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Abstract

Building a certification authority that is both decentralized and fully reliable is impossible. However,
the limitation thus imposed on scalability is unacceptable for many types of information systems, such
as e-government services, which require an infrastructure able to support heavy computation loads while
remaining highly reliable. Our scalable approach opts for the next best thing to full reliability: a cer-
tification authority with a probability of arbitrary failure so low that, in practice, false positives should
never occur.
Keywords : Large Scale, Certification, Reliability, Formal Verification

1 Introduction

Imposing a limitation on scalability is unacceptable for many types of large scale information systems such
as e-government services [43]. These services require an infrastructure able to support a heavy load while
remaining highly reliable. A typical example is income declaration, also known in the US as tax return,
where an authority must attest that a form has been filled in time by the corresponding actors. Solutions
based on the well-known client-server paradigm do not easily scale on demand, especially when load peaks
occur. Building a fault tolerant and semi-scalable service on a cluster based architecture can imply a very
high cost in terms of hardware and Internet connection bandwidth that small digital actors like startups
cannot afford.

In this context, Peer-to-Peer (P2P) solutions based on a Distributed Hash Table (DHT) such as Pas-
try [37] or Chord [39] provide a basis for scalable applications as opposed to those involving centralized
servers. However, DHT-based applications rely on a centralized trusted entity to prevent the compromis-
sion of a disproportionate share of the system by a small number of entities [17]. Even if it provides fault
tolerance using redundancy and a high availability, a DHT alone provides no guarantees regarding trustwor-
thiness. In this sense, it is not a satisfactory solution for attesting that a timely action has been performed
(for example validating income declarations). Using trusted servers in the DHT does not solve the problem:
it limits scalability and requires a central administration of these servers in order to be trusted.

*Contact: Xavier.Bonnaire@inf.utfsm.cl, Rudyar.Cortes@lip6.fr, Fabrice.Kordon@lip6.fr, Olivier.Marin@nyu.edu
†This paper is the HAL version of https://doi.org/10.1093/comjnl/bxx076
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In this paper, we present ASCENT (A Scalable Certification through Endorsement by Nodes that are
Trustworthy), a quasi-certification authority above a DHT that may involve malicious nodes. The goal of
ASCENT is to deliver a certificate attesting that a transaction has occurred between a client A and a service
S around time T . Our solution provides such a certificate by means of a distributed logging service which
guarantees that A can only append items to a log it has initiated with S; proofs of further requests/replies
associated with the same transaction cannot be inserted anywhere else. Section 2 defines the system model
and the threat model, and gives an overview of some building blocks that we use to make ASCENT as
reliable as possible. We explain the structure of ASCENT in section 3 as well as the details of the associated
protocol. In order to prove that our protocol does not have deadlocks and only terminates with known states,
we give in section 4 a formal verification of the protocol using Petri Nets.

We call our solution a quasi-certification authority as it can fail to attest that a transaction has occurred,
or produce a false certificate. However, the probability of failure is so low (as low as 10−13) that we consider
that ASCENT can theoretically fail, but that it is practically infeasible. We give in section 5 a probabilistic
study of ASCENT, as well as the cost of the protocol in terms of the number of messages it generates.

A general discussion about ASCENT is presented in section 6, including its scope of applicability, its
reliability in practical terms, some security issues, and related works. Finally, section 7 draws conclusions
and future works.

The contributions of this papers are:

• A quasi-certification authority for Distributed Hash Tables

• A formal evaluation of our solution in order to prove our protocol

• A probabilistic evaluation of our proposal to validate our approach and its reliability

2 System Model

This section presents the theoretical and practical backbone of our work. It states the assumptions we make
about the system and the properties we desire of our solution so that it can be deployed successfully. It also
describes the bodies of work we draw upon to build our solution.

2.1 Assumptions

We assume a distributed system that is large-scale and dynamic. It is large-scale in the sense that there is no
limit on the number of nodes in the system, and dynamic because nodes are expected to join and leave the
system arbitrarily; thus the topology of the system varies over time. Nodes communicate via messages.

We make no assumption regarding the communication channels: messages can be duplicated, delayed,
lost, and modified arbitrarily. Nodes themselves may fail arbitrarily, and display byzantine behaviors where
they act maliciously against the system. However, for the system to be able to function at all, no more
than 30% of all system nodes may behave incorrectly at any given time. Essential building blocks of our
solution, namely DHT-based overlays and reputation systems, are designed to withstand failure within this
proportion. Beyond this limit, they will collapse anyway.

We assume that any node X in the system has a pair of public and private keys (X pub,X priv) it can use
with an asymmetrical encryption algorithm [38] known by all the nodes. For scalability considerations,
we suppose that every node self-generates its own pair of keys, and that the size of the keys used in the
whole system is both fixed and large enough to make it computationally infeasible to decrypt an information
without knowing the corresponding private keys (see section 3.2).

We also assume that the underlying operating system of every node is running the Network Time Pro-
tocol. Thus, we consider that every correct node has a good global time, with a small deviation from the
Universal Time Coordinated (UTC).
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FIGURE 1. Routing example in Pastry: Route of key
a98fe arrive to the node with the closest nodeID a98f3.

ability to compute a global reputation value for every
node. Indeed all the recommendations about a single
node can be handled consistently at a common location:
either by a specific node or by a set of nodes. Among
existing reputation systems for DHTs, we can cite:
PeerTrust [7], WTR [8], Eigentrust [9], PowerTrust [10].

Reputation systems have to deal with malicious nodes
that: do not participate, collude with other malicious
nodes, and emit false recommendations. There are
techniques to mitigate the impact of these attacks, such
as the ones presented in TrustGuard [11] and WTR [8].
Nevertheless, to our knowledge, none of the existing
solutions to promote trust in P2P can be 100% effective
in detecting and blocking these attacks.

3. PROBLEM FORMULATION

We consider a DHT network in which each node has an
associated reputation. In this section we formalize the
problem, we state assumptions, and desired properties
of the system.

3.1. System Model

Our underlying P2P overlay consists in a Distributed
Hash Table, such as Pastry [5]. Any node may fail or
leave the system at any time.

We assume that a unique nodeID is assigned to a
node which enters the DHT. NodeIDs are uniformly
distributed in a 160-bits nodeID space. We suppose
that each node has a self-generated public/private key
pair. The nodeID is generated by computing the Secure
Hash Function SHA-1 of the node’s public key. When
entering the DHT, the new node must provide its public
key and its nodeID.

