
HAL Id: hal-01547036
https://hal.sorbonne-universite.fr/hal-01547036v2

Submitted on 14 Mar 2018

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

ULOOF: a User Level Online Offloading Framework for
Mobile Edge Computing

José L. D. Neto, Se-Young Yu, Daniel Fernandes Macedo, José-Marcos
Nogueira, Rami Langar, Stefano Secci

To cite this version:
José L. D. Neto, Se-Young Yu, Daniel Fernandes Macedo, José-Marcos Nogueira, Rami Langar, et al..
ULOOF: a User Level Online Offloading Framework for Mobile Edge Computing. IEEE Transactions
on Mobile Computing, 2018, 17 (11), pp.2660-2674. �10.1109/TMC.2018.2815015�. �hal-01547036v2�

https://hal.sorbonne-universite.fr/hal-01547036v2
https://hal.archives-ouvertes.fr

1

ULOOF: a User Level Online Offloading
Framework for Mobile Edge Computing

José L.D. Neto, Se-young Yu, Daniel F. Macedo, José M.S. Nogueira, Rami Langar, Stefano Secci

F

Abstract—Mobile devices are equipped with limited processing power
and battery charge. A mobile computation offloading framework is a
software that provides better user experience in terms of computation
time and energy consumption, also taking profit from edge computing
facilities. This article presents User-Level Online Offloading Framework
(ULOOF), a lightweight and efficient framework for mobile computation
offloading. ULOOF is equipped with a decision engine that minimizes
remote execution overhead, while not requiring any modification in the
device’s operating system. By means of real experiments with Android
systems and simulations using large-scale data from a major cellular
network provider, we show that ULOOF can offload up to 73% of
computations, and improve the execution time by 50% while at the same
time significantly reducing the energy consumption of mobile devices.

Index Terms—Computation Offloading, Edge Computing, Android.

1 INTRODUCTION

Mobile applications are expanding beyond our day-to-day activity,
and mobile computation is becoming more frequent and intense.
According to Chaffey’s report [1], both the number of users and
the time spent using mobile devices exceeded the desktop use.
Users spend at least 15% of their time playing mobile games and
another 20% for entertainment that requires intense computation
power and energy.

Mobile devices have limited processing power [2] and battery
charge [3] by nature. To overcome these limitations, mobile
computation offloading solutions were proposed [4], [5], [6] to
delegate intensive computation tasks to more capable computing
device(s). With the recent advances in Mobile Edge Computing
(MEC) [7], computation offloading gains industrial interest after
more than a decade of academic research activities.

Computation offloading supports MEC by adjusting where the
computation will take place based on the network and user context.
Fig. 1 presents the different characteristics of the networks that a
user employs throughout the day. Each network has a different
sojourn time (represented by the blue circles), and different asso-
ciated processing and latency capabilities, due to the use of local
operator clouds, private cloudlets (also called MEC hosts) and

• J.L. D. Neto is with Google Inc, Brazil. Email: joseleal@google.com.
• S. Yu is with Northwestern U., USA. Email: young.yu@northwestern.edu
• S. Secci is with Sorbonne Université, CNRS, LIP6. Email:

stefano.secci@sorbonne-universite.fr
• D.F. Macedo and J.M.S. Nogueira are with the Univ. Federal de Minas

Gerais, Brazil. Emails: {damacedo, jmarcos}@dcc.ufmg.br.
• Rami Langar is with LIGM CNRS-UMR 8049, University Paris Est Marne-

la-Vallee (UPEM), France. Email: rami.langar@u-pem.fr

Fig. 1. Mobile computation offloading scenarios

remote clouds. Cloudlet/MEC deployments are expected to favour
computation offloading that have not emerged yet with legacy
cloud deployments, thanks to their ability to strongly decrease the
access latency because of geographical vicinity between users and
servers. We assume that at each level the network provider or an
over-the-top service provides VMs running an offloading service.

A core element of any mobile computation offloading frame-
work is the decision engine, since it determines when offloading
a task to an external (MEC) server counterbalances the related
overhead; hence the offloading decision shall be based on predic-
tions of the energy and time required to offload the task, among
other possible metrics. It is not trivial to predict the execution time
and energy consumption of an application method ahead of its
execution. An offloading framework addresses these challenges to
make efficient offloading decisions and also to provide application
developers and/or users a way to integrate their application into
the offloading framework. Most offloading frameworks proposed
so far predict the available bandwidth or execution time, as done in
CloneCloud, MAUI and COSMOS proposals [8], [5], [9], without
considering variable wireless network capacity over time. Another
common assumption is that the inputs of the computation do not
vary much, as in [5], [10], which can lead to imprecise estimations.

This article presents an offloading framework called User-
Level Online Offloading Framework (ULOOF). It is equipped with
novel algorithms aimed to estimate the execution time and energy
consumption of application methods, as well as a location-aware
wireless network capacity estimator. This article improves the
preliminary work described in [11] by a more detailed description
and analysis of the framework, an enhanced decision engine logic
in particular in the execution time and energy profiling parts, and
by conducting a novel set of experiments and simulations. Our
contributions can be summarized as follows.

• We designed and developed a comprehensive mobile of-
floading framework that does not require neither superuser
privileges on the mobile device nor modifications to the

2

underlying operating system.
• We conceived and developed a decision engine that pro-

vides accurate execution time and energy consumption
estimations to support the offloading decision, while re-
quiring minimum user effort for the code instrumentation.

• We evaluated our framework both by simulations using
real cellular mobility data and by real-world experiments
using a proof-of-concept implementation1.

The remainder of the article is organized as follows. Section 2
discusses the state of the art. Section 3 specifies the ULOOF
framework. Section 4 describes the decision engine, the problem
model and the prediction algorithms. Section 5 describes the
tested applications. Section 6 reports simulation results obtained
by processing real large-scale mobility data. Section 7 describes
experimental results. Section 8 concludes the paper. An appendix
provides more details on the energy profiling.

2 RELATED WORK

We review relevant works on mobile computation offloading
positioning our framework with the state of the art.

Cuervo et al. [5] propose a framework called MAUI, which
focuses on energy saving. It uses a profiler that measures energy
consumption and a solver that decides whether to offload or not a
method based on the measurements provided by the profiler. The
authors evaluate MAUI using three mobile applications, revealing
that computation offloading not only saves energy, but also that it
allows applications to run faster.

Chun et al. [8] propose CloneCloud, which partitions the appli-
cation binary with a set of execution points. The execution points
are determined so that the resulting partitions are executed in
the most efficient execution environment. As a result, Clonecloud
can determine the most efficient execution points and execution
configuration for each partition.

Kemp et al. [4] propose Cuckoo, a simple offloading frame-
work that always offloads a method when the remote server is
available. Cuckoo implements a library to manage the communica-
tion between the mobile device and a communication middleware.

Verbelen et al. [12] propose AIOLOS, an offloading frame-
work focusing on class-level offloading using an OSGi framework.
They provide an Eclipse IDE plugin that helps developers to build
an AIOLOS-enabled application bundle in Android. The bundle is
executed to update the execution time and to return a size profile.
The profile is then used to predict future executions.

Kosta et al. [10] propose ThinkAir. It generates a wrapper for
methods to be offloaded so that an execution controller decides
whether to offload the method based on execution time, energy
and cost. They modelled the execution time and energy using
historical data from previous executions. A client handler manages
the connection to the remote VM and is also responsible for
managing the VM configuration.

Shi et al. [9] propose the COSMOS framework; it determines
the benefit of offloading based on argument size, upload band-
width, result size and download bandwidth using a predefined
threshold. The predictions are refined at the end of every execution
by adjusting the predicted upload and download bandwidth.

Our proposed offloading framework employs a decision engine
that can model execution time and energy consumption based on

1. Proof-of-concept applications, using a running server at LIP6, is made
available in [26], along with a demo video.

historical execution data. Machine (device) execution time and
energy consumption are learned and used to predict the method
execution behaviour. Our framework also demands minimal in-
tervention to the normal application development, so neither it
requires the developer to understand how the framework operates
nor needs modifications/privileges on the Android OS.

Our framework is explained in detail in the next section. As
a preliminary insight, let us first report via Table 1 how ULOOF
is positioned with respect to the above-mentioned existing mobile
computation offloading frameworks that were implemented and
presented with an empirical evaluation. A cell is marked with ”3”
when the corresponding attributes are featured in the framework,
otherwise it is marked with ”7”. Intrusiveness corresponds to the
level of intervention to the application development to permit a
given offloading framework to work; it can be either operating
system runtime modifications or modifications in the code and/or
development strategies such as programming methods into mod-
ules. Some works do not have a decision engine (marked with
7), choosing always to offload when possible, while others have
their own decision engine to decide the execution platform of a
specific code. Other parameters are self-explanatory. According
to this analysis, MAUI is the most similar proposal to ULOOF,
however we were not able to access its implementation therefore
we could not perform quantitative comparisons.

