Six nested methods can be of oaded to
capacity. For cellular networks; is stored in the location-aware compute the Fibonacci number. We use the Fibonacci application

database along with LAC/CID. for the analysis in Sectidn 7.4. Even if method-level computation
of oading can be applied to a variate set of applications, as we
4.5 Limitations of ULOOF predictions mention in Sectiofi 3]2, in the following analysis we restrict our

tests to the CityRoute and Fibonacci applications because of the
capability to correlate each result to a time complexity gure. We
felease both applications in [26].

Before reporting experimental and simulation results, let us po
out the limitations of the proposed prediction logic.

First, the device-speci ¢ energy consumption is chipset depe
dent, and should be generated for the desired mobile devices. Our

approach is described in the appendix, where[Ejj. 18 assumesgno S|MULATIONS USING REAL MOBILE TRACES

changing in the type of connectivity between Wi-Fi and CeIIuIa'&
S .. As a preliminary assessment, we run simulations using a cellular
(e.g., due to user mobility, interference phenomena, etc) within &

; : : . . mpbility data-set obtained in the frame of a collaboration with a
single method execution. If interface changes occur (i.e., vertical . .
. ; major French mobile network operator.

handover), the real bandwidth and energy consumption may bée
different from the predicted value.

Second, thassessfunction should provide a good estimation6.1 Simulation environment
on the complexity of the candidate of oad method. Developers, the provided data-set, each device is located at the LAC (Local
should be aware of the algorithms employed and how their inpdgea Code) level whose coverage ranges from few kilometers
in uence the execution time. However, this may not always bg dozens of kilometers of radius depending on the population
an easy task. For example, most algorithms have an executihsity. We used France-wide mobile user trajectories with a
time bounded to the argument size (e.g., larger integer numbgfse-stamped list of traversed LACs in a given day. The obtained
or larger vectors). Nonetheless, many algorithms do not follomajectories are covered by at least two users to ensure 2-anonymity
such assumption. For instance, a method that checks integersgigiregation. We selected those crossing more than 3 LACs to
primality: Mersenne numbers (numbers in the forn2df 1) are cover large displacements. In this way, we have 36,450 trajectories
much easier to check than ordinary numbers. We could not 1/@r our simulations. For each trajectory, we have a succession of
in the state of the art any method complexity measure based |g5C |ocations with a variable LAC sojourn time.
the data structures or arguments. We give a detailed assessmembgfour simulations, we emulated for each trajectory a situation
execution time prediction in sectipn ¥.2. in which, for each new LAC position, the CityRoute application

Third, an ULOOFed application is expected to work bettqdescribed on Sectigf 7) recalculates a batch of shortest routes
over time, since more empirical data points generates more pregts€a prede ned list of 36 destinations. To emulate the ULOOF
estimations. Conversely, calculations that are run occasionally m@tision, the following components had to be computed:
suffer from worse predictions. One way to re ne the decision is to
use crowd sourcing. A server would aggregate the data points for
methods in an application from multiple users. This server would
periodically upload to the mobile devices the most recent CPU
execution curves and possibly the cellular speed estimates.

For the execution times and energy consumption gures,
we used empirical values obtained in the testbed tests
described in the next Section. Those values are reasonably
assumed to be independent of the mobility of the user.

The RTTs for all LAC location pairs, using a propagation
delay directly proportional to three times the euclidean

5 TESTED APPLICATIONS distance (to take into account indirect linkage in wired
For the simulations and experiments, we developed two proof-of- networks), then adding 40 ms to each RTT to reproduce
concept applications. bufferbloat phenomena typical of cellular networks|[25].
The rst one is a navigation application we refer to as “City- Figure [gives the resulting RTT distribution, with a
Route": it nds the shortest route between two points in a graph maximum at around 85 ms, based on which we computed
using a breath- rst search algorithm (problem wittogV + E) the network latency to use for of oading decision as the
time complexity, wherd/ is the number of vertices arfd is the result of RTT + D¢ + Dg, whereDy is the transmission

number of edges). In this way, we can follow the time-complexity delay, and is serialization/deserialization deldy; and

Cumulative Distribution

Round-Trip Time (ms)

Fig. 5. Round-trip-time distribution from the simulation data-set.
Fig. 7. Execution time gain cumulative distribution (simulation).
D are modeled from empirical results obtained in the
following evaluation scenarios. weighting each of oading result with the sojourn time of the user
we used the the utility function trade-off parameter for in the given LAC. We calculate the weighted averdg as:
equations (1) and (2) set to 0.993, result of the empirical P ¢
analysis described on section]7.4. W, = P J'[! (16)
it
wherei is a trajectory of a user with the maximukntrajectories,

6.2 Simulation results _ _ . . :
. L o i g is the resource gain of a user in the trajectorgndt; is a
As a rst simulation, independent of the individual trajectory, fo%ojourn time of a user at the trajectory.