3.2. Design Goals

Our aim is to provide trust within the network by
building a group of pseudo-trusted nodes: the Trusted

Ring. The group must be self-organised and scalable.
Any node of the DHT should be able to access a pseudo-
trusted node in the Trusted Ring, but the possibility of
not finding such a node remains.

The target for our proposition are best-effort systems
which tolerate recoverable faults. The goal of the
Trusted Ring is to improve the way these systems
operate by providing an efficient method for finding
nodes that perform correctly.

We intend for our system to achieve the following
properties:

• Availability: After a start-up phase the Trusted
Ring should be as available as possible.

• Robustness: The system must cope with malicious
behaviours of nodes.

• Convergence: After a start-up phase, all the
trustworthy nodes should be part of the Trusted
Ring.

• Performance: The system should generate a low
traffic overhead.

Our system must not introduce more vulnerabilities to
the underlying system. An important design principle is
to avoid bottleneck problems. Limiting the awareness of
nodes to a partial knowledge of the network is important
in order to provide load balance and scalability.

3.3. Trust Model

We consider a probabilistic model of trust based
on reputation. The reputation value R(X) is the
probability that node X will be honest in the future.
This reputation value is computed according to a list of
recommendations emitted by nodes that have already
carried out transactions with X.

After each transaction, a node emits a recommen-
dation about its peer. A node may lie: it may emit
negative recommendations about a peer that behaves
correctly, or positive recommendations about a mali-
cious peer. Several nodes may collude to increase or
decrease the reputation value of another node. These
problems generate a deviation between the computed
reputation of the node and its real behaviour. We con-
sider that this deviation depends on the function used
to compute the reputation value and on the percentage
of malicious nodes within the system.

In the following, we assume there is a reputation
system in the overlay structure with the following
properties:

• Every node X has an associated reputation value
R(X) which represents the probability that X is
an honest node.

• R(X) is computed using the recommendations
emitted by nodes that have completed a trans-
action with X. Bad recommendations have a
stronger effect on R(X) than good ones. It should
be more difficult for a node to increase its reputa-
tion value than to decrease it.
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Figure 1: Routing in Pastry

2.2 Design Goals

Our solution aims to provide availability, to show extremely high resilience to corruption, and to be efficient
when a client requests a service transaction and a timestamped certificate of said transaction. Every cer-
tificate entails a high probability (see section 5) that the associated transaction occurred within a specified
timeframe.

In terms of performance, our solution must not hinder scalability and availability. We intend our protocol
to be formally verifiable so as to support the claim that it is sound, in other words that only safe situations
are reachable from the initial configuration..

2.3 Distributed Hash Table

In order to ensure scalability, the primary building block of our solution is a distributed hash-table (DHT).
DHT overlays are autonomous, self-organized, and highly scalable systems that have the potential to grow
up to millions of nodes. DHT nodes share their resources, collaborate and interact directly to provide
efficient key lookups, high data availability, and persistence. DHT networks are systems that maintain a
strong topology, for example a ring in the case of Pastry [37]. For the sake of clarity we assume the use of
Pastry throughout this work, but replacing it with any other DHT is straightforward. Please refer to section 6
for more details about the portability of our proposition to other DHTs.

Every node in Pastry is assigned a unique nodeID in a space of identifiers of 128-bits. The nodeID deter-
mines the position of the node in the circular namespace of the Pastry ring. A key that indexes information is
a value in the same namespace as the nodeIDs. Both nodeIDs and keys are generated using a cryptographic
hash [25] that guarantees uniform distribution, thus enforcing scalability and load balancing.

Pastry uses a prefix based algorithm to route every message to the node that is numerically closest to
a given key k. Each node X maintains a routing table: the nth row stores the IP addresses of nodes whose
nodeID shares the first n digits with that of X . The algorithm forwards the messages to a node from its
routing table that shares at least one more digit with the key k than the current node. If no such node can be
found, then the current node is the closest and the routing ends. This algorithm allows to route a message
to a given key k in O(log(N)) hops, where N is the network size. Figure 1 shows an example of the routing
process. Upon each hop, the message with key a98 f e reaches a node whose nodeID is closer by at least
one more digit. The routing stops at node a98 f 3 because there is currently no other node in the DHT whose
nodeID is closer to a98 f e.

Every node in Pastry references its neighbors in a leafset that contains the addresses of nodes whose
nodeIDs in the ring are numerically closest to its own. Let L be the standard notation for a leafset, and |L|
for the size of this leafset. A typical value for |L| is 16: with 8 references to the numerically closest nodes
clockwise, and 8 to the numerically closest nodes counter-clockwise. Every node is in charge of maintaining
its own leafset: it polls its neighbors periodically to check for missing nodes, and starts an update procedure
to repair its leafset upon a node failure. A very important property of the leafset is its density: the average
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distance between all nodeIDs in the leafset. The uniform distribution of nodeIDs induces that all leafsets
have the same density. Among other applications, density can be used to detect counterfeit leafsets [11].
Another important property is that nodes in the same leafset are very unlikely to be close within the network
topology. This is a direct consequence of generating nodeIDs with a hash function that guarantees uniform
distribution.

2.4 Reputation System

The goal of a reputation system [9] is to discriminate malicious nodes from honest ones. Most existing
reputation systems use a recommendation mechanism. Every time two nodes carry out a transaction, they
produce feedback on each other’s behavior during the transaction. Let T be a transaction where a node X
requests a service from another node Z. At the end of T , X evaluates the service provided by Z. X emits a
positive recommendation about Z if T was successful, a negative recommendation otherwise. A reputation
system uses the list of recommendations emitted for node Z to compute its reputation.

To manage trust, our solution requires a reputation system that outputs a reputation value R(X) ∈ [0..1]
for every node X . R(X) represents an assessment of the behavior of node X ; its value is the perceived
probability for node X to be honest. R(X)= 0 denotes a node perceived to be fully malicious, while R(X)= 1
designates a node perceived to be fully honest. It is important to keep in mind that these are subjective
values: a reputation system can never fully decide whether a node is malicious or honest. A node with a
high reputation is a node with a higher probability of behaving honestly. We also need the reputation to be
persistent: in other words, any node Z can obtain the reputation R(X) of node X at any time.

In the following, we use the WTR (Worth The Risk) [10] reputation system, as it has demonstrated very
good performance, and is also resistant to most existing attacks that are specific to reputations systems. Nev-
ertheless, our proposition can be implemented over any reputation system that fulfills the above mentioned
requirements.