Furthermore, there are other types of works focusing on
allocating computation resources for offloading and optimizing
their allocation. Esteves et al. [13] allocate computation resources
using the capital-budgeting technique, typically used in the field
of financial option valuation. Such a technique allows to choose
the best remote servers among many, based on an offloading
cost (execution time) and a transmission cost (transmission time).
Kristensen et al. [14] approach the resource allocation problem
by foraging computation resources from different mobile devices.
Mobile devices share their available resource and schedule their
work based on their available computation resources. ULOOF
is inspired by these resource allocation works, employing a
method-level code offloading solution that constantly improves
its decisions by learning from previous outputs. Our framework
provides computation resource information of both mobile devices
and nearby cloud servers to the decision engine, hence allocating
computation to the most suitable computing element.

One of the challenging parts of developing a framework for
mobile computation offloading is to measure energy consumption
of a mobile device. Cignetti et al. [15] provide efficient and
accurate energy models for specific models of phones. However,
it is difficult to calculate the method energy consumption from a
user-level point of view [16], [17], i.e., with the limited system
rights and APIs given to a standard mobile application. Zhang et
al. [18] provide a general power model using device dependent
parameters, and measuring each component energy separately.
However, this requires a periodic and active monitoring of the
components as a background service, which increases energy
usage. Miettinen et al. [19] analyze energy consumption usage
of mobile devices to find a comparison between radio and CPU,
expressing one part as a function of the other. We complement
these works with a non intrusive energy profiling methodology
explained in the next sections.

Additional research works on mobile computation offloading
adopt as evaluation methodology discrete-time or ad-hoc simu-
lators, instead of actual system implementation with empirical
evaluation. Mach et al. [33] surveyed 22 offloading algorithms

3

TABLE 1
Comparison between state of the art frameworks and the ULOOF framework

Name Intrusiviness Decision Engine OS/Language Energy Model User-Level Plug-and-play
MAUI [5] Low Imprecise prediction Win/C# Online 3 3

CloneCloud [8] Runtime modification Offline instrumentation Android/Java Offline 7 7
Cuckoo [4] Development in AIDL 7 Android/Java 7 3 3

AIOLOS [12] Development in OSGi 3 Android/Java 7 3 7
ThinkAir [10] Runtime modification Imprecise prediction Android/Java Online 7 3
COSMOS [9] Code modification 3 Android/Java 7 3 7

ULOOF Low 3 Android/Java Online 3 3

Fig. 2. Diagram of the ULOOF offloading framework modules

for computation offloading and classified them into two offloading
types, full and partial offloading. In particular, 6 algorithms
classified as partial offloading algorithms have joint optimization
on execution time and energy consumption similarly to ULOOF.
Moreover, a recurrent approach is integrating wireless channel in-
formation in the offloading decision-making. For instance, in [36],
[34] authors propose algorithms to optimize computation offload-
ing with wireless interference information, also based on physical
resource block allocations. In [35] time division multiplexing is
taken into consideration, while assuming the actual execution time
of a method in the remote server as negligible. In [37], authors
address the computation offloading problem considering multiple
AP scenarios, where moreover the offloading is done in multiple
remote servers. Besides the different evaluation methodology, such
approaches strongly differ from the choice of working at user-level
we adopt for ULOOF, i.e., working at user-level it not possible to
retrieve wireless channel and resource reservation information.

3 ULOOF GENERAL FRAMEWORK

ULOOF is a computation offloading framework that offloads
method calls in a user application. Each offloading decision is
made based on the energy and execution time estimations. Those
estimations are updated after every local or remote execution, so
that the framework adapts to changes in the environment.

ULOOF does not require changes in the operating system, or
special user privileges (i.e., without ‘rooting’ the device). This
allows us to modify the application without requiring additional
knowledge on the depending Android libraries, and decreases
security risks due to rooting.

Fig. 2 presents a diagram with the key elements of ULOOF:

• In the mobile device, the instrumentation component in-
struments the candidate methods for offloading. Whenever

Fig. 3. Preparation of an offloading-enabled application

such methods are called, it intercepts the call and makes
execution time and energy consumption estimations for
both local and remote method execution cases. Then, the
decision engine chooses whether to execute the method
locally or remotely based on the estimation.

• The remote execution platform takes care of the remote
execution of the offloadable computation, by means of a
connector module. It executes the requested offloading and
returns the result to the mobile device.

To enable this instrumentation, an offloading-enabled Android
application (or APK) needs to be prepared. Fig. 3 shows the APK
preparation process. First, offloadable methods are marked with
an explicit annotation (“@OffloadCandidate”). Then the applica-
tion is compiled with annotations, and a post-compiler creates a
modified APK integrating the offloading logic in the application.
The ULOOF post-compiler uses the Soot framework [20].

We also developed a remote execution environment using
an Android VM to create an execution environment similar to
the mobile device. The remote execution environment runs an
android-x86 VM [38] with an offloading platform that receives
offloading requests from an ULOOFed application. Since ULOOF
requests offloading in terms of Java method level and the execution
format on Dalvik and ART is identical, our framework is equally
compatible with both Dalvik and ART as long as the library on
the remote server contains the method to be offloaded, regardless
of the Android API level. The library of the application code is
provided when the instrumentation of application happens.

To establish a communication between the offloading-enabled
application and the remote method execution environment, we
used HTTP to transport serialized objects. Because HTTP is a
stateless protocol, it is suitable for a remote execution application.

3.1 On the Offloading Granularity
An offloading decision must be applied at a specific computing
granularity. For example, AIOLOS [12] partitions the application
on a per-class basis. Others such as CloneCloud and Cuckoo [8],
[4], [5] apply the offloading decision at the method level. We
choose to run our framework at the method level because class in-
stances may contain both offloadable and non-offloadable methods
(e.g., methods that read/write on the mobile phone’s storage).

3.2 Offloadable Method Selection
In ULOOF, an application method is considered as offloadable
if it has an annotation label (e.g., “@OffloadCandidate”). One

4

could expect that the best performance could be reached when it
is the developer of the application who explicitly specifies which
methods could gain from offloading, based on expert knowledge
of the code. However, in some cases, it may be unfeasible for
a user that is willing to run task offloading for an application
to ask developers to deliver a manual annotation of offloadable
methods. While allowing manual annotation (which would be the
approach taken by application providers), we also explored in [32]
the alternative path of automatically selecting methods to mark as
offloadable for an arbitrary application on the market, for which it
may be unfeasible to solicit developers for manual annotations.
The automated offloadable method selection algorithm in [32]
works as follows: it scans the application structure, detecting
non-offloadable methods: they are part of the Android system
method, or purely internal (i.e., initializer methods), methods
accessing hardware specific features or problematic methods or
variables. The remaining methods are then further analyzed to
check if they call non-offloadable methods and, if so, they are
also discarded. Finally, the remaining methods are annotated as
offloadable. We report in Fig. 4 the distribution of offloadable vs
non-offloadable categories (including also the ratio of methods
using non-offloadable classes) for the top-250 Google play ap-
plications applying such automated method selection, showing a
median of more than 25% of offloadable methods.

Fig. 4. Offloadable vs non-offloadable methods distribution for top-250
Google Play applications

4 ULOOF DECISION ENGINE

This section details the design of the ULOOF decision engine. We
expose the design rationale of the framework, execution time and
energy consumption prediction algorithms and limitations.

4.1 Offloading Cost Functions
The ULOOF decision engine uses cost functions that estimate the
energy and time required to run the methods. These cost functions
make use of empirical traces to express the cost of running a
method in the remote execution application.

Since the offloading problem is a multi-criteria decision prob-
lem, we employ a scaling factor, α, to prioritize either time or
energy in the decision engine. In that way, α can be used to either
prioritize saving execution time or battery charge. The equations
for the offloading binary decision are:

L(m) = α · tl(m) + (1− α) · el(m) (1)

R(m) = α · tr(m) + (1− α) · er(m) (2)

where M is the set of methods of the mobile application,
m ∈ M is the offloading candidate method, L : M → R
and R : M → R are the estimated cost functions in case of
local and remote execution, respectively. The two components
of each cost function are the execution time (t) and consumed
energy (e) related to the local or remote execution of method m.
Lower values for α make the decision tending towards saving
energy, while higher values do improve computing responsiveness.
Obviously, functions t and e are not working on the same images,
i.e., the output ranges are not normalized on the same scale. In this
respect, α also works as a normalization factor, and its values may
be skewed to either one or zero depending on the e and t images.
One may develop an algorithm to adjust α based on the variable
network latency, with however a certain impact on the computing
overhead and falls outside of the scope of this work. ULOOF
triggers method offloading if the following condition holds:

R(m) < L(m) (3)

That is, if the remote execution cost is lower than the local
execution cost. We detail how time and energy functions are
computed in the following subsections.