every possible pair of LAC locations (i.e., any possible pair of " g regyits show that the median of the execution time gain

user and server locations), we emulated ULOOF decisions usiaGso for the remote cloud case and 55.8% for the nearby cloud
the parameters computed as above explained. The results are guen, |, terms of energy gain, the median gain ranges from 49.3%
in Figure[§, in terms of execution time and energy consumptiop, 49 794, roughly, respectively. The remote execution consumes
for three cases: with an ULOOF logic, Whgn of oading is NOfess energy because the of oading decision in the simulation is

). In terms of execution time,
difference between the “always ofoad' case and the ULOOfqap in the mobile device, however they are run in the cloud in

logic, and that the total execution time can be reduced by a facfyer 1 reduce the response time. Those methods are not run in

between 49% and 55% with respect to the “never of oad' legagye remote cloud because the RTT is longer, and hence there is no
approach. Instead, in terms of energy gain, we remark a highgy,

!) A ne t, either in energy or in runtime, of a remote execution.
gain granted by the ULOOF logic with respect to the "always ag the remote cloud has longer RTT compared to the nearby

of oad' approach; moreover, the gain with respect to the ‘”ev%ioud, it consumed less energy as shown in[Fig 6. ULOOF did
of oad' case ranges from 40% to 47%. Overall, these results shQy; of 5ad a small percentage of the methods that consume more

that of oading can grant quite signi cant gains; moreover, th‘énergy when of oaded because the RTT is longer, and hence there
major advantage of using ULOOF instead of an "always of oadg hq hene t, either in energy or in runtime, of a remote execution.

approach appears to be, paseq on thi§ simulation data, the energyyi, respect to the trajectory-agnostic results in Fig. 6, we
gain rather than the execution time, which somehow con rms what, ., notice that using a nearby cloud does not lead to visible

found with the analysis of Fig. 5 and 6. gains, with minor differences for both execution time and energy

As a second analysis, we exploit the individual user trajectorig§ s mption. This seems to suggest that running the service in a
and we compute the overall experience for each traject(?ry. WRd VM in a central location of the access network does not lead
simulated two con gurations for the cloud of oading server: to signi cantly lower performance than a case where the VM is

Remote cloud: whatever the position of the user is, tHaoved closer to the user in a large-scale network.
cloud facility is always based in one position (i.e., no cloud
service mobility associated with user mobility). We xed7 ExpERIMENTAL RESULTS
this position to a central LAC in Paris. _ .

. e . We developed a proof-of-concept navigation application we refer
Nearby cloud: the cloud facility is xed in the nearest [A .

. . . to as "CityRoute": it nds the shortest route between two points

LAC, hence assuming there is a virtual network overla) . \ .

. . L a graph using a breath- rst search algorithm (problem with a
managing the network embedding and VM migrations (aa . . . :
envisioned in MEC speci cations and investigatedinl[27]) (V + E) time complexity, wheré/ is the number of vertices

P 9 and E is the number of edges). In this way, we can follow the
Figures[T and]8 show the obtained results. All the 36,45ne-complexity of the of oaded methods, that for a given source-
trajectories were used here to extract an individual of oadindestination pair is a function of the distance between source and
experience assessment. In this analysis, we assumed that wihestination. With CityRoute, a city map is represented by an
a user changes its LAC, the CityRoute application is executed amgweighted graph, where vertices are crossroads and edges are
the energy and time performance is stored. The weighted averageets. For the tests, we generated a graph with 120000 edges
of each performance result (time or energy gain) is then computedjng the "'SNAP' datasef [24]. Each batch is composed of 36

200 T 8500 T

ULOOF ULOOF
Never offload = = Never offload = =
Always offload 8000 [Always offload B
180 - 1
7500 - 4
160 - b 7000 |- 4
3
= E
<z S 6500 1
o L i R 2
£ S
5 3 6000 1
E 5
g 120 B o
b @ 5500 - 1
@
=
100 |- | Y 5000]
4500 b
80 1
4000 b
60 L ! I I I I I 3500 I I I I I I I I
40 45 50 55 60 65 70 75 80 85 40 45 50 55 60 65 70 75 80 85
RTT of connections (ms) RTT of the link (ms)
(a) Execution time (b) Energy consumption

Fig. 6. Performance as a function of the RTT (simulation).

801 processor, a 2.5 GHz quad-core CPU and 2GB RAM as a

// mobile device in our experiment. The energy and CPU consump-
tion curves were de ned empirically with hardware pro ling, as
detailed in the appendix. An HTTP server runs on Android-x86
[38] to serve remote execution requests from the mobile device.