2.5 Community of Trusted Nodes

To enhance the trustworthiness of our quasi certification authority, we allow for the integration of a mem-
bership algorithm like CORPS [36], which builds a group G of trusted nodes such that:

∀X ∧R(X)≥ ρ then X ∈ G

where ρ is a threshold determined by the application that allows to discriminate trusted nodes (with a suf-
ficiently high reputation) from the others (malicious ones, or not yet trusted). Simulations performed with
CORPS have shown that ρ = 0.85 is a good threshold (see [36] for more details).

Similarly to Pastry, the nodes in G are organized in a ring. Each node in G and in the DHT maintains a
trustset T S = {ts1, .., ts|L|} where |L| is the size of the DHT leafset. Hence a node X references |L|/2 nodes
clockwise, and |L|/2 counterclockwise in its trustset.

After a start-up phase, typically after a sufficient amount of transactions, CORPS converges to a unique
ring where all the honest nodes belong to the ring. We call G a Trusted Ring. Therefore, any node can easily
find a trusted node using its trustset. Figure 2 shows an example of CORPS ring over Pastry with |L| = 4.
In particular, it shows two examples of trustset for trusted nodes (e.g. N4) and for normal ones (e.g. N10).

The membership algorithm of CORPS ensures that:

• When a new node enters or leaves the trusted ring G, its neighbors update their respective trustset to
maintain the same number of nodes, the same way Pastry does for the LeafSet.

• When a node X ∈ G becomes such that R(X) < ρ−α , where α is a tolerance parameter (to avoid a
yo-yo effect), then X must leave the trusted group. If it does not, the CORPS protocol ensures that
every adjacent node of X will remove X from its trustset, implicitly pushing X out of the trusted ring.
For more details about the CORPS maintenance protocol, please refer to [36].
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Figure 2: A CORPS ring above Pastry

Because the reputation system may fail with a probability of ε when classifying a node, there is still
a probability ε for a node X ∈ G to be malicious. Implementation of a Trusted Routing similar to that of
Pastry on top of the CORPS mitigates this issue. As demonstrated in [36], the expected number of attempts
required to reach the destination node via Trusted Routing at the CORPS level is much lower than using the
Pastry routing at the DHT level.

3 ASCENT, a Quasi-Certification Authority

This section details the structure and the protocol of ASCENT, a quasi certification authority (CA) for DHTs.
ASCENT is a “quasi” CA, as opposed to a full CA, since [17] shows that a small number of malicious nodes
can compromise a disproportionate share of a DHT if there is no trusted centralized entity. Hence the goal
of ASCENT is to certificate, with a very low probability of failure, a transaction between a client node A and
a service S.

Figure 3 shows the general structure of ASCENT. The DHT layer provides access to the P2P network on
the Internet. The goal of the certification layer is to generate certificates as evidence that a transaction has
occurred between a client A and a service S. This layer also maintains a distributed log of the certificates for
further requests (proofs of past transactions). The trust layer provides mechanisms to discriminate honest
nodes from malicious ones. Note that our certification protocol can work directly above the DHT, and thus
does not require a trust layer. In fact, forgoing the trust layer reduces the cost in terms of network load.
However, the use of trust mechanisms is strongly recommended as it significantly reduces the probability of

Trust Layer

DHT Overlay

Certification / Logging Service

CORPS Reputation 
System

Direct
Routing

Figure 3: General architecture of ASCENT
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Figure 4: Certification Scheme

failure of the certification. See section 5 for more details about the impact of the trust layer.
We assume in the following that every node participates to the CORPS membership algorithm mentioned

in 2.5, and thus that every node supports a combination of a DHT with a reputation system. We also assume
that the system has reached a stable state where every node of the DHT can access a CORPS trusted ring.

Let A be a node of the DHT, and S = {S1,S2, · · · ,Sn} be a set of n nodes that belong to the CORPS
ring and cooperate to provide a service. Let NameofS be the name of service S; every node that needs to
use the service knows NameofS. Ks = SHA(Nameo f S) is the key that identifies S in the trusted ring, and
Sroot = TrustedRoute(Ks) is the node closest to Ks in the trusted ring. It follows that S = {S1,S2, · · · ,Sn}
is composed of node Sroot and of all the nodes in its trustset. Hence every existing service in the trusted
ring is associated with a different set of trusted nodes which handle the service. This induces natural load
balancing among services.

Let C be a certification authority such that C = {C1,C2, · · · ,Cn} is a group of n nodes belonging to the
CORPS trusted ring. Figure 4 shows the general interaction scheme between A, S, and C.

We suppose that the number of nodes that compose a service S is fixed and does not change over time.
We also suppose that the same stands for any quasi certification authority C.

Finally, we assume that two identical requests (same version number, same client identifier, same con-
tent) from a client A to a server S are in fact duplicates of the same request. For instance if a student
repeatedly submits electronic versions of her essay, two exact same submissions of the essay will be con-
sidered by the server as duplicates of the same request. If the essay has been modified in-between two
submissions then these two messages will be considered as different requests.

3.1 Securing a reliable trustset

The first step to requesting a certification/service from trusted nodes is to acquire the set of nodes that
compose the trustset for a given root key K. The most efficient way to acquire this trustset is to request it
directly from the node KROOT associated with K in the Trusted Ring of the CORPS. However, even though
CORPS nodes are more trustworthy, it is still possible that KROOT may be malicious. KROOT might lie about
its trustset and provide references to other malicious nodes in order to collude against the requester, or it
might deny any service by remaining silent. Therefore, a simple request to KROOT may not suffice to acquire
a reliable trustset associated with K.

6



On the other hand, it is possible to build the trustset associated with K from scratch. But such an
operation is costly, and it would be a mistake to carry it out systematically on a large scale.

Our approach towards mitigating this issue starts with a validation process that verifies whether the
trustset returned by node KROOT is reliable. If the validation fails, an alternative protocol takes over and
builds the target trustset from scratch.

Trustset validation

Let T S be the trustset returned by KROOT . The validation of a trustset T S consists in two successive tests.
The first test checks the density of T S by comparing the distribution of the node identifiers in T S with the
distribution of identifiers in the nodeId space. The second test checks the consistency of T S by comparing
the respective trustsets held by each node in T S.

Our first test, the density check, uses the Routing Failure Test proposed in [11]. It assumes that the gen-
eration of node identifiers uses a cryptographic hash function with a global uniform distribution like Secure
Hash Function (SHA-1). This test computes the average distance between identifiers in the neighborhood
of the client node, and then compares it with the average distance between identifiers in T S.