4.2 Execution time prediction
In ULOOF, annotated methods need to be profiled so that ex-
ecution time and energy consumption figures can be predicted
properly when each method is called to decide whether to offload it
or not. There are two possible methodologies to profile the method
execution time for computation offloading; either analyzing the
target method structure to model the execution time, or predicting
it based on the previous execution results and dynamically adjust
the prediction at each call. While it is possible to compute a
method complexity, e.g., using cyclomatic structural complex-
ity [28], this comes at the risk of big gap with the actual execution
time of the method [29]. Hence we follow the latter approach.

In ULOOF, every time an annotated method is called, the
execution time and energy consumption for that method are pre-
dicted based on the interpolation of historical execution logs. This
data is updated upon execution to possibly improve the prediction
accuracy at the next execution.

For the very beginning (i.e., after post-compiled application
installation), we set a number of initial executions for which there
is no prediction made and the offloading decision is taken as a ran-
dom choice. This number is set to 5 in our tests, for both local and
remote executions. Then, after 5 local and 5 remote executions,
the decision engine starts using the ULOOF utility functions for
taking the offloading decision. To avoid high prediction error in the
early executions, the threshold can be increased to any arbitrary
number at the risk of causing unnecessary remote executions when
the offloading cost is high. The prediction accuracy is expected to
increase as the historical execution logs grow, especially after the
first executions used for training.

We introduce the concept of ‘input assessment’ to model the
execution time as a function of the method arguments. It converts
a list of arguments into a numerical value using an assess(args)
function. This function is monotonically increasing with the
method time complexity; a higher value of assess indicates that
the method should take longer to finish. ULOOF is able to provide
input assessment of primitive type arguments, however the appli-
cation developer may provide its own assessment profiles for their
own data structure as an AssessmentConverter interface. The

5

prediction of the execution time uses an interpolation approach.
We generate an initial curve of the execution time after a few
executions (five in our prototype), and each subsequent execution
updates the model to improve the prediction accuracy. In order to
bootstrap the decision engine, it randomly chooses between local
and remote execution until it gathers five executions for each case.
The decision also depends on the network state: obviously, if there
is no Internet connectivity the decision is not to offload.

To avoid recalculating the curves at each new execution, we
use a low-complexity ‘lazy’ update in our interpolation [21]: a
data point from a recent execution does not trigger an update
of the entire curve. Instead, only the region of the curve next
to that point is updated. We chose the Akima Spline function
as interpolator [22] rather than a cubic spline because we found
frequent fluctuations through our initial experiments. The Akima
spline can maintain value locality and avoid interference of nearby
points [23]. One Akima spline series is maintained for local
executions and one for remote executions; we refer to them as,
φl : N → N and φr : N → N , respectively.

Therefore, the local execution time tl(m) is defined as follows:

tl(m) = φl(assess(argsm)) (4)

Where argsm is the set of arguments from method m.
Since ULOOF aims at maximizing the user experience, the

remote execution time must account for the network latency due
to the uploading of the method arguments and downloading results
as well as the running time of the method on the remote platform.

In order to track the remote execution time, the framework
gathers the execution time from the server and interpolates the
execution time. The network latency depends on the network
being used at that time, so latency measurements are stored
on a per-network basis. When the mobile device is on Wi-Fi,
measurements are bound with the access point MAC address. For
cellular networks, the tower unique cell identifier (LAC/CID) is
used as the unique identifier. ULOOF also estimates the bandwidth
b of each network (as detailed in Section 4.4). Thus, the remote
execution time prediction follows:

tr(m) = φr(assess(argsm)) + dr(m) (5)

dr(m) = size(m, r)/b (6)

Where size(m, r) returns the amount of data required to send
the arguments for remote execution and to retrieve the results.
Therefore, dr :M → R gives the estimated transfer delay.

4.3 Energy consumption prediction
The aim of the ULOOF energy model is to build an energy
consumption profile based on the empirical data measured in the
device; such a profile could be based on public device-specific
records or locally generated measures.

The proposed model does not consider energy consumption
from components such as the screen, GPS and file I/O nor offload
methods which access these components. This is because offload-
ing methods using these components provide a small benefit [31].

We define the energy consumption for local and remote exe-
cution as el(m) and er(m), respectively, as follows:

el(m) = ccpu(km,m) + cradio,l(m) (7)

er(m) = cradio,r(m) (8)

ccpu : R × M → R is the execution time component, a
function of the method m and its CPU usage km. The CPU usage
is expressed in CPU ticks. More precisely, the estimated execution
time is computed as follows:

ccpu(m) = lcpu(km/runtimem) · runtimem (9)

where runtimem is the local execution time for method m.
lcpu is an estimated energy consumption function based on the tick
frequency (number of ticks divided by the known execution time);
it is expressed in watt per second. This quantity is then multiplied
by the execution time to estimate the consumption for the whole
method. lcpu is method-independent and is device-specific.

cradio,l : R × M → R and cradio,r : R × M → R give
the consumption of a given method m, when executed locally and
remotely, respectively (it is considered also for local executions to
account for methods using the network regardless of the offloading
procedure). They are computed as:

cradio,l(m) = lradio(τ) · dl(m) (10)

cradio,r(m) = lradio(τ) · dr(m) (11)

where lradio is the energy consumption in watt per second,
which is a function of the radio interface throughput τ . To estimate
the overall consumption, lradio is multiplied by the estimated time
spent for transferring data. dl(m) and dr(m) are the time spent
for transferring data in a local and remote execution, as explained
in the next section. When the method is executed locally, it is:

dl(m) = size(m, l)/b (12)

where size(m, l) is the amount of network traffic when the
method m is executed locally.

lcpu and lradio are therefore device-specific and method-
independent functions. They characterize the device energy con-
sumption profile. If different radios are used (e.g., Wi-Fi and
4G), specific functions are needed. Those can be calculated using
hardware profiling, as explained in the appendix.

4.4 Network bandwidth estimation
ULOOF periodically measures available network capacity to im-
prove execution time and energy consumption predictions. The
transmission delay depends on the capacity available to the device
when an offloadable method is called, therefore measuring accu-
rate network capacity is an important part of the decision engine.

The capacity estimation algorithm performs periodic measure-
ments. In order to account for variations in capacity over time,
we apply an Exponentially Weighted Moving Average (EWMA)
function with the previous capacity measured to smooth the
variation using Equation 13; such a function is used because it
was successfully employed to smooth noisy RTT values in [7].

τt+1 = τt · (1− β) + τ · β, 0 ≤ β ≤ 1 (13)

τt is the network capacity that was estimated at time t, τt+1 is the
estimated network capacity the next time, and τ is an empirically
computed value. β is used to smooth the noise of the capacity
changes between times t and t + 1. The computation of the
empirical capacity τ varies from Wi-Fi and cellular. On a Wi-Fi
network, the network capacity is computed as: τ = d

4t where d is
the size of data transferred over the network and4t is the time to
send/receive the data. Because cellular towers serve a much larger
area than Wi-Fi access points, the capacity in a cellular network

6

may vary significantly based on the location. We use the reversed
Shannon-Hartley’s theorem to estimate the user’s capacity. First,
ULOOF derives the estimated network capacity S as follows:

S =
τ

log2(1 + SNR)
(14)

Where SNR is the signal-to-noise ratio. As the user moves
to a different position within the coverage of the same tower, we
compute the new capacity τ ′ using S stored previously and SNR′

at the current position. We use the Shannon-Hartley theorem to
compute τ for a new location:

τ ′ = S · log2(1 + SNR′) (15)

Finally, ULOOF maintains historic capacity data for every net-
work that it encounters. When the device is connected to a Wi-Fi
network, we associate the SSID of the Wi-Fi network with the
capacity. For cellular networks, S is stored in the location-aware
database along with LAC/CID.

4.5 Limitations of ULOOF predictions
Before reporting experimental and simulation results, let us point
out the limitations of the proposed prediction logic.

First, the device-specific energy consumption is chipset depen-
dent, and should be generated for the desired mobile devices. Our
approach is described in the appendix, where Eq. 18 assumes no
changing in the type of connectivity between Wi-Fi and Cellular
(e.g., due to user mobility, interference phenomena, etc) within a
single method execution. If interface changes occur (i.e., vertical
handover), the real bandwidth and energy consumption may be
different from the predicted value.

Second, the assess function should provide a good estimation
on the complexity of the candidate offload method. Developers
should be aware of the algorithms employed and how their inputs
influence the execution time. However, this may not always be
an easy task. For example, most algorithms have an execution
time bounded to the argument size (e.g., larger integer numbers
or larger vectors). Nonetheless, many algorithms do not follow
such assumption. For instance, a method that checks integers for
primality: Mersenne numbers (numbers in the form of 2n−1) are
much easier to check than ordinary numbers. We could not find
in the state of the art any method complexity measure based on
the data structures or arguments. We give a detailed assessment of
execution time prediction in section 7.2.