We set up two scenarii to study the effect of different latencies
* on the ULOOF performance (Fig.] 9 reports the experienced
bandwidth for the experiments of the two scenarii):

Wi-Fi scenario: it is a semi-controlled environment, where
the mobile device uses a Wi-Fi network to reach a server
located within the same local area network. This is the
case for cloudlet/MEC environments envisioned for access
. networks, hence for simplicity we refer to it as cloudlet
' use-case. There is no additional latency injected in the
Wi-Fi network and it shows less than 1 ms RTT between
the mobile device and the remote server. The server is a
route computations; in each computation, a destination is chosen VM with a 64-bit GNU/Linux 4.4, running on an Intel i7-
so that the distance from the source randomly ranges from 19 4500U processor with 4 1.80GHz cores and 8GB memory.
to 140 edges away. In this way, we can obtain a heterogeneous Cellular scenario: it is a mobile environment, where the
random set of executions. The CityRoute of oaded method is only latency with the remote server is higher than in the Wi-
one related to the breath- rst search algorithm that loads the input Fi case and can vary due to mobility. We used real
graph and nds the shortest path. We use such realistic application measurements, with long latencies typically experienced
for the results in the following in Sectiofs .1 gnd]7.3. for cellular networks[[39]: using a moving vehicle around
Moreover, we developed a second application that calculates a ~ Belo Horizonte, Brazil, along a prede ned route, we

xed set of Fibonacci numbers to assess the impact of different measured the network capacity, execution time and energy
trade-off values in the decision-making function; this second consumption of the CityRoute application, using as remote
application allows indeed an even ner correlation of the result server a DigitalOcean VM, in New York, USA.
to the time-complexity. Six nested methods can be of oaded to
compute the Fibonacci number. We use the Fibonacci application o)
for the analysis in Sectign 7.4. Even if method-level computatiohl ~Execution time and energy consumption
of oading can be applied to a variate set of applications, as w&fe measured the execution time and the energy consumption of
mention in Sectiofi 3]2, in the following analysis we restrict ouhe mobile device while the application is run. We measured the
experiments to the CityRoute and Fibonacci applications becaussart time and end time of each test, and the battery level during
of the capability to correlate each result to a time complexityach test (using the Android BatteryManager API).
gure. We release both applications in [26].

We consider three different usages of the CityRoute applicd-1.1 Wi-Fi scenario
tion: an unmodi ed application, an ULOOFed application withFig. [IQ reports the execution time of 20 contiguous CityRoute

set to O (i.e., energy driven), and another case witket to batches in the horizontal axis, i.e., the last point of each line is
1 (i.e., time driven) to compare the execution time and energlye global execution time. During such executions, we noted the
consumption of each case. A desiredialue can be computed asinstant when the battery drained by 1% (it is the minimum mea-
in Sectior] 7.}. We used a Samsung Galaxy S5 with a Snapdragonement step available with user-space Android primitives) and

Fig. 8. Energy gain cumulative distribution (simulation).

w
S

Perceived bandwidth in Wi-Fi network

BooRr NN
o & °© u

Perceived Bandwidth (Mbps)

o w

g
o

) \!
[100 200 300 400 500 600 700
Time elapsed (s)

Battery Usage %
B
T

Perceived bandwidth in Cellular network

=

o

g
o

e
«

Perceived Bandwidth (Mbps)

4
o

=== Upload Bandwidth
—— Download Bandwidth

1 e ULOOF - time driven 4
E ULOOF - energy driven
0)))) unmodified -
0 200 400 600 800 1000 1200 1400

Application execution time (seconds)
Fig. 11. Battery usage and execution time in the cellular scenario.

T e Y N
v o '
VT v

- N
o e

[200 400 600 800 1000 1200

Time elapsed (s) of the executions with energy-driven ULOOF a@8:13% with
time-driven ULOOF, with only a small difference between the
two modes. The average execution time of the of oaded execution
was aroun®:5 seconds, above the global averagd. & seconds.

r e Compared to the Wi-Fi scenario, there w4&64% longer

6 1 execution time an@0% higher energy consumption; this is due

5 to the smaller number of of oads in the higher-latency network.
Because of the longer latency, the remote execution time estimate
increases and the decision engine decides to of oad less often,

Fig. 9. Change in perceived bandwidth over elapsed time.
8

Battery Usage %
D
T
L

3t r 1 with more local executions, consuming more energy.

P A B , Moreover, the time-driven ULOOF in the higher-latency net-
.l ULOOF - time driven | work had an execution time slightly longer (globally 30 seconds
: Rt — longer, i.e.2:6%) than the energy-driven ULOOF: this is also due

%o 200 400 600 800 1000 1200 1400 to the uncontrolled environment with network latency variations.

Application execution time (seconds)
Fig. 10. Battery usage and execution time in the Wi-Fi scenario. L
7.2 Prediction accuracy

report it accordingly as a vertical step in the gure. Execution timgp assess the accuracy of ULOOF predictions, we post-processed
for both ULOOF versions are signi cantly reduced compared the execution time and energy consumption for both scenarios.
the unmodi ed application as noticed from the shorter horizontgrecisely, we executed the CityRoute application with both local
length of the plot. Battery usage from both versions is also reducgfld remote time execution every time the of oadable method is
as shown in the shorter vertical height of plots. being called; then, we compared the actual running time of these