Tampering with a trustset density requires control of an entire portion of the namespace in the trusted
ring. This starts with corrupting a set of controlled nodes in that portion, and forcing the secure routing
algorithm to converge on the corrupted set. Given the inherent dynamic property of DHTs, the attacker
must also block any other node from entering both the associated portion of the namespace and the possible
routes to these nodes. Previous work [36] showed that the probability of corrupting this many nodes can be
kept below 10−20.

Formally, a density check works as follows. Let ρ be the average distance between identifiers in T S, and
let α be the average distance between identifiers in the neighborhood of the client node. The density check
only succeeds if ρ≤ αδ, where δ is a parameter for minimizing false positives and false negatives. This test
detects a node that tampers with its own trustset; however, it can generate false positives.

Our second test, the consistency check, dismisses false positives by requesting a confirmation from the
nodes of T S, the trustset of Kroot . The client node sends its own image of T S to all the nodes in this image
and requests a confirmation value in {0,1}. Upon reception of the request from the client node, each callee
compares the received set of nodes with its own trustset. The callee returns 1 if the nodes in the received
trustset match its own partial view. If there is a mismatch, the callee returns 0. The client can consider its
own image of T S as valid if it receives a 1 from at least b |L|4 +1c nodes on the left side of Kroot , and b |L|4 +1c
nodes on the right side. If the client node does not receive a majority of validations both from the left side
and from the right side of Kroot , then it considers that Kroot has illegally manipulated its own trustset.

Figure 5: Trustset of the node Kroot

Figure 5 gives a logical representation of an example trustset of size |L| = 6, while table 1 shows the
partial views that each node of the example trustset must share with Kroot for the sets to be consistent. Note
that nodes A, B, and C should share a partial view of the left side (A,B,C) of the trustset of Kroot , whereas
nodes D, E, and F should share a partial view of its right side (D,E,F). As an example, if Kroot delivers a fake
trustset by replacing node A with some colluding node X that is a neighbor of A, nodes on the right side
will validate the trustset, but nodes on the left side (B and C) will not because X does not belong to their
partial view. As soon as the client node gets a majority of invalidations from nodes on the left side of Kroot ,
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Node Partial View
A {A,B,C}
B {A,B,C,D}
C {A,B,C,D,E}
D {B,C,D,E,F}
E {C,D,E,F}
F {D,E,F}

Table 1: Partial views of the trustset of Kroot in the example of figure 5

it rejects the trustset.

Algorithm 1 Initial acquisition of the trustset associated with key K
GetTrustset(K)
{
m.label = GET_TRUSTSET
m.source = myIP@
route(m,K)
receive(<m>) from <Kroot>
TS = m.content
if Test(TS) == False then

TS = BuildSubstituteTrustset(K)
end if
return TS
}

Algorithm 1 routes a message all the way to node Kroot and tests the returned trustset. If T S passes both
the density check and the consistency check, then the client considers it valid. If any of these tests fails,
BuildSubstituteTrustset() triggers an alternative protocol that builds the target trustset from scratch.

Secure construction of a substitute trustset

If Kroot lies about its own trustset or fails to reply, the client node can build its own target trustset as a cross
section of the union of validated trustsets from trusted nodes that are in the vicinity of Kroot .

Towards this purpose we alter the routing protocol so that it follows a diversity routing scheme like [11,
15]. Diversity routing uses different nodes as starting points in order to reach trusted nodes in the vicinity
of node Kroot . The diversity of the routing tables among different nodes guarantees a very high probability
of reaching Kroot via different paths, and therefore of entering the true trustset of Kroot via different nodes.

Algorithm 2 Secure routing of a message
DiverseTrustedRoute(m,k)
{
if (m.label == BUILD_TRUSTSET) and
(k ∈ [minID(leafset), maxID(leafset)]) then

//key K is within the range of my leafset
send(myTrustset) to m.source

else
next = DiversitySelect(myTrustset);
DiverseTrustedRoute(m,k) via next;

end if
}

Algorithm 2 details our alterations of the routing protocol: it enforces diversity routing, it channels the
routing via trusted nodes only, and it provides an option for acquiring the trustsets of trusted nodes in the
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vicinity of Kroot . DiversitySelect() enables diversity routing by picking a node in the given set according
to the scheme chosen for the implementation. The client node can opt to target a vicinity instead of the key
itself by labelling its request message m with m.label = BUILD_T RUST SET before routing it. Instead of
forwarding such a message until it reaches the node whose identifier is the closest to key K, a receiving node
checks whether K belongs to its own leafset L, ie. K is both smaller than the largest node identifier in L and
greater than the smallest node identifier in L (minID(L) ≤ K ≤ maxID(L)). If that is the case, the receiver
returns its own trustset directly to the client node that initiated the request.

On its own, our alternative routing doesn’t guarantee a functional trustset. Firstly, it is crucial to carry
out a validation test on the returned trustset because the alternative node that responded may also be lying.
Secondly, since the BUILD_T RUST SET option is on, the returned trustset may not be centered on key
K, so it might not provide enough trusted nodes on both sides of K. Remember that a functional trustset
references |L|/2 nodes on each side of Kroot . Our solution is to acquire trusted nodes from valid trustsets
that overlap key K, and poll these nodes for their own trustsets. Thus, as we extract further trusted node
references in the vicinity of K, we build a functional trustset by increments.

Algorithm 3 Construction of an alternative trustset associated with key K
BuildSubstituteTrustset(K)
{
//PHASE 1
//Acquire a first valid trustset via secure routing
VisitedNodes = /0

repeat
m.label = BUILD_TRUSTSET
m.source = myIP@
DiverseTrustedRoute(m, K)
receive(<m>) from <node>
VisitedNodes = VisitedNodes

⋃ {node}
TS = m.content

until Test(TS) == True
//PHASE 2
//Pull nodes from valid trustsets
//until TS is functional
NodesToQuery = TS \ VisitedNodes
while Functional(TS) == False do

m.label = GET_TRUSTSET
m.source = myIP@
//Recenter() reduces the number of polled
//nodes to at most |L|/2 on either side of K
NodesToQuery = Recenter(K, NodesToQuery)
∀ X ∈ NodesToQuery, send(m) to X
ExpectedReplies = |NodesToQuery|
repeat

receive(<m>) from <node>
ExpectedReplies = ExpectedReplies - 1
VisitedNodes = VisitedNodes

⋃ {node}
T S′ = m.content
if Test(T S′) == True then

TS = Recenter(K, TS
⋃

T S′)
NodesToQuery = NodesToQuery

⋃
TS

end if
until ((Functional(TS) == True) or

(ExpectedReplies == 0))
NodesToQuery = NodesToQuery \ VisitedNodes

end while
Return TS
}

Algorithm 3 starts with the acquisition of a valid trustset via successive secure routing attempts. Once it
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Figure 6: RequestInit message format

acquires a valid trustset T S that overlaps key K, the client node checks whether it is functional. If it isn’t, the
client node retrieves each trustset T S′ from the nodes in T S, checks the validity of T S′, computes the union
of T S and T S′, and then filters the result. Recenter() retains the |L|/2 node identifiers that are closest to
K on either side, and discards the others. If the resulting set references exactly |L|/2 trusted nodes on either
side of K, then it is functional. If such is not the case, all new (ie. not yet queried) nodes are stored for an
ulterior round of polling.