Third, an ULOOFed application is expected to work better
over time, since more empirical data points generates more precise
estimations. Conversely, calculations that are run occasionally may
suffer from worse predictions. One way to refine the decision is to
use crowd sourcing. A server would aggregate the data points for
methods in an application from multiple users. This server would
periodically upload to the mobile devices the most recent CPU
execution curves and possibly the cellular speed estimates.

5 TESTED APPLICATIONS

For the simulations and experiments, we developed two proof-of-
concept applications.

The first one is a navigation application we refer to as ‘City-
Route’: it finds the shortest route between two points in a graph
using a breath-first search algorithm (problem with a O(V + E)
time complexity, where V is the number of vertices and E is the
number of edges). In this way, we can follow the time-complexity

of the offloaded methods, that for a given source-destination pair
is a function of the distance between source and destination.
With CityRoute, a city map is represented by an unweighted
graph, where vertices are crossroads and edges are streets. For
the tests, we generated a graph with 120000 edges using the
‘SNAP’ dataset [24]. Each batch runs 36 route computations; in
each computation, a destination is chosen so that the distance from
the source randomly ranges from 19 to 140 edges away. We can so
obtain a heterogeneous random set of executions. The CityRoute
offloaded method is only one related to the breath-first search
algorithm (it loads the input graph and finds the shortest path).

Moreover, we developed a second application that calculates a
fixed set of Fibonacci numbers to assess the impact of different
trade-off values in the decision-making function; this second
application allows indeed an even finer correlation of the result
to the time-complexity. Six nested methods can be offloaded to
compute the Fibonacci number. We use the Fibonacci application
for the analysis in Section 7.4. Even if method-level computation
offloading can be applied to a variate set of applications, as we
mention in Section 3.2, in the following analysis we restrict our
tests to the CityRoute and Fibonacci applications because of the
capability to correlate each result to a time complexity figure. We
release both applications in [26].

6 SIMULATIONS USING REAL MOBILE TRACES

As a preliminary assessment, we run simulations using a cellular
mobility data-set obtained in the frame of a collaboration with a
major French mobile network operator.

6.1 Simulation environment
In the provided data-set, each device is located at the LAC (Local
Area Code) level whose coverage ranges from few kilometers
to dozens of kilometers of radius depending on the population
density. We used France-wide mobile user trajectories with a
time-stamped list of traversed LACs in a given day. The obtained
trajectories are covered by at least two users to ensure 2-anonymity
aggregation. We selected those crossing more than 3 LACs to
cover large displacements. In this way, we have 36,450 trajectories
for our simulations. For each trajectory, we have a succession of
LAC locations with a variable LAC sojourn time.
For our simulations, we emulated for each trajectory a situation
in which, for each new LAC position, the CityRoute application
(described on Section 7) recalculates a batch of shortest routes
for a predefined list of 36 destinations. To emulate the ULOOF
decision, the following components had to be computed:

• For the execution times and energy consumption figures,
we used empirical values obtained in the testbed tests
described in the next Section. Those values are reasonably
assumed to be independent of the mobility of the user.

• The RTTs for all LAC location pairs, using a propagation
delay directly proportional to three times the euclidean
distance (to take into account indirect linkage in wired
networks), then adding 40 ms to each RTT to reproduce
bufferbloat phenomena typical of cellular networks [25].
Figure 5 gives the resulting RTT distribution, with a
maximum at around 85 ms, based on which we computed
the network latency to use for offloading decision as the
result of RTT +Dt +Ds, where Dt is the transmission
delay, andDs is serialization/deserialization delay.Dt and

7

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 40 45 50 55 60 65 70 75 80 85 90

C
u
m

u
la

ti
v
e
 D

is
tr

ib
u
ti
o
n

Round-Trip Time (ms)

Fig. 5. Round-trip-time distribution from the simulation data-set.

Ds are modeled from empirical results obtained in the
following evaluation scenarios.

• we used the the utility function trade-off α parameter for
equations (1) and (2) set to 0.993, result of the empirical
analysis described on section 7.4.

6.2 Simulation results
As a first simulation, independent of the individual trajectory, for
every possible pair of LAC locations (i.e., any possible pair of
user and server locations), we emulated ULOOF decisions using
the parameters computed as above explained. The results are given
in Figure 6, in terms of execution time and energy consumption,
for three cases: with an ULOOF logic, when offloading is not
executed (‘never offload’), and when offloading always happens
(‘always offload’). In terms of execution time, there is only a small
difference between the ‘always offload’ case and the ULOOF
logic, and that the total execution time can be reduced by a factor
between 49% and 55% with respect to the ‘never offload’ legacy
approach. Instead, in terms of energy gain, we remark a higher
gain granted by the ULOOF logic with respect to the ‘always
offload’ approach; moreover, the gain with respect to the ‘never
offload’ case ranges from 40% to 47%. Overall, these results show
that offloading can grant quite significant gains; moreover, the
major advantage of using ULOOF instead of an ‘always offload’
approach appears to be, based on this simulation data, the energy
gain rather than the execution time, which somehow confirms what
found with the analysis of Fig. 5 and 6.

As a second analysis, we exploit the individual user trajectories
and we compute the overall experience for each trajectory. We
simulated two configurations for the cloud offloading server:

• Remote cloud: whatever the position of the user is, the
cloud facility is always based in one position (i.e., no cloud
service mobility associated with user mobility). We fixed
this position to a central LAC in Paris.

• Nearby cloud: the cloud facility is fixed in the nearest
LAC, hence assuming there is a virtual network overlay
managing the network embedding and VM migrations (as
envisioned in MEC specifications and investigated in [27]).

Figures 7 and 8 show the obtained results. All the 36,450
trajectories were used here to extract an individual offloading
experience assessment. In this analysis, we assumed that when
a user changes its LAC, the CityRoute application is executed and
the energy and time performance is stored. The weighted average
of each performance result (time or energy gain) is then computed,

55.0 55.5 56.0 56.5 57.0 57.5 58.0
Average time saved (%)

0.0

0.2

0.4

0.6

0.8

1.0

CD
F

Nearby Cloud
Remote Cloud

Fig. 7. Execution time gain cumulative distribution (simulation).

weighting each offloading result with the sojourn time of the user
in the given LAC. We calculate the weighted average Wa as:

Wa =

∑k
i giti∑k
i ti

(16)

where i is a trajectory of a user with the maximum k trajectories,
gi is the resource gain of a user in the trajectory i and ti is a
sojourn time of a user at the trajectory.

The results show that the median of the execution time gain
is 55% for the remote cloud case and 55.8% for the nearby cloud
case. In terms of energy gain, the median gain ranges from 49.3%
to 49.7%, roughly, respectively. The remote execution consumes
less energy because the offloading decision in the simulation is
skewed towards shortening the running time. A small part of the
methods run in the nearby cloud actually consume more energy
than in the mobile device, however they are run in the cloud in
order to reduce the response time. Those methods are not run in
the remote cloud because the RTT is longer, and hence there is no
benefit, either in energy or in runtime, of a remote execution.

As the remote cloud has longer RTT compared to the nearby
cloud, it consumed less energy as shown in Fig 6. ULOOF did
not offload a small percentage of the methods that consume more
energy when offloaded because the RTT is longer, and hence there
is no benefit, either in energy or in runtime, of a remote execution.

With respect to the trajectory-agnostic results in Fig. 6, we
can notice that using a nearby cloud does not lead to visible
gains, with minor differences for both execution time and energy
consumption. This seems to suggest that running the service in a
fixed VM in a central location of the access network does not lead
to significantly lower performance than a case where the VM is
moved closer to the user in a large-scale network.

7 EXPERIMENTAL RESULTS

We developed a proof-of-concept navigation application we refer
to as ‘CityRoute’: it finds the shortest route between two points
in a graph using a breath-first search algorithm (problem with a
O(V + E) time complexity, where V is the number of vertices
and E is the number of edges). In this way, we can follow the
time-complexity of the offloaded methods, that for a given source-
destination pair is a function of the distance between source and
destination. With CityRoute, a city map is represented by an
unweighted graph, where vertices are crossroads and edges are
streets. For the tests, we generated a graph with 120000 edges
using the ‘SNAP’ dataset [24]. Each batch is composed of 36

8

 60

 80

 100

 120

 140

 160

 180

 200

 40 45 50 55 60 65 70 75 80 85

Ex
ec

ut
io

n
tim

e
(s

)

RTT of connections (ms)

ULOOF
Never offload

Always offload

(a) Execution time

 3500

 4000

 4500

 5000

 5500

 6000

 6500

 7000

 7500

 8000

 8500

 40 45 50 55 60 65 70 75 80 85

En
er

gy
 c

on
su

m
pt

io
n

(m
w

)

RTT of the link (ms)

ULOOF
Never offload

Always offload

(b) Energy consumption

Fig. 6. Performance as a function of the RTT (simulation).