The results show that ULOOF reduced the execution time @gecutions with the prediction the decision engine had made.
well as energy consumption, and that for both time and energy Fig. [T3 reports the prediction error ratio and the average
driven variants. More precisely, methods were of 0ad&195% execution time of of oadable methods in terms of the distance
and 62:41% of the times for the time-driven and energy-drivempetween source and destination. The plots are divided into local
modes, respectively. The execution time was reduced by ab@ud remote executions in Wi-Fi and Cellular network, hence each
50%. The battery gain ranges from 5 to 6% in terms of absoluigt of plots shows the prediction accuracy of speci ¢ network and
battery consumption, which roughly corresponds to 56 to 224 oading decision; e.g., the top leftmost plot shows the prediction
mAh for the given phone. The differences in time-driven angdrror of local execution time in Wi-Fi network.
energy-driven modes are relatively small compared to the total |n each graph, the red line on top represents the average
running time, and oddly the time-driven algorithm took longer texecution time with a 95% con dence interval. The horizontal
nish compared to the energy-driven mode, which is likely causegkis indicates the distance to destination in number of edges
by uncontrolled environment variables (e.g. operating system the graph, which for the breadth-rst search shortest route
scheduler, background processes, screen state) in the experimegifputation is an index of the experienced time complexity.

The boxplot reports the relative prediction error of that speci ¢
7.1.2 Cellular scenario network and of oading decision, with the minimum, rst quantile,
For the cellular scenario, we experimented on a moving vehiaieedian, third quantile, maximum of the prediction error, for the
around the city of Belo Horizonte, Brazil, along a prede ned routespeci ¢ distance referenced by the horizontal axis. The prediction
We rst measured the performance of cell towers in the city anetror is calculated as the difference between the predicted time
then used the data gathered from the measurement. and the actual time (resp. for the energy consumption).

Fig. [11 shows the accumulated execution times and battery Each gure block shows results for both local (top) and remote
consumed by the CityRoute application executed 20 times ine&ecutions (bottom). We had to rely on our energy consumption
row. Both time-driven and energy-driven ULOOF improved thedting model for both prediction and the actual consumption. This
execution time and energy consumption compared to the unmadibecause it is not possible to record the energy consumption of a
ed application. However the absolute gain in execution time andethod-level granularity from the device.
energy consumption has reduced compared to the Wi-Fi/lower- We discuss the results for the lower and higher network
latency case. More precisely, the decision engine of 0a2i68% latency cases in the following sections. It is worth stressing that

10

% #' ! "$ I(&%!'S$ %'1#

— &)
- #)rs&w!

H %! HHHHB

% #
#) 18&"%!

1% (&%!$ %1

%l HEH %)

% # "L
#)18&"%1

% %! $% %!

(b) Energy consumption - Wi-Fi network

& $# " $! #%!
f ’l‘ H HH ; s H % i
P I % b ,
TB%%Q!TQHU- Quﬁﬁrﬁm -= _ &
& $# " $! #%!
hoearl
R : -
R SR TN B :
(c) Execution time - Cellular network (d) Energy consumption - Cellular network

Fig. 12. Prediction error as a function of method complexity (expressed in ho distance from source to destination for navigation map app).

the samples for the remote execution are concentrated at longjames, most executions happen locally due to the delay required to
distances because of oading happens less often in executions geid data to the remote environment.
take less time. Conversely, the number of samples is lower for The prediction error ratios in energy consumption show that

local executions at high distances. our framework is more accurate when predicting the energy
required for remote execution. This happens because the remote
7.2.1 Wi-Fi network execution energy consumption relies heavily on the number of

For the Wi-Fi network scenario, method calls with lower compuytes transferred across the execution (i.e. size of argument and
tation execution time suffer from high prediction errors, especiall@sult transferred), and the amount of bytes transferred does not
for remote executions. As the execution time increases, the pqd.i-ﬁer much for each method call. In contrast, local executions
diction error decreases, with a median always below 50% startidigffer from high prediction errors when the complexity is low,
by 63 hops for local executions. As the processor in the mobikecause of the noise related to background computations.
device is shared among processes, the error margin is higher for
methods with short execution time. 7.2.2 Cellular network

We can further notice that for the local executions, there is
an increasing trend in terms of accuracy as the execution tifi@. [13(c) and [I2(d) show the prediction error in the
increases. High errors happen mostly with very low executigg!lular/higher-latency network experiments.
times, hence making them less perceivable by the user. For The prediction error ratio in execution time decreases with
instance, we found there is an average margin of the predictibigher computation complexity for local executions. For remote
error 0f93:54%when the computation takd$6ms to complete, executions, instead, the error ratio shows a median between 100%
which decreases t8:16% as the execution time increasesd®5 and 150%, which is likely due to bandwidth variations in the
ms. For the remote executions, we have a similar trend, wigkllular network. Compared to the Wi-Fi scenario, the error ratio is
an average margin of the prediction error ©%5% when the smaller in Wi-Fi because there is less network capacity variation.
execution time is15:79 ms, which decreases tt4:08% as the The energy consumption prediction is also more accurate for
execution time increases 18135ms. the higher-latency case. As the complexity increases in local

The effect of large error margins however does not impaekecutions, the prediction accuracy improves. Because the local
the overall performance of ULOOF. This happens because tieecution time and the local energy consumption are closely
of oading will occur only for larger instances of the problem, inrelated (i.e. longer execution consumes more energy) and they
which the execution time is much longer. For shorter executidioth use the Akima interpolation [22], their accuracy is similar.