In order to ilustrate our algorithm consider the trustset from figure 5 and the partial views of table 1.
If the root node returns an invalid trustset, the client node routes a BUILD_TRUSTSET message. Let us
assume that the message reaches node A. Once it has verified the trustset returned by A with the density and
consistency tests, the client node can poll nodes B and C directly. The latter return their own trustsets, and
the client node now has a partial view V = {A,B,C,D,E}. The next round of polling pulls a reference to
node F from either D or E, and thus completes a functional trustset TKROOT = {A,B,C,D,E,F}.

3.2 Service Request

To find the nodes associated with a given service, node A computes the hash of the service name: Ks =
SHA(ServiceName). Let Sroot be the node that is closest to Ks in the CORPS Trusted Ring, that is
NodeIDSroot = GetTrustset(Ks) (see algorithm 1). A thus obtains access to the set S of nodes that process
requests for service ServiceName. Since |L| is the number of nodes in a trustset, card(S) = |L|+1.

Once A has acquired S, it proceeds to the inception of its service request by sending a RequestInit
message to every node in S. A RequestInit message contains the public key Apub of client A and a sequence
number SEQ used as a transaction identifier (see section 3.4.1). Figure 6 represents the RequestInit message
format. In reply to such a message, every node Si sends its own public key Spub

i . In order to avoid a
man-in-the-middle attack, all the ensuing communications between A and nodes that belong to S will use
a public/private key encryption scheme to ensure that no other node can read the content of the messages.
Figure 7 sums up the RequestInit phase.

If A receives at least |L|2 + 1 answers from the nodes in S, then A considers that the transaction will
proceed. Although S is composed of nodes from the trusted ring, there remains a probability for some of
these nodes to be malicious. However, as explained in our evaluation of the quasi certification protocol

Figure 7: Request Init Phase
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Algorithm 4 Request Init (Client Side)
Input : name //Service name
Ouput : Boolean

Ks = SHA(name)
Sroot = TrustedRoute(Ks)
trustset = Gettrustset(Sroot )
SEQ++ //Static variable

for Si IN trustset do
SendMessage(REQUEST_INIT, SEQ, Apub, Si)

end for
SetTimer(4t)
while Not received |L|2 +1 identical answers do

WaitAnswer()
end while
if TimedOut then

return FAILED
else

return OK
end if

(Section 5), a situation where S contains more than |L|2 malicious nodes is highly improbable.
Algorithms 4 and 5 detail the pseudo-codes executed respectively by A and by every node Si of S. Note

that variable SEQ is computed to guarantee that each transaction message is distinct and globally unique, as
explained in 3.4.1.

Algorithm 5 Request Receive (Service Side)
request=ReceiveRequest()
pub_key=ExtractKey(request)
SEQ=ExtractSequence(request)
message=BuildMessage(ACK)
Encrypt(message, SEQ, pub_key)
Reply(request, message)

3.3 Service Progress

After the initialization phase, A and S proceed to a service progress phase. All exchanged messages include
the identities of the communicating parties. A sends all its messages to every node of S and expects to
receive at least |L|2 + 1 identical answers for each message. A signs every message to the nodes of S with
its private key Apriv, and then encrypts every message using the public key of the recipient. Conversely, all
messages sent to A by a node Si of S are signed using its private key Spriv

i and encrypted using the public key
Apub of A. Figure 8 shows the format of a message sent by A to Si.

Upon receiving the last transactional message from A, every node of S waits for an ACK message from A

Figure 8: Transaction progress message format
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Figure 9: Transaction Progress

and responds with an ACK to A. If A does not receive at least |L|2 +1 ACKs, it considers that the transaction
has failed.

Similarly to the service request, A may fail to receive at least |L|2 + 1 answers because of malicious
behaviours or because of network partitions. In such cases, A considers that the transaction has failed and
aborts after a time4t.

Figure 9 represents the exchange of messages between A and S during the service progress phase. Al-
gorithm 6 details the protocol between A and S.

Algorithm 6 Transaction Progress Protocol for node A
Input : trustedset // trustset of S
Input : SEQ //Sequence Number
for i IN Number_of_messages do

for Si IN trustedset do
message = Message[i]
Sign(message)
Encrypt(message, SEQ, Spub

i )
SendMessage(message, Si)

end for
SetTimer(4t)
WaitForIdenticalAnswers() //At least |L|2 +1
if TimedOut) then

Abort() //Transaction failed
end if

end for
for Si IN trustedset do

message=BuildMessage(ACK)
Encrypt(message, SEQ, Spub

i );
SendMessage(message, SEQ, Si);

end for
SetTimer(4t)
WaitForIdenticalACKs() //At least |L|2 +1
if TimedOut then

Abort()
else

TransactionOK()
end if

In order to identify request duplicates, every node Si of S computes a recursive hash signature hashSIGN

for the transaction with A. Equation 1 shows the computation of the hash signature for the transaction with
A, where ‖ denotes the concatenation operation.

12



Single message request to the trust set 

messages from trus tset to trust set

request n/2+1 answers of the same value
Legend

A S C

}1: A & S secure 

exchangesA requests cert. service

ack cert. service

A requests trust set

receive trust set

}3: S get trustset from 

C

the service }2: exchanges to 

perform the service

nodes ack transaction }4: C elaborates the   

1-side certificate

nodes request trust set

nodes receive trust set

Figure 10: Structure of the protocol

{
hash0

SIGN = SHA(SEQ‖FirstData)
hashi

SIGN = SHA(hashi−1
SIGN‖SEQ‖CurrentData)

(1)

Hence, two sets of messages from A that have the same hash signature value correspond to the same
transaction. This allows to determine whether a request is a duplicate. If A uses the same sequence number
and the same data content for two transaction requests, then nodes in S will consider these requests as
duplicates and issue a single certificate. In any other case, S will consider the messages as two different
transaction requests and will issue two different certificates.