48.0 48.2 48.5 48.8 49.0 49.2 49.5 49.8 50.0
Average energy saved (%)

0.0

0.2

0.4

0.6

0.8

1.0

CD
F

Nearby Cloud
Remote Cloud

Fig. 8. Energy gain cumulative distribution (simulation).

route computations; in each computation, a destination is chosen
so that the distance from the source randomly ranges from 19
to 140 edges away. In this way, we can obtain a heterogeneous
random set of executions. The CityRoute offloaded method is only
one related to the breath-first search algorithm that loads the input
graph and finds the shortest path. We use such realistic application
for the results in the following in Sections 7.1 and 7.3.

Moreover, we developed a second application that calculates a
fixed set of Fibonacci numbers to assess the impact of different
trade-off values in the decision-making function; this second
application allows indeed an even finer correlation of the result
to the time-complexity. Six nested methods can be offloaded to
compute the Fibonacci number. We use the Fibonacci application
for the analysis in Section 7.4. Even if method-level computation
offloading can be applied to a variate set of applications, as we
mention in Section 3.2, in the following analysis we restrict our
experiments to the CityRoute and Fibonacci applications because
of the capability to correlate each result to a time complexity
figure. We release both applications in [26].

We consider three different usages of the CityRoute applica-
tion: an unmodified application, an ULOOFed application with
α set to 0 (i.e., energy driven), and another case with α set to
1 (i.e., time driven) to compare the execution time and energy
consumption of each case. A desired α value can be computed as
in Section 7.4. We used a Samsung Galaxy S5 with a Snapdragon

801 processor, a 2.5 GHz quad-core CPU and 2GB RAM as a
mobile device in our experiment. The energy and CPU consump-
tion curves were defined empirically with hardware profiling, as
detailed in the appendix. An HTTP server runs on Android-x86
[38] to serve remote execution requests from the mobile device.

We set up two scenarii to study the effect of different latencies
on the ULOOF performance (Fig. 9 reports the experienced
bandwidth for the experiments of the two scenarii):

• Wi-Fi scenario: it is a semi-controlled environment, where
the mobile device uses a Wi-Fi network to reach a server
located within the same local area network. This is the
case for cloudlet/MEC environments envisioned for access
networks, hence for simplicity we refer to it as cloudlet
use-case. There is no additional latency injected in the
Wi-Fi network and it shows less than 1 ms RTT between
the mobile device and the remote server. The server is a
VM with a 64-bit GNU/Linux 4.4, running on an Intel i7-
4500U processor with 4 1.80GHz cores and 8GB memory.

• Cellular scenario: it is a mobile environment, where the
latency with the remote server is higher than in the Wi-
Fi case and can vary due to mobility. We used real
measurements, with long latencies typically experienced
for cellular networks [39]: using a moving vehicle around
Belo Horizonte, Brazil, along a predefined route, we
measured the network capacity, execution time and energy
consumption of the CityRoute application, using as remote
server a DigitalOcean VM, in New York, USA.

7.1 Execution time and energy consumption
We measured the execution time and the energy consumption of
the mobile device while the application is run. We measured the
start time and end time of each test, and the battery level during
each test (using the Android BatteryManager API).

7.1.1 Wi-Fi scenario
Fig. 10 reports the execution time of 20 contiguous CityRoute
batches in the horizontal axis, i.e., the last point of each line is
the global execution time. During such executions, we noted the
instant when the battery drained by 1% (it is the minimum mea-
surement step available with user-space Android primitives) and

9

Fig. 9. Change in perceived bandwidth over elapsed time.

 0

 1

 2

 3

 4

 5

 6

 7

 8

 0 200 400 600 800 1000 1200 1400

B
a
tt
e
ry

 U
s
a
g
e
 %

Application execution time (seconds)

ULOOF - time driven
ULOOF - energy driven

Unmodified

Fig. 10. Battery usage and execution time in the Wi-Fi scenario.

report it accordingly as a vertical step in the figure. Execution time
for both ULOOF versions are significantly reduced compared to
the unmodified application as noticed from the shorter horizontal
length of the plot. Battery usage from both versions is also reduced
as shown in the shorter vertical height of plots.

The results show that ULOOF reduced the execution time as
well as energy consumption, and that for both time and energy
driven variants. More precisely, methods were offloaded 72.95%
and 62.41% of the times for the time-driven and energy-driven
modes, respectively. The execution time was reduced by about
50%. The battery gain ranges from 5 to 6% in terms of absolute
battery consumption, which roughly corresponds to 56 to 224
mAh for the given phone. The differences in time-driven and
energy-driven modes are relatively small compared to the total
running time, and oddly the time-driven algorithm took longer to
finish compared to the energy-driven mode, which is likely caused
by uncontrolled environment variables (e.g. operating system
scheduler, background processes, screen state) in the experiments.

7.1.2 Cellular scenario
For the cellular scenario, we experimented on a moving vehicle
around the city of Belo Horizonte, Brazil, along a predefined route.
We first measured the performance of cell towers in the city and
then used the data gathered from the measurement.

Fig. 11 shows the accumulated execution times and battery
consumed by the CityRoute application executed 20 times in a
row. Both time-driven and energy-driven ULOOF improved the
execution time and energy consumption compared to the unmodi-
fied application. However the absolute gain in execution time and
energy consumption has reduced compared to the Wi-Fi/lower-
latency case. More precisely, the decision engine offloaded 27.6%

 0

 1

 2

 3

 4

 5

 6

 7

 8

 0 200 400 600 800 1000 1200 1400

B
a
tt
e
ry

 U
s
a
g
e
 %

Application execution time (seconds)

ULOOF - time driven
ULOOF - energy driven

Unmodified

Fig. 11. Battery usage and execution time in the cellular scenario.

of the executions with energy-driven ULOOF and 29.13% with
time-driven ULOOF, with only a small difference between the
two modes. The average execution time of the offloaded execution
was around 2.5 seconds, above the global average of 1.5 seconds.

Compared to the Wi-Fi scenario, there was 47.64% longer
execution time and 80% higher energy consumption; this is due
to the smaller number of offloads in the higher-latency network.
Because of the longer latency, the remote execution time estimate
increases and the decision engine decides to offload less often,
with more local executions, consuming more energy.

Moreover, the time-driven ULOOF in the higher-latency net-
work had an execution time slightly longer (globally 30 seconds
longer, i.e. 2.6%) than the energy-driven ULOOF: this is also due
to the uncontrolled environment with network latency variations.

7.2 Prediction accuracy
To assess the accuracy of ULOOF predictions, we post-processed
the execution time and energy consumption for both scenarios.
Precisely, we executed the CityRoute application with both local
and remote time execution every time the offloadable method is
being called; then, we compared the actual running time of these
executions with the prediction the decision engine had made.

Fig. 12 reports the prediction error ratio and the average
execution time of offloadable methods in terms of the distance
between source and destination. The plots are divided into local
and remote executions in Wi-Fi and Cellular network, hence each
set of plots shows the prediction accuracy of specific network and
offloading decision; e.g., the top leftmost plot shows the prediction
error of local execution time in Wi-Fi network.

In each graph, the red line on top represents the average
execution time with a 95% confidence interval. The horizontal
axis indicates the distance to destination in number of edges
in the graph, which for the breadth-first search shortest route
computation is an index of the experienced time complexity.

The boxplot reports the relative prediction error of that specific
network and offloading decision, with the minimum, first quantile,
median, third quantile, maximum of the prediction error, for the
specific distance referenced by the horizontal axis. The prediction
error is calculated as the difference between the predicted time
and the actual time (resp. for the energy consumption).

Each figure block shows results for both local (top) and remote
executions (bottom). We had to rely on our energy consumption
fitting model for both prediction and the actual consumption. This
is because it is not possible to record the energy consumption of a
method-level granularity from the device.