11

For the remote execution, however, the prediction of the energy
consumption improves signi cantly. -

7.3 System overhead

In terms of system performance, it is important to qualify the
overhead caused by the ULOOFed applications. We have mea-
sured the overhead of the ULOOF framework when running the I
CityRoute application by measuring the time difference between I

the instant when the of oadable method is called and the instant EI
when the decision engine nished the prediction, positioning it
with respect to the overall execution time. Hig] 13 shows the time
taken for making of oading decision relative to the actual method (a) Energy consumption
execution using CityRoute in the cellular network. We measured
the overhead of our framework by measuring the time taken to
predict execution time and energy consumption against the total
method execution time.

The overhead incurred from making of oading decision was
less than40 ms at all times. For short execution times, the
overhead tops @2%, which is33 ms of overhead. However, for
longer execution times this overhead is lower th@8a Although
this overhead may be signi cant for methods that run the least, it

is worth noticing that the average execution tim&is347 ms. - EI
10000 — Total execution time
- — ULOOF time overhead (b) Execution time
% Fig. 14. ULOOF performance as a function of (CityRoute).
2 1000
E In order to show that the ideal value of depends on the
£ application, the same test was performed using the Fibonacci ap-
é 100 plication. This application demands a meager amount of network,
g however it is CPU intensive. Fifj.]L5 shows the results. In this case
d L n- /" , ULOOEF sits in between the two other cases in terms or execution
AR PN VR time, and it is always better in terms of both energy consumption
10, s " s 2 = - and execution time when> 0:995
Destination node 1D The last sensitivity test evaluated the effect of transferring
Fig. 13. Overhead caused by the of oading framework. larger amounts of data when of oading. This was performed using
a modi ed version of the Fibonacci application, where we transfer
7.4 Of oading decision trade-off evaluation a large argument to the of oading method. This forces the large

size of argument to be transferred through the network each time

The parameter de nes how to pI‘IOI‘!tIZG between.executl'o!n t'mf%e method is to be of oaded. The computation ignores this argu-
and energy consumption when making an of oading decision. In

this, we show the impact of on the of oading performance. ment as it is only to increase the transfer size.[Fig. 19 ahd 16 re ect

.) - how this changes the performance of the ULOOF framework. The
These experiments were performed in a Wi-Fi network. ; .
overhead of transferring the large argument impacts greatly the

Besides the CityRoute application, we also use a Fibonacci . . . :)
xecution time plot, performing time-wise worse than the never

application computing the Fibonacci number of a random numbée%
"oad scenario when favouring energy but for> 0:99 for

In the following analysis we compare three scenarios: "Always, . . . 4
Of oad', *Never Of oad’, and "ULOOF' with different values of hich it has close performance to it. This happens because of the

_Letus recallthat = 0 means ULOOF considers energy SaVinéransmission delay involved in transferring the arguments.

only, and = 1 for saving execution time, while intermediate)))
values give different trade-offs between these two objectives. /-5 Comparison between different devices

Fig.[1I4 shows the results for the CityRoute application. THEo assess the computing performance of different mobile devices
"Never Of oad'curve presents an application that runs all the conused in our experiments, we evaluated the average execution time
putation locally, while the "Always Of oad'curve shows the result&nd energy consumption for a single CityRoute batch. We compare
for the computations always being performed in the remote serville most recent device available to us, a Samsung Galaxy S7, to
All plots have the horizontal axis cut to the region where it a Note 3 and an S5. To avoid bias due to remote execution and
changes of shape, in this case fr@8to 1. Before that ULOOF focus on system comparison, we executed the CityRoute appli-
does not change its decision because of the unnormalised valc&gon with local execution only. Tabfg§ 2 shows the performance
for time and energy. In terms of execution time, ULOOF alwaydifference between the three devices in terms of CPU usage, as
performs better than the other two scenarios with amalue. The execution time and energy consumption. We report the available
sweet spot is where both lines from the always of oading scenarive memory as well. The Galaxy Note 3 runs with 30% lower
and ULOOF cross in the energy plot:= 0:993 number of CPU ticks, resulting 41% faster and 36% more energy

(a) Energy consumption

(b) Execution time
Fig. 15. ULOOF performance as a function of (Fibonacci).

o

(a) Energy consumption

[=

(b) Execution time
Fig. 16. ULOOF performance as a function of (modi ed Fibonacci).

12

collection of Dalvik VM. The S7 is more than twice faster and
energy ef cient; this is likely due to the recent processor used in
the S7 (Qualcomm Snapdragon 820 MSM8996 @ 2.2GHz), and
the higher amount of available live memory (4GB).

8 CONCLUSIONS

This article presented the ULOOF mobile computation framework,
a user-level online computation of oading framework including
an innovative decision engine to decrease energy consumption
of mobile devices and the execution time of mobile applica-
tions. The ULOOF decision engine exploits empirical pro les to
predict the energy consumption and execution time of Android
application methods, using an assessment of the inputs, and by
taking location awareness into account. It uses a low overhead
energy consumption model to aid in the mobile of oading decision
process. ULOOF does not require any special con guration nor
modi cations to the runtime of both the device and the edge
computing platform, being easily plugged into any framework and
application without the need to root or modify the device operating
system. An example of ULOOFed application is available in [26].