Figure 10 presents the overall structure of the protocol. A is the client which initiates the service with S,
and C is the quasi-certification entity. S gets executed on a set of trusted servers, and so does C on a different
set. As the figure shows, the protocol comprises four phases: phase 1 includes all preliminary exchanges
between A and S to prepare the transaction, phase 2 includes all exchanges between A and S as they carry
out the transaction, phase 3 includes all preliminary exchanges between S and C towards the certification,
and finally phase 4 consists in the delivery of the certificate by C.

3.4 Certification

Concurrently to carrying out a transaction for a client A, S proceeds to obtain its certification from another
set C of nodes. At the end of the transaction, the objective is to return a certificate to A and to store the
certificate on the nodes that belong to C.

3.4.1 Certificate Generation

Upon reception of a RequestInit message from a client A, every node in S starts looking for the set C of
nodes that will constitute the quasi certification authority for the transaction. To determine which nodes
belong to C, S computes its key K such that K = SHA(NodeIDA‖ServiceName). Croot = TrustedRoute(K)
is the node closest to K in the Trusted Ring, and the quasi certification authority C = {C1,C2, · · · ,C|L|+1} for
the transaction between A and S is composed of Croot and its trustset.

To prevent man-in-the-middle attacks, we use an asymmetric key encryption scheme for the communi-
cations between S and C. This induces that every node in S must exchange public keys with every node in
C. The initial cost expressed in number of messages is 2×|L|2 +4×|L|+2, but this exchange only occurs
the first time a client A requests a service from S. Every node in S maintains a local cache with the public
keys of C, and key exchanges only occur again if a new node replaces one of the original nodes from C.
Since the nodes with the highest reputations are nodes that remain in the system for long periods of time, the
Trusted Ring is bound to have a low churn rate. This in turn sustains a very low cost with respect to public
key retrievals.
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Figure 11: Notifications from service S to quasi authority C

Upon reception of the ACK that denotes the end of a transaction, each node of S sends a notification
to every node Ci in C, encrypted with the public key of the recipient. Figure 11 shows the exchange of
messages between S and C. The notification message contains the hash signature hashSIGN of the transaction,
computed by and signed with the private key of the sender in order to prevent a man-in-the-middle attack.

When a node Ci of C receives at least |L|2 +1 identical notifications from S regarding a transaction with A
(same hash signature), then Ci assumes that a transaction between A and S has occurred indeed, emits a cer-
tificate, and logs the latter locally in an append-only file. Ci uses the key K = SHA(NodeIDA‖ServiceName)
to identify the log. It follows that every log file is associated with a specific service and a specific client.

Since a client can submit different requests to the same service, we define an order relation to sort
transactions in the same log.

Let Tx = [SEQx,hashx
SIGN ] identify a transaction. For two transaction identifiers Ta and Tb :

Ta < Tb i f


SEQa < SEQb

OR
SEQa = SEQb ∧hasha

SIGN < hashb
SIGN

Ta = Tb otherwise

If two transactions are identical, C considers them as duplicates and stores only one certificate into the
corresponding log.

Every node in C maintains the same log concurrently, which means that at any given time several ver-
sions of the same log may coexist. However, although some certification nodes may lie when exchanging
log updates, it is not necessary to impose total ordering among nodes when handling the certification pro-
cess. In order to avoid such a strong constraint, we designed a lazy consistency protocol that we describe in
Subsection 3.4.2. The protocol relies on the concept of log entries. Every node in C arranges log entries in
the log file so that, if Ey(Tx) is the log entry of index y associated with transaction Tx:

∀a,b ∀i, j Ei(Ta)appears be f ore E j(Tb) i f Ta < Tb

Every log entry follows the format:

Ei(T ) = {SEQT ,hashT
SIGN ,hashK

i , t}

where

• SEQT is the sequence number of the transaction provided by the client,

• hashT
SIGN is the transaction signature,

• hashK
i is the recursive hash of the log entry as defined below,
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• t is a timestamp generated with the local UTC time of the node.

In order to distinguish successive versions of a log, we use a recursive hashing method computed as
follows: {

hashK
0 = 0

hashK
i+1 = SHA(SEQi+1‖hashi

SIGN‖hashK
i )

This recursive hashing method is our secure alternative to Bloom filters for sifting through successive ver-
sions of a certificate log. In other words, it provides a secure identification for the state of the log on each
node of C. It allows to determine with absolute certainty whether a node is indeed in possession of a given
version, and induces neither false positives nor false negatives. A single missing entry prevents a node
from pretending it stores a valid log. It also guarantees that the recursive hash of the last entry of the log
corresponds to the recursive hash of the whole log, and allows to compare two versions efficiently.

3.4.2 Lazy Log Consistency Maintenance

Insertions, reputation assessments, and departures of nodes in the DHT cause modifications of the trustsets,
and it is therefore crucial to maintain the consistency of the certificates logs on every node. A node gets
removed from a trustset either because it simply leaves the DHT of its own will, or because the CORPS
maintenance protocol no longer considers this node as trustworthy when it fails to verify equation 1. A node
can enter the trustset of another node either when its reputation has increased above the required application
threshold enforced by the CORPS, or when its reputation is already high enough and a node removal calls
for a replacement.

Upon entering a trustset, a node X must update its own view of the certificates logs. It starts by following
the steps below to find which logs must be updated.

1. X constructs the set of nodes N = {X−|L|/2,X−|L|/2+1, . . . ,X , . . . ,X|L|/2−1,X|L|/2} composed of its trust-
set, and of the |L|2 +1 nodes both on the right and on the left of its trustset. Figure 12 gives an example
for a trustset of size L = 2. In order to build this set of nodes, X can ask the farthest nodes X−|L|/2 and
X|L|/2 of its trustset for their own respective trustsets. If one of these nodes fails to answer in a timely
manner, X can ask the second to farthest node, and so on until its immediate neighbors in the trustset.
Having |L|2 +1 malicious neighbors on both sides is highly improbable, and practically infeasible: for
more details about this statement, please refer to our probabilistic evaluation in section (5)).