We discuss the results for the lower and higher network
latency cases in the following sections. It is worth stressing that

10

0

2

4

6

8

10
Pr

ed
ict

io
n

er
ro

r r
at

io
Local executions in Wi-Fi network

19 20 21 22 23 24 29 34 38 52 63 71 78 84 88 90 10
1

10
6

11
3

11
8

12
0

12
1

12
2

12
7

13
2

13
3

13
4

13
5

13
7

13
9

14
0

Distance to destination

0

5

10

15

20

25

Pr
ed

ict
io

n
er

ro
r r

at
io

Remote executions in Wi-Fi network

100

101

102

103

104

Ex
ec

ut
io

n
tim

e
(m

s)

Accuracy
Execution time (ms)

100

101

102

103

104

Ex
ec

ut
io

n
tim

e
(m

s)

(a) Execution time - Wi-Fi network

0

2

4

6

8

10

Pr
ed
ict
io
n
er
ro
r r
at
io

Local executions in Wi-Fi network

19 20 21 22 23 24 29 34 38 52 63 71 78 84 88 90 10
1
10
6
11
3
11
8
12
0
12
1
12
2
12
7
13
2
13
3
13
4
13
5
13
7
13
9
14
0

Distance to destination

0.0

0.2

0.4

0.6

0.8

1.0

Pr
ed
ict
io
n
er
ro
r r
at
io

Remote executions in Wi-Fi network

100

102

104

106

En
er
gy
 c
on
su
m
pt
io
n
(m

w)

Accuracy
Energy consumption (mw)

100

102

104

106

En
er
gy
 c
on
su
m
pt
io
n
(m

w)

(b) Energy consumption - Wi-Fi network

0.00
0.25
0.50
0.75
1.00
1.25
1.50
1.75
2.00

Pr
ed

ict
io
n
er
ro
r r

at
io

Local executions in Cellular network

19 20 21 22 23 24 29 34 38 52 63 71 78 84 88 90 10
1
10
6
11
3
11
8
12
0
12
1
12
2
12
7
13
2
13
3
13
4
13
5
13
7
13
9
14
0

Distance to destination

0.0

0.5

1.0

1.5

2.0

2.5

3.0

Pr
ed

ict
io
n
er
ro
r r

at
io

Remote executions in Cellular network

100

101

102

103

104

Ex
ec

ut
io
n
tim

e
(m

s)

Accuracy
Execution time (ms)

100

101

102

103

104
Ex

ec
ut
io
n
tim

e
(m

s)

(c) Execution time - Cellular network

0.00
0.25
0.50
0.75
1.00
1.25
1.50
1.75
2.00

Pr
ed
ict
io
n
er
ro
r r
at
io

Local executions in Cellular network

19 20 21 22 23 24 29 34 38 52 63 71 78 84 88 90 10
1
10
6
11
3
11
8
12
0
12
1
12
2
12
7
13
2
13
3
13
4
13
5
13
7
13
9
14
0

Distance to destination

0.0

0.1

0.2

0.3

0.4

0.5

Pr
ed
ict
io
n
er
ro
r r
at
io

Remote executions in Cellular network

100

102

104

106

En
er
gy
 c
on
su
m
pt
io
n
(m

w)

Accuracy
Energy consumption (mw)

100

102

104

106

En
er
gy
 c
on
su
m
pt
io
n
(m

w)

(d) Energy consumption - Cellular network

Fig. 12. Prediction error as a function of method complexity (expressed in ho distance from source to destination for navigation map app).

the samples for the remote execution are concentrated at longer
distances because offloading happens less often in executions that
take less time. Conversely, the number of samples is lower for
local executions at high distances.

7.2.1 Wi-Fi network
For the Wi-Fi network scenario, method calls with lower compu-
tation execution time suffer from high prediction errors, especially
for remote executions. As the execution time increases, the pre-
diction error decreases, with a median always below 50% starting
by 63 hops for local executions. As the processor in the mobile
device is shared among processes, the error margin is higher for
methods with short execution time.

We can further notice that for the local executions, there is
an increasing trend in terms of accuracy as the execution time
increases. High errors happen mostly with very low execution
times, hence making them less perceivable by the user. For
instance, we found there is an average margin of the prediction
error of 93.54% when the computation takes 156 ms to complete,
which decreases to 3.16% as the execution time increases to 985
ms. For the remote executions, we have a similar trend, with
an average margin of the prediction error of 555% when the
execution time is 15.79 ms, which decreases to 14.08% as the
execution time increases to 1435 ms.

The effect of large error margins however does not impact
the overall performance of ULOOF. This happens because the
offloading will occur only for larger instances of the problem, in
which the execution time is much longer. For shorter execution

times, most executions happen locally due to the delay required to
send data to the remote environment.

The prediction error ratios in energy consumption show that
our framework is more accurate when predicting the energy
required for remote execution. This happens because the remote
execution energy consumption relies heavily on the number of
bytes transferred across the execution (i.e. size of argument and
result transferred), and the amount of bytes transferred does not
differ much for each method call. In contrast, local executions
suffer from high prediction errors when the complexity is low,
because of the noise related to background computations.

7.2.2 Cellular network

Fig. 12(c) and 12(d) show the prediction error in the
cellular/higher-latency network experiments.

The prediction error ratio in execution time decreases with
higher computation complexity for local executions. For remote
executions, instead, the error ratio shows a median between 100%
and 150%, which is likely due to bandwidth variations in the
cellular network. Compared to the Wi-Fi scenario, the error ratio is
smaller in Wi-Fi because there is less network capacity variation.

The energy consumption prediction is also more accurate for
the higher-latency case. As the complexity increases in local
executions, the prediction accuracy improves. Because the local
execution time and the local energy consumption are closely
related (i.e. longer execution consumes more energy) and they
both use the Akima interpolation [22], their accuracy is similar.

11

For the remote execution, however, the prediction of the energy
consumption improves significantly.

7.3 System overhead
In terms of system performance, it is important to qualify the
overhead caused by the ULOOFed applications. We have mea-
sured the overhead of the ULOOF framework when running the
CityRoute application by measuring the time difference between
the instant when the offloadable method is called and the instant
when the decision engine finished the prediction, positioning it
with respect to the overall execution time. Fig. 13 shows the time
taken for making offloading decision relative to the actual method
execution using CityRoute in the cellular network. We measured
the overhead of our framework by measuring the time taken to
predict execution time and energy consumption against the total
method execution time.

The overhead incurred from making offloading decision was
less than 40 ms at all times. For short execution times, the
overhead tops at 32%, which is 33 ms of overhead. However, for
longer execution times this overhead is lower than 10%. Although
this overhead may be significant for methods that run the least, it
is worth noticing that the average execution time is 513.47 ms.

0 5 10 15 20 25 30
10

100

1000

10000

Destination node ID

E
x
e
c
u
ti
o
n
 t
im

e
 (

m
ill

is
e
c
o
n
d
s
)

Total execution time

ULOOF time overhead

Fig. 13. Overhead caused by the offloading framework.

7.4 Offloading decision trade-off evaluation
The α parameter defines how to prioritize between execution time
and energy consumption when making an offloading decision. In
this, we show the impact of α on the offloading performance.
These experiments were performed in a Wi-Fi network.

Besides the CityRoute application, we also use a Fibonacci
application computing the Fibonacci number of a random number.
In the following analysis we compare three scenarios: ‘Always
Offload’, ‘Never Offload’, and ‘ULOOF’ with different values of
α. Let us recall that α = 0 means ULOOF considers energy saving
only, and α = 1 for saving execution time, while intermediate
values give different trade-offs between these two objectives.

Fig. 14 shows the results for the CityRoute application. The
‘Never Offload’curve presents an application that runs all the com-
putation locally, while the ‘Always Offload’curve shows the results
for the computations always being performed in the remote server.
All plots have the horizontal α axis cut to the region where it
changes of shape, in this case from 0.98 to 1. Before that ULOOF
does not change its decision because of the unnormalised values
for time and energy. In terms of execution time, ULOOF always
performs better than the other two scenarios with any α value. The
sweet spot is where both lines from the always offloading scenario
and ULOOF cross in the energy plot: α = 0.993.

����

�����

�����

�����

�����

�����

�����

�����

�����

�����

�����

����� ������ ����� ������ ��

�
�
�
��
�
�
�
�
�
�
�
�
�
���
�

�
��
�
�

��������������

�����
������������

�������������

(a) Energy consumption

���

���

���

���

���

����

����

����

����� ������ ����� ������ ��

�
�
�
�
�
���
�

�
���

�
�
��
�

��������������

�����
������������
�������������

(b) Execution time

Fig. 14. ULOOF performance as a function of α (CityRoute).

In order to show that the ideal value of α depends on the
application, the same test was performed using the Fibonacci ap-
plication. This application demands a meager amount of network,
however it is CPU intensive. Fig. 15 shows the results. In this case
ULOOF sits in between the two other cases in terms or execution
time, and it is always better in terms of both energy consumption
and execution time when α > 0.995.

The last sensitivity test evaluated the effect of transferring
larger amounts of data when offloading. This was performed using
a modified version of the Fibonacci application, where we transfer
a large argument to the offloading method. This forces the large
size of argument to be transferred through the network each time
the method is to be offloaded. The computation ignores this argu-
ment as it is only to increase the transfer size. Fig. 15 and 16 reflect
how this changes the performance of the ULOOF framework. The
overhead of transferring the large argument impacts greatly the
execution time plot, performing time-wise worse than the never
offload scenario when favouring energy but for α > 0.99 for
which it has close performance to it. This happens because of the
transmission delay involved in transferring the arguments.