The framework was evaluated by testbed experiments and
large-scale simulations using real data from a major cellular access
provider. The results show that both execution time and energy
usage can be signi cantly improved by of oading methods to an
external server. We considered both a nearby server (local cloud)
scenario, like in MEC environments, and a remote cloud scenario
with a longer network latency. The effectiveness of the modelling
was evaluated, measuring the accuracy of the interpolations as well
as whether the bandwidth actually changes among cell towers. The
results indicate that ULOOF can reduce the energy consumption
on the mobile device of roughly 50% for Wi-Fi scenarios with
low cloud access latency, and lower yet positive gains also for
situations with high latency.

Further work is needed to (i) conceive supervised learning
approaches for prediction the mobility behavior of the user and
hence improve the ULOOF prediction accuracy, (ii) address pre-
diction challenges for multiple-user single-server situations, i.e.,
edge computing situations where multiple users may share a single
(or a limited number of) of oading server(s), which would make
more sense when the driver of the of oaded application is the
application provider (doing it in a transparent way with respect
to the user) rather than the user itself. We also plan to release
in [26] additional bricks of the software framework to allow for
reproducibility and enhancements by the community.

ACKNOWLEDGEMENTS

This work was funded by the CNRS-FAPEMIG WINDS (Systems
for Mobile Cloud Computing), ANR ABCD (Adaptive Behavior
and Cloud Distribution) and FUI PODIUM (Platform for secure
data mobile cloud of oading) projects. We thank C. Ziemlicky for
his support with the mobile dataset, and A. Zanni and A. Diamanti
for the automated method selection algorithm.

ef cient compared to the S5 although they have similar application TABLE 2
processor (Qualcomm Snapdragon 801 MSM8974-AC @ 2.5GHz Comparison between 3 mobile devices (CityRoute application).

and Qualcomm Snapdragon 801 MSM8974 @ 2.3GHz). This m@yevice Memory | CPU Execution | Energy consumption
be due to the fact that the Galaxy Note 3 has larger memary ticks | time (ms) | (mW)
(3GB) compared to Galaxy S5 (2GB), handling the route data anga:aﬁy 353 g gg ;éig-? ;ggig-gg gggﬁgg-gg
H H al. Note . . .
map data more ef ciently than S5 and in less need of garbagcalaxy ST 4GB 5058 315950 057507 31

13
APPENDIX: ENERGY CONSUMPTION PROFILING

The energy consumption of the CPU and the radio interfaces must
be derived empirically for each device. For the CPU, we must
derive a function that maps the number of ticks of a method
into the energy consumed running that method. Similarly, for
the wireless interfaces we must derive a function that maps the
number of bytes transmitted into the energy consumption of that
data transmission on a certain interface.

Preliminary tests using Android OS primitives showed that
the accuracy of the energy estimations on the OS are very low.
Hence, we performed hardware-based pro ling using an off-the-
shelf equipment (KCX-017 adapter) that emulates a charger while
measuring the power drained by the device.

To obtain thelcy, and liagic empirical distributions, we
created two distinct Android applications to measure separat
the energy consumption of the CPU and the consumption of t
network interfaces. All the tests were performed in a Samsung S5
with only the pro ling application running. For the CPU test the 8
network interfaces were disabled, and for the tests of the network % +111:24 7:9499 10 ° b’ +1:5999 10 ** b

é. 17. Power consumption for CPU usage (with standard deviation).

interfaces only one interface is active at a time. 8:3738 10 *' b’+1:3748 10 # b if4G
For the energy consumption of the CPU, we generated a condo (8) =
stant CPU load by running an application which keeps multiplying +158:37 +1:1811 10 ° b* 1:4722 10 ¥ 1P
random prime numbers using multiple threads. To generate partial " +6:1454 10 b’ +1:8794 10 b, if Wi-Fi
loads on all the cores, a short sleep period is set for each thread, (18)
calibrated according to each mobile phone. A sleep peridtDOf EFERENCES
ms every5(load mod 25) =5 jtarations was found to work well, [1] D. Chaffey, “Mobile marketing statistics 2016,” Apr. 2016.
where 0 load 100. We chose the following set of loads[@] X. Ma, “Characterizing the Performance and Power Consumption of 3d

. . _ Mobile Games,'Computer vol. 46, no. 4, pp. 76-82, Apr. 2013.
for our tests in terms of number of executiohs= [10, 25, 35, [3] . Mao, J. Zhang, K. B. Letaief, “Dynamic computation of oading for

50, 60, 75, 87, 100]. Each lodd; was kept for two minutes in mobile-edge computing with energy harvesting devic¢SEE J. on
order to obtain suf cient amounts of data. Selected Areas in Communicatiod¥(12), 3590-3605, 2016.