2. X computes dLEFT , dRIGHT and finally interval I such that

dLEFT =

∣∣X−|L|/2−X−|L|/2+1
∣∣

2

dRIGHT =

∣∣X|L|/2−X|L|/2−1
∣∣

2
I = [X−|L|/2−dLEFT ,X|L|/2 +dRIGHT ]

3. X sends a message containing interval I to every node in set N. Upon reception of the message,
each node replies with the set of all the log identifiers with key K ∈ I it stores, along with the last
recursive hash corresponding to each log. Thus the format of the response is a variable-size set of
pairs {K,hashK}.

4. X builds the set of key-hash pairs Y from the union of all the received log identifiers and recursive
hashes. X then discards all pairs {Ki,hashKi} that appear less than |L|2 + 1 times in Y , since these
may have been generated by colluding nodes. Once this is done, X synchronizes all the logs whose
identifier matches one of the remaining identifiers in set Y .
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Figure 12: Certificates logs maintenance

For every log that X must synchronize, X selects a node Z in N that holds this log. If X does not have
any entry for this log, then X must ask Z for the entire log. Otherwise, X sends the last q recursive hashes
it has for the log. The recursive hashes act as checkpoints for the log. The purpose of the checkpoints is to
prevent nodes from downloading entire logs when they already store parts of logs. This may happen when a
node re-enters a trustset it had previously left. Our checkpointing scheme allows reentrant nodes to identify
the missing parts of the log. Upon reception of the last q recursive hashes from X , Z looks for matches in
its log entries. If the search is successfull, Z sends back all its entries that are subsequent to the most recent
match. If Z cannot find any match, then it requests the next q hashes from X . If Z states that it cannot find
any match, then X can consider that Z is lying, and X must contact another node in N.

Upon reception of the log entries from Z, X adds the entries to its log and computes the recursive hash.
If the recursive hash differs from those provided by at least |L|2 +1 nodes in set Y then X must consider that
Z is lying, and can proceed to retrieve the log entries from another node in N.

It is essential for X to handle log synchronization as an atomic operation, as delivering a transaction
notification may modify a log entry and invalidate log consistency. Therefore X postpones all transaction
notification deliveries until log synchronization is over.

The last recursive hash will suffice for almost every log entry retrieval. In some rare cases, X may receive
a transaction notification from service S immediately after entering the trustset and before the beginning of
the log synchronization process. This is possible if A makes a very short transaction with S when X is part of
the trustset of the corresponding quasi certification authority, but just before the synchronization of the logs
on X . In this case, this will produce a shift in the log of X , and its last recursive hash will not correspond
to the ones of the other nodes that manage the same certification log. Since this recursive hash is useless, X
can discard it and proceed to a new log synchronization.

3.4.3 Node Failures and Node Departures

The CORPS [36] trustset maintenance algorithm defines three situations that call for the removal of a node.

1. The node leaves the DHT, and hence also leaves the trustset it belongs to. In this situation, called a
normal departure, an honest node notifies its departure to the nodes of its trustset.

2. The reputation value of the node decreases below the threshold set by the CORPS to define reputable
nodes. In this shameful departure situation, the node gets pushed out by the peers that reference it in
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their trustset. Nodes lead periodical reputation assessments for every node in their trustset to identify
those that have become disreputable, and trigger shameful departures when necessary.

3. In a crash departure situation, the node fails independently of both the DHT and the reputation system.
Periodical heartbeats are exchanged among nodes in the same trustset in order to detect such failures.

Upon removal of a peer in its trustset, a node X will look for a replacement. X starts by identifying
which side of its trustset it must fix: the left side or the right side, depending on the nodeId of the node that
was removed. Let N = {Nα,Nβ, . . . ,Nω} be the set of |L|2 −1 nodes corresponding to the side of the trustset
in need of fixing. In order to find the next node to add to its trustset, X requests the trustset of the farthest
node Nω in set N. Upon reception of the answer, X then inserts in its own trustset the reference to the node
closest to Nω that does not yet belong to N. If Nω remains silent, X must repeat the operation with the second
to farthest node in N, and so on until reaching node N1 if no timely answer ever comes back (see algorithm
7). If X fails to receive any answer from the nodes in its trustset, then it cannot repair its trustset. Please see
the evaluation of the probability of failure of the trustset repair in section 5 (table 2).

Once it has successfully fixed its trustset, X must synchronize its logs. X uses the GetTrustset() function
to acquire the trustset T S of the node it has just added. X then synchronizes its logs with the nodes in T S by
means of the scheme described in section 3.4.2.

3.5 Verifying a certificate

In order to verify whether a transaction has occurred between client A and service S, a node Z must first
acquire the trustset associated with key K = SHA(NodeIDA‖ServiceName) by calling GetTrustset(K). De-
pending on the application, Z may be interested in the last transaction that occurred between A and S, or
the last nth transaction, or even in checking whether a transaction occured between two dates. In order to
simplify the explanation of the protocol, let us assume that Z wants to check if the last transaction between
A and S has occurred before time t0.

Z sends a request to every node in C for the last certificate delivered to A. The last certificate is the last
entry in the log file associated with A and stored on C. When Z receives at least |L|2 + 1 answers from the
nodes in C with the same recursive hash value, then Z considers this answer as correct. After a time 4t, if
there is no answer from C, or if there are less than |L|2 +1 answers from C, then Z considers that there is no
such certificate.

Let W be the set of certificates received by Z. Z builds the time interval T = [tmin, tmax] with tmin the
oldest certificate timestamp in W and tmax the most recent. Since we assume that every node of the DHT
uses an NTP server to synchronize its clock, timestamping certificates with the UTC time ensures that T
will be relatively small. Z then computes:

tavg =
tmax− tmin

2

Algorithm 7 Find next node to repair the trustset
N = Hal f trustset() //from left or right
for i = |L|

2 −1 downto 1 do
if T S = AskFortrustset(N[i]) 6= /0 then

break
end if

end for
if i == 0 then

return FAILED
end if
Node = MIN(distance(N[N

2 −1],T S)
return Node
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Z considers that the transaction between A and S occurred before the deadline t0 if
tavg < t0
OR
|t0− tavg| ≤ α

where α is a tolerance threshold which depends on the application. Otherwise, Z can still attest that a
transaction did occur between A and S, but that it was not carried out within the required time.

4 Formal Verification

This section deals with the formal verification of the protocol when considering that processes may behave
maliciously. This model does not consider corruptions of the trustset; these are handled in our probabilistic
analysis in section 5. The objective is to prove that, from the initial configuration of the protocol (i.e.
before a transaction occurs), only safe situations are reachable (i.e. a certificate is produced iff the service
is completed).