7.5 Comparison between different devices
To assess the computing performance of different mobile devices
used in our experiments, we evaluated the average execution time
and energy consumption for a single CityRoute batch. We compare
the most recent device available to us, a Samsung Galaxy S7, to
a Note 3 and an S5. To avoid bias due to remote execution and
focus on system comparison, we executed the CityRoute appli-
cation with local execution only. Table 2 shows the performance
difference between the three devices in terms of CPU usage, as
execution time and energy consumption. We report the available
live memory as well. The Galaxy Note 3 runs with 30% lower
number of CPU ticks, resulting 41% faster and 36% more energy

12

��

�����

������

������

������

������

����� ����� ����� ����� ����� ����� ����� ��

�
�
�
��
�
�
�
�
�
�
�
�
�
���
�

�
��
�
�

��������������

�����
������������
�������������

(a) Energy consumption

����

����

����

����

����

����

����

����

����

����

����

����� ����� ����� ����� ����� ����� ����� ��

�
�
�
�
�
���
�

�
���

�
�
��
�

��������������

�����
������������
�������������

(b) Execution time

Fig. 15. ULOOF performance as a function of α (Fibonacci).

��

�����

�����

�����

�����

������

������

������

������

������

����� ����� ����� ����� ����� ����� ����� ��

�
�
�
��
�
�
�
�
�
�
�
�
�
���
�

�
��
�
�

��������������

�����
������������
�������������

(a) Energy consumption

����

����

����

����

����

����

����� ����� ����� ����� ����� ����� ����� ��

�
�
�
�
�
���
�

�
���

�
�
��
�

��������������

�����
������������
�������������

(b) Execution time
Fig. 16. ULOOF performance as a function of α (modified Fibonacci).

efficient compared to the S5 although they have similar application
processor (Qualcomm Snapdragon 801 MSM8974-AC @ 2.5GHz
and Qualcomm Snapdragon 801 MSM8974 @ 2.3GHz). This may
be due to the fact that the Galaxy Note 3 has larger memory
(3GB) compared to Galaxy S5 (2GB), handling the route data and
map data more efficiently than S5 and in less need of garbage

collection of Dalvik VM. The S7 is more than twice faster and
energy efficient; this is likely due to the recent processor used in
the S7 (Qualcomm Snapdragon 820 MSM8996 @ 2.2GHz), and
the higher amount of available live memory (4GB).

8 CONCLUSIONS

This article presented the ULOOF mobile computation framework,
a user-level online computation offloading framework including
an innovative decision engine to decrease energy consumption
of mobile devices and the execution time of mobile applica-
tions. The ULOOF decision engine exploits empirical profiles to
predict the energy consumption and execution time of Android
application methods, using an assessment of the inputs, and by
taking location awareness into account. It uses a low overhead
energy consumption model to aid in the mobile offloading decision
process. ULOOF does not require any special configuration nor
modifications to the runtime of both the device and the edge
computing platform, being easily plugged into any framework and
application without the need to root or modify the device operating
system. An example of ULOOFed application is available in [26].

The framework was evaluated by testbed experiments and
large-scale simulations using real data from a major cellular access
provider. The results show that both execution time and energy
usage can be significantly improved by offloading methods to an
external server. We considered both a nearby server (local cloud)
scenario, like in MEC environments, and a remote cloud scenario
with a longer network latency. The effectiveness of the modelling
was evaluated, measuring the accuracy of the interpolations as well
as whether the bandwidth actually changes among cell towers. The
results indicate that ULOOF can reduce the energy consumption
on the mobile device of roughly 50% for Wi-Fi scenarios with
low cloud access latency, and lower yet positive gains also for
situations with high latency.

Further work is needed to (i) conceive supervised learning
approaches for prediction the mobility behavior of the user and
hence improve the ULOOF prediction accuracy, (ii) address pre-
diction challenges for multiple-user single-server situations, i.e.,
edge computing situations where multiple users may share a single
(or a limited number of) offloading server(s), which would make
more sense when the driver of the offloaded application is the
application provider (doing it in a transparent way with respect
to the user) rather than the user itself. We also plan to release
in [26] additional bricks of the software framework to allow for
reproducibility and enhancements by the community.

ACKNOWLEDGEMENTS

This work was funded by the CNRS-FAPEMIG WINDS (Systems
for Mobile Cloud Computing), ANR ABCD (Adaptive Behavior
and Cloud Distribution) and FUI PODIUM (Platform for secure
data mobile cloud offloading) projects. We thank C. Ziemlicky for
his support with the mobile dataset, and A. Zanni and A. Diamanti
for the automated method selection algorithm.

TABLE 2
Comparison between 3 mobile devices (CityRoute application).

Device Memory CPU Execution Energy consumption
ticks time (ms) (mW)

Galaxy S5 2 GB 7196.8 73938.84 3802104.06
Gal. Note 3 3 GB 5542.1 52347.26 2791739.37
Galaxy S7 4 GB 2602.9 21343.0 1097507.31

13

APPENDIX: ENERGY CONSUMPTION PROFILING

The energy consumption of the CPU and the radio interfaces must
be derived empirically for each device. For the CPU, we must
derive a function that maps the number of ticks of a method
into the energy consumed running that method. Similarly, for
the wireless interfaces we must derive a function that maps the
number of bytes transmitted into the energy consumption of that
data transmission on a certain interface.

Preliminary tests using Android OS primitives showed that
the accuracy of the energy estimations on the OS are very low.
Hence, we performed hardware-based profiling using an off-the-
shelf equipment (KCX-017 adapter) that emulates a charger while
measuring the power drained by the device.

To obtain the lcpu and lradio empirical distributions, we
created two distinct Android applications to measure separately
the energy consumption of the CPU and the consumption of the
network interfaces. All the tests were performed in a Samsung S5
with only the profiling application running. For the CPU test the
network interfaces were disabled, and for the tests of the network
interfaces only one interface is active at a time.

For the energy consumption of the CPU, we generated a con-
stant CPU load by running an application which keeps multiplying
random prime numbers using multiple threads. To generate partial
loads on all the cores, a short sleep period is set for each thread,
calibrated according to each mobile phone. A sleep period of 100
ms every 5(load mod 25)/5 iterations was found to work well,
where 0 ≤ load ≤ 100. We chose the following set of loads
for our tests in terms of number of executions: L = [10, 25, 35,
50, 60, 75, 87, 100]. Each load Li was kept for two minutes in
order to obtain sufficient amounts of data.

For radio, an application and a web server were developed to
exchange traffic. Preliminary tests were first performed by varying
the total transfer time, keeping the number of bytes fixed. This
showed to be unfruitful and the current barely modified along the
experiment, as verified in [19]. This behaviour is expected, since
the radio can keep a low power state during small network loads.

A second batch of tests were performed, in which the server
creates a delay of 1 millisecond after a certain number of transmit-
ted bytes. This mechanism controls the throughput of the server,
and effectively generated a variable energy consumption. A delay
of 1 millisecond every [0, 300, 600, 1200, 2400, 4800, 9600,
19200, 38400, 76800, 153600] bytes was used. The duration of
the experiment was set to 2 minutes. Using the data gathered from
these experiments, we performed a polynomial curve fitting to find
the energy profile of the components.

Fig. 17 shows the empirical results for the energy consumption
due to CPU usage (lcpu), with max-min error bars. It shows an
upward trend reaching a plateau at the end, as the CPU reaches
the full load. The plotted fitting curve, having a coefficient of
determination of 0.96605, is as follows, where t is the number of
ticks in the computation:

lcpu(s) = + 51.422 + 2.9076 · t1 + 0.019306 · t2

+ 6.7841 · 10−5 · t3 − 8.4491 · 10−8 · t4
(17)

Fig. 18 shows the curve of 4G and Wi-Fi radio interface
consumption, as a function of the amount of transferred bytes per
second (b). The fitting curves, with a coefficient of determination
of 0.99020 and 0.84887 for Wi-Fi and 4G respectively, are:

Fig. 17. Power consumption for CPU usage (with standard deviation).

lradio(s) =

+111.24− 7.9499 · 10−5 · b1 + 1.5999 · 10−10 · b2

−8.3738 · 10−17 · b3 + 1.3748 · 10−23 · b4, if 4G

+158.37 + 1.1811 · 10−5 · b1 − 1.4722 · 10−12 · b2

+6.1454 · 10−20b3 + 1.8794 · 10−26b4, if Wi-Fi
(18)

REFERENCES

[1] D. Chaffey, “Mobile marketing statistics 2016,” Apr. 2016.
[2] X. Ma, “Characterizing the Performance and Power Consumption of 3d

Mobile Games,” Computer, vol. 46, no. 4, pp. 76–82, Apr. 2013.
[3] Y. Mao, J. Zhang, K. B. Letaief, “Dynamic computation offloading for

mobile-edge computing with energy harvesting devices,” IEEE J. on
Selected Areas in Communications 34(12), 3590-3605, 2016.