. L [4] R. Kemp et al., “Cuckoo: A Computation Of oading Framework for
For radio, an application and a web server were developed tl) Smartphones,” iMobile Computing, Applications, and ServicesICS,

exchange traf c. Preliminary tests were rst performed by varying Springer Berltin Heidelberg, 2012, vol. 76, pp. 59-79.
the total transfer time, keeping the number of bytes xed. Thi§] E. Cuervoetal., P. Bahl, “MAUI: Making Smartphones Last Longer with
showed to be unfruitful and the current barely modi ed along thg, ~¢°de Ofoad,” inACM MobiSys 2010

.] A. Pamboris, “Mobile Code Of oading for Multiple Resources,” Ph.D.
experiment, as veri ed in[19]. This behaviour is expected, sinCe" yissertation, Imperial College London, 2014

the radio can keep a low power state during small network loadg] M. ETSI, “Mobile-Edge Computing,Introductory Technical White Pa-
A second batch of tests were performed, in which the server Per. Septembe2014.

t del £1 milli d aft tai b ft rr{ B.-G. Chun et al., “CloneCloud: Elastic Execution Between Mobile
creates a delay of 1 millisecond after a certain number of transmit- peyice and Cloud.” iPACM EuroSys 2011

ted bytes. This mechanism controls the throughput of the server, cC. shi et al., “COSMOS: Computation Of oading As a Service for
and effectively generated a variable energy consumption. A delagl Mobile Devices,” inACM MobiHoc 2014

i S. Kosta et al., “Thinkair: Dynamic resource allocation and parallel
of 1 milisecond every [0, 300, 600, 1200, 2400, 4800, 9_60& execution in the cloud for mobile code of oading,” IEEE INFOCOM
19200, 38400, 76800, 153600] bytes was used. The duration of 2g12

the experiment was set to 2 minutes. Using the data gathered frianj J. L. D. Neto, D. F. Macedo, J. M. S. Nogueira, “Location aware decision
these experiments, we performed a polynomial curve ttingto nd _ €ngine to of oad mobile computation to the cloud,’ NOMS 2016
[12] T. Verbelen, P. Simoens, F. D. Turck, B. Dhoedt, “AIOLOS: Middleware
the energy pro le of the components. for improving mobile application performance through cyber foraging,”
Fig.[17 shows the empirical results for the energy consumption J. of Systems and Softwarel. 85, no. 11, pp. 2629 — 2639, 2012.
due to CPU usagelc()u), with max-min error bars. It shows anl[13] R. Esteves, M. McCool, C. Lemieux, “Real options for mobile commu-

. nication management,” ilEEE GLOBECOM Workshops
upward trend reaching a plateau at the end, as the CPU reac[tf?js M. Kristensen, “Scavenger: Transparent development of ef cient cyber

the full load. The plotted tting curve, having a coef cient of foraging applications,” iNEEE PERCOM 2010
determination 00:966045 is as follows, wheré is the number of [15] T. IL Cignegi, K. gomarczn(/),O((:). S. Ellis, “Energy Estimation Tools for the
i i ion- Palm,” inACM MSWIM
ticks in the computation: [16] A. Pathak, Y. C. Hu, M. Zhang, “Where is the Energy Spent Inside My
App?: Fine Grained Energy Accounting on Smartphones with Eprof,” in
— . . 1 . 2 ACM EuroSys 2012
lopu (8) =+ 51 :422+2:9076 1* +0:019306 t (17) [17] S. Hao et gl., “Estimating Mobile Application Energy Consumption
+6:7841 10 ° t° 84491 10 ° t* Using Program Analysis,” ilEEE ICSE 2013
[18] L. Zhang et al., “Accurate online power estimation and automatic battery
behavior based power model generation for smartphonesCODES-
Fig. [I§ shows the curve of 4G and Wi-Fi radio interface ISSS 2010

: ;] A.P. Miettinen, J. K. Nurminen, “Energy Ef ciency of Mobile Clients in
consumption, as a function of the amount of transferred bytes [5%? Cloud Computing.” iNUSENIX HotCloud 2010

second [f). The tting curves, with a coef cient of determination (5] R. valie-Rai et al., “Soot - a Java Bytecode Optimization Framework,”
of 0:99020and0:84887for Wi-Fi and 4G respectively, are: in CASCON 1999

(a) Wi-Fi

14

(b) 4G

Fig. 18. Power consumption experimental distribution for different traf ¢ loads and network interfaces.

[21]

[22]

[23]

[24]

[25]
[26]
[27]
(28]
[29]
(30]
(31]
(32

(33]

[34]

[35]

(36]

[37]

[38]
[39]

P. Hudak, “Conception, Evolution, and Application of Functional Pro-
gramming LanguagesACM Comput. Suryvol. 21, no. 3, pp. 359-411,
Sep. 1989.

H. Akima, “A New Method of Interpolation and Smooth Curve Fitting
Based on Local Proceduresl’ ACM vol. 17, no. 4, pp. 589-602, Oct.
1970.