[4] R. Kemp et al., “Cuckoo: A Computation Offloading Framework for
Smartphones,” in Mobile Computing, Applications, and Services, LNCS,
Springer Berltin Heidelberg, 2012, vol. 76, pp. 59–79.

[5] E. Cuervo et al., P. Bahl, “MAUI: Making Smartphones Last Longer with
Code Offload,” in ACM MobiSys 2010.

[6] A. Pamboris, “Mobile Code Offloading for Multiple Resources,” Ph.D.
dissertation, Imperial College London, 2014.

[7] M. ETSI, “Mobile-Edge Computing,” Introductory Technical White Pa-
per, September, 2014.

[8] B.-G. Chun et al., “CloneCloud: Elastic Execution Between Mobile
Device and Cloud,” in ACM EuroSys 2011.

[9] C. Shi et al., “COSMOS: Computation Offloading As a Service for
Mobile Devices,” in ACM MobiHoc 2014.

[10] S. Kosta et al., “Thinkair: Dynamic resource allocation and parallel
execution in the cloud for mobile code offloading,” in IEEE INFOCOM
2012.

[11] J. L. D. Neto, D. F. Macedo, J. M. S. Nogueira, “Location aware decision
engine to offload mobile computation to the cloud,” in NOMS 2016.

[12] T. Verbelen, P. Simoens, F. D. Turck, B. Dhoedt, “AIOLOS: Middleware
for improving mobile application performance through cyber foraging,”
J. of Systems and Software, vol. 85, no. 11, pp. 2629 – 2639, 2012.

[13] R. Esteves, M. McCool, C. Lemieux, “Real options for mobile commu-
nication management,” in IEEE GLOBECOM Workshops.

[14] M. Kristensen, “Scavenger: Transparent development of efficient cyber
foraging applications,” in IEEE PERCOM 2010.

[15] T. L. Cignetti, K. Komarov, C. S. Ellis, “Energy Estimation Tools for the
Palm,” in ACM MSWIM 2000.

[16] A. Pathak, Y. C. Hu, M. Zhang, “Where is the Energy Spent Inside My
App?: Fine Grained Energy Accounting on Smartphones with Eprof,” in
ACM EuroSys 2012.

[17] S. Hao et al., “Estimating Mobile Application Energy Consumption
Using Program Analysis,” in IEEE ICSE 2013.

[18] L. Zhang et al., “Accurate online power estimation and automatic battery
behavior based power model generation for smartphones,” in CODES-
ISSS 2010.

[19] A. P. Miettinen, J. K. Nurminen, “Energy Efficiency of Mobile Clients in
Cloud Computing,” in USENIX HotCloud 2010.

[20] R. Vallée-Rai et al., “Soot - a Java Bytecode Optimization Framework,”
in CASCON 1999.

14

(a) Wi-Fi (b) 4G

Fig. 18. Power consumption experimental distribution for different traffic loads and network interfaces.

[21] P. Hudak, “Conception, Evolution, and Application of Functional Pro-
gramming Languages,” ACM Comput. Surv., vol. 21, no. 3, pp. 359–411,
Sep. 1989.

[22] H. Akima, “A New Method of Interpolation and Smooth Curve Fitting
Based on Local Procedures,” J. ACM, vol. 17, no. 4, pp. 589–602, Oct.
1970.

[23] G. Wolberg, I. Alfy, “Monotonic cubic spline interpolation,” in Computer
Graphics International, 1999. Proceedings.

[24] J. Leskovec, R. Sosič, “SNAP: A General-Purpose Network Analysis
and Graph-Mining Library,” ACM Trans. on Intelligent Systems and
Technology, vol. 8, no. 1, p. 1, 2016.

[25] H. Jiang et al., “Understanding Bufferbloat in Cellular Networks,” in
ACM SIGCOMM 2012, CellNet Workshop.

[26] ULOOF project website: https://uloof.lip6.fr.
[27] Secci, S. , Raad, P. , Gallard, P., “Linking Virtual Machine Mobility to

User Mobility”, IEEE Trans. on Network and Service Management, Vol.
13, No. 4, pp: 927-940, Dec. 2016.

[28] McCabe, T. J., “A complexity measure,” IEEE Transactions on Software
Engineering, vol. SE-2, no. 4, pp. 308–320, Dec 1976.

[29] Shepperd, M., “A critique of cyclomatic complexity as a software metric,”
Software Engineering Journal, vol. 3, no. 2, pp. 30–36, March 1988.

[30] Paxson, V., Allman, M., “Computing TCP’s Retransmission Timer,” RFC
Editor, RFC 2988, Nov. 2000.

[31] Corral, L., et al., “A Method for Characterizing Energy Consumption in
Android Smartphones,” in GREENS 2013.

[32] A. Zanni, et al., “Automated Selection of Offloadable Tasks for Mobile
Computation Offloading in Edge Computing”, in CNSM 2017.

[33] Mach, P., and Becvar, Z. “Mobile Edge Computing: A Survey on Ar-
chitecture and Computation Offloading”. IEEE Communications Surveys
Tutorials 19, 3 (2017), 1628–1656.

[34] Wang, C., et al., “Computation Offloading and Resource Allocation in
Wireless Cellular Networks With Mobile Edge Computing”. IEEE Trans.
on Wireless Communications 16, 8 (Aug. 2017), 4924–4938.

[35] Wang, C., Yu, F. R., Liang, C., Chen, Q., and Tang, L. “Joint Computation
Offloading and Interference Management in Wireless Cellular Networks
with Mobile Edge Computing”. IEEE Trans. on Vehicular Technology
66, 8 (Aug. 2017), 7432–7445.

[36] Wang, F., Xu, J., Wang, X., and Cui, S. “Joint offloading and computing
optimization in wireless powered mobile-edge computing systems”. In
2017 IEEE ICC 2017.

[37] Dinh, T. Q., et al., “Offloading in Mobile Edge Computing: Task
Allocation and Computational Frequency Scaling”. IEEE Trans. on
Communications 65, 8 (Aug. 2017), 3571–3584.

[38] Android-x86 - Porting Android to x86. http://www.android-x86.org.
[39] Chen, Z., et al., “An Empirical Study of Latency in an Emerging Class

of Edge Computing Applications for Wearable Cognitive Assistance”. In
ACM/IEEE SEC 2017.

José Leal D. Neto is working as a software
engineer at Google Inc, Belo Horizonte, Brazil.
He holds a Msc and undergraduate degree from
Univ. Federal of Minas Gerais in 2016, and vis-
ited LIP6, France, in 2015-2016.

Se-young Yu is working as postdoctoral re-
searcher at Northwestern University, USA, and
was before a postdoc at LIP6 in 2016-2017. He
obtained a Ph.D. from University of Auckland,
New Zeland.

Daniel F. Macedo is a Professor at Univ. Fed-
eral of Minas Gerais, Belo Horizonte, Brazil.
He obtained a Ph.D. from LIP6, UPMC (now
Sorbonne Université), in 2009, and was a vis-
iting professor in the same institution in 2016.
His research interests include network man-
agement, wireless networks and network pro-
grammability. Webpage: http://homepages.dcc.
ufmg.br/∼damacedo.

José Marcos S. Nogueira is a Full Professor at
Univ. Federal of Minas Gerais, Belo Horizonte,
Brazil. He obtained his PhD in Electrical Engi-
neering in UNICAMP, Brazil, in 1985. He was a
visiting professor in LIP6, UPMC (now Sorbonne
Université), France, in 2016. His research inter-
ests include network management, wireless net-
works, the Internet of Things, as well as mobile,
vehicular and opportunistic networks. Webpage:
http://homepages.dcc.ufmg.br/∼jmarcos.

Rami Langar is a Full Professor of Computer
Science at University Paris Est Marne-la-Vallée,
France. From 2008 to 2016, he was Associate
Professor at LIP6, UPMC (now Sorbonne Uni-
versité), France. He obtained his Ph.D. from
Telecom ParisTech, France, in 2006. His re-
search interests include resource management
in future wireless systems, cloud-RAN, Software
Defined Wireless Networks, and Mobile Edge
Cloud. Webpage: http://perso.u-pem.fr/∼langar.

Stefano Secci is an Associate Professor at the
LIP6, Sorbonne Université, Paris, France, since
2010. He obtained a dual Ph.D. in 2009 from
Politecnico di Milano, Italy, and Telecom Paris-
Tech, France. He is active in the areas of net-
work resource allocation, network optimization
and analytics, virtualization, Internet protocol de-
sign and experimentation. Webpage: https://lip6.
fr/Stefano.Secci.

https://uloof.lip6.fr
http://www.android-x86.org
http://homepages.dcc.ufmg.br/~damacedo
http://homepages.dcc.ufmg.br/~damacedo
http://homepages.dcc.ufmg.br/~jmarcos
http://perso.u-pem.fr/~langar
https://lip6.fr/Stefano.Secci
https://lip6.fr/Stefano.Secci