G. Wolberg, I. Alfy, “Monotonic cubic spline interpolation,” i@omputer
Graphics International, 1999. Proceedings

J. Leskovec, R. Sosj “SNAP: A General-Purpose Network Analysis
and Graph-Mining Library,”ACM Trans. on Intelligent Systems and
Technologyvol. 8, no. 1, p. 1, 2016.

H. Jiang et al., “Understanding Bufferbloat in Cellular Networks,” in
ACM SIGCOMM 2012CellNet Workshop.

ULOOF project website: https://uloof.lip6.fr.

Secci, S., Raad, P., Gallard, P., “Linking Virtual Machine Mobility to
User Mobility”, IEEE Trans. on Network and Service Managem¥ht.

13, No. 4, pp: 927-940, Dec. 2016.

McCabe, T. J., “A complexity measurdEEE Transactions on Software
Engineering vol. SE-2, no. 4, pp. 308-320, Dec 1976.

Shepperd, M., “A critique of cyclomatic complexity as a software metric,”
Software Engineering Journalol. 3, no. 2, pp. 30-36, March 1988.
Paxson, V., Allman, M., “Computing TCP's Retransmission Timer,” RFC
Editor, RFC 2988, Nov. 2000.

Corral, L., et al., “A Method for Characterizing Energy Consumption in
Android Smartphones,” iIGREENS 2013

A. Zanni, et al., “Automated Selection of Of oadable Tasks for Mobile
Computation Of oading in Edge Computing”, 8NSM 2017

Mach, P., and Becvar, Z. “Mobile Edge Computing: A Survey on Ar-
chitecture and Computation Of oadingtEEE Communications Surveys
Tutorials 19 3 (2017), 1628-1656.

Wang, C., et al., “Computation Of oading and Resource Allocation in
Wireless Cellular Networks With Mobile Edge Computin¢EE Trans.

on Wireless Communications 1% (Aug. 2017), 4924-4938.

Wang, C., Yu, F. R,, Liang, C., Chen, Q., and Tang, L. “Joint Computation
Of oading and Interference Management in Wireless Cellular Networks
with Mobile Edge Computing”.IEEE Trans. on Vehicular Technology
66, 8 (Aug. 2017), 7432—7445.

Wang, F., Xu, J., Wang, X., and Cui, S. “Joint of oading and computing
optimization in wireless powered mobile-edge computing systems”. In
2017 IEEE ICC 2017

Dinh, T. Q., et al., “Ofoading in Mobile Edge Computing: Task
Allocation and Computational Frequency ScalinglEEE Trans. on
Communications 638 (Aug. 2017), 3571-3584.

Android-x86 - Porting Android to x86. http://www.android-x86.0org.
Chen, Z., et al., “An Empirical Study of Latency in an Emerging Class
of Edge Computing Applications for Wearable Cognitive Assistance”. In
ACM/IEEE SEC 2017.

José Leal D. Neto is working as a software
engineer at Google Inc, Belo Horizonte, Brazil.
He holds a Msc and undergraduate degree from
Univ. Federal of Minas Gerais in 2016, and vis-
ited LIP6, France, in 2015-2016.

Se-young Yu is working as postdoctoral re-
searcher at Northwestern University, USA, and
was before a postdoc at LIP6 in 2016-2017. He
obtained a Ph.D. from University of Auckland,
New Zeland.

Daniel F. Macedo is a Professor at Univ. Fed-
eral of Minas Gerais, Belo Horizonte, Brazil.
He obtained a Ph.D. from LIP6, UPMC (now
Sorbonne Université), in 2009, and was a vis-
iting professor in the same institution in 2016.
His research interests include network man-
agement, wireless networks and network pro-
grammability. Webpage: http://homepages.dcc.
ufmg.br/ damacedo.

Jos é Marcos S. Nogueira is a Full Professor at
Univ. Federal of Minas Gerais, Belo Horizonte,
Brazil. He obtained his PhD in Electrical Engi-
neering in UNICAMP, Brazil, in 1985. He was a
visiting professor in LIP6, UPMC (now Sorbonne
Université), France, in 2016. His research inter-
ests include network management, wireless net-
works, the Internet of Things, as well as mobile,
vehicular and opportunistic networks. Webpage:
http://homepages.dcc.ufmg.br/ jmarcos.

Rami Langar is a Full Professor of Computer
Science at University Paris Est Marne-la-Vallée,
France. From 2008 to 2016, he was Associate
Professor at LIP6, UPMC (now Sorbonne Uni-
versité), France. He obtained his Ph.D. from
Telecom ParisTech, France, in 2006. His re-
search interests include resource management
in future wireless systems, cloud-RAN, Software
De ned Wireless Networks, and Mobile Edge
Cloud. Webpage: http://perso.u-pem.fr/ langar.

Stefano Secci is an Associate Professor at the
LIP6, Sorbonne Université, Paris, France, since
2010. He obtained a dual Ph.D. in 2009 from
Politecnico di Milano, Italy, and Telecom Paris-
Tech, France. He is active in the areas of net-
work resource allocation, network optimization
and analytics, virtualization, Internet protocol de-
sign and experimentation. Webpage: https:/lip6.
fr/Stefano.Seccl.