We use Petri nets [20, 23], a mathematical notation suitable for concurrent systems, for the modeling of
our protocol .

4.1 A Small Introduction to Symmetric Petri Nets

Among the numerous variants of Petri nets, we choose Symmetric Petri Nets1 [12] for their capacity to
capture symmetries in a system. This is particularly useful for scalable applications, as it allows to store
all the configurations of a system in an exponentially more compact way than without considering the
symmetries (as shown later in figure 15).

This section gives an informal presentation of Petri nets as a help for the reader for navigating through
our formal model presented in section 4.3.

A Petri net is a bipartite graph composed of places (circles) and transitions (rectangles) connected by
arcs. Places usually represent resources and may hold tokens (defining the number of occurrences of the
corresponding resource). Transitions let the system evolve. They require a given number of input resources
(i.e. they consume tokens from input places) and produce other ones in output (i.e. they produce tokens in
output places). Tokens can contain a value.

<r>
<r>

<p><p,r><p,r><p>

usingR

Release

freeR

Acquire

afterbefore

Class
   pid is 1..P;
   ress is 1..R;
Var
   p in pid;
   r in ress; M

M’

Figure 13: A small Symmetric net example.

Figure 13 shows a small example of a system where processes (known through their id) deal with
resources (also referenced by an id). Let us imagine that the initial configuration is

M = 〈pid.all〉,M′ = 〈ress.all〉

where M = 〈pid.all〉 denotes one value per possible identity of a process – here, {1, 2, ..., P} – and M′ =
〈ress.all〉 one value per possible identity of a resource – here, {1, 2, ..., R}.

From this initial marking, only transition Acquire can fire (we say it is enabled) and then consume any
couple 〈p,r〉 (from places before and freeR). When it fires, it also generates a composed token in usingR,

1In [12], stochastic analysis is also considered but the tool we used only deals with colored aspects.
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for instance 〈1,1〉. As soon as Acquire fired once, there is a concurrency between Acquire and Release,
that are now both enabled (except if P = 1 or R = 1 because the firing of Acquire empty one of its input
places).

The Petri net model allows us to generate valid sequences in the system. For the system represented in
figure 13, a portion of a possible sequence (odd numbers denote a state in the system and even numbers the
firing of a transition) is:

1. freeR= {〈1〉,〈2〉}+before= {〈1〉,〈2〉}

2. [Acquire(p = 1,r = 2)>

3. freeR= {〈2〉}+before= {〈1〉}+usingR= {〈1,2〉}

4. [Release(p = 1,r = 2)>

5. freeR= {〈1〉,〈2〉}+before= {〈1〉}+after= {〈1〉}

The Petri net can then be seen as an automata generator: the reachability graph, where nodes represent a
configuration of the system. Numerous types of analysis can be performed on Petri nets. The most popular
ones are structural analysis [14] (dealing with the Petri net as a graph) and model checking [13, 18]. We use
the second technique in section 4.4 (dealing with the reachability graph) to verify our protocol.

4.2 Abstraction on the System

Of course, the full system is far too complex to be formally modeled as is. In particular, several abstraction
had to be made. First, it is useless to model a full DHT with numerous transactions in since we are interested
in the behavior of one transaction. So, only one actor (A in figure 14), together with its associated leafset
offering the service (S in figure 14), and the leafset dealing with certification (C in figure 14)are needed
to be modeled for our study. We exploit here the fact that any group of an actor interacting with the two
leafsets is symmetric to any other comparable group in the system.

Then, we assume that the DHT algorithmic provides us with a constant number of nodes in the leafsets,
and thus, we do not model the fact that, over the execution of a service and its certification, these nodes may
change over time (due to a failure for example).

On top of these abstractions, and to reduce the complexity of the system and its related state space,
we finally state several hypotheses that do not alter the behavior of the system with regards to its expected
properties (presented in section 4.4):

H1 the service is reduced to one bidirectional communication (transitions AstartCS, Sperform and
AendCS),

H2 we assume that, since there is no communication problem, an actor waits for n answers (instead of
any |L|2 +1). This does not change the global behavior since we analyze qualitative properties (i.e. we
do not count all the possible configurations where the certification is successful),

H3 We simplify the computation of the trustset of S by A. It is reduced to the emission of n messages
to S (and n messages to C from each S in the trustset). For example, A acquiring the trustset of S is
modeled by transitions AreqTS, SackTS and AgetTS.

4.3 The Formal Model

This section presents the Symmetric Petri net specifying the behavior of our quasi certification protocol.
This model is shown in figure 14 and roughly follows the structure presented in figure 10.
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Figure 14: behavioral model of the quasi certification protocol. Columns denote the various “actors” of the
system (the actor initiating a transaction and the two leafsets dealing with the service and its certification).
Lines correspond to he various phases of the protocol as it was described in figure 4.
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In this model, the respective behaviors of client A, server S and certification authority C are displayed
in separate columns. Places Astart, Sstart and Cstart are the respective starting points of each class of
process.

In the initial configuration:

• place Astart holds one uncolored token (•, there is only one A);

• the initial marking of places Sstart and Cstart is M= {〈tsid.all〉} (i.e. one distinct token per process
in the trustset, every token contains the identity of the process it is associated with);

• place malicious_reservoir initially holds M’= {m×•} uncolored tokens, m being the maximum ma-
licious nodes in the system. We compute m from L, the size of the trustset (with 30% of malicious
nodes).

Places a〈x〉, s〈x〉 and c〈x〉 repectively represent intermediary states in the protocol of A, S and C. Places
n〈x〉 represent message exchanges over the network. Places AstopAbort, SstopAbort and CstopAbort
represent “error states” where either the involved process ends when he behaves maliciously, or the fair
process eventually ends if no other decision can be taken (e.g. the number of expected answers is not
reached despite several retries). A fair and reliable client A should end with a token in AstopOK. When the
service is completed, S-node S should end with a s token in place SstopOK. When the certificate is emitted,
a C-node C should end with a c token in place CstopOK.

Transitions malA〈x〉, malS〈x〉 and malC〈x〉 all lead to the “error state” of the corresponding process.
They are fired on one of two conditions:

• either the corresponding actor is fair and it cannot behave differently (e.g. firing malA1 instead of
AgetsTS because the minimum number of answer cannot be reached),

• or the corresponding actor is malicious and intentionally leaves the protocol there in order to disturb
the service.

Other transitions are steps in the protocol.

4.4 Analysis of the Formal Model

We used several tools embedded in both the CPN-AMI environment [22] and the CosyVerif environment [4]
to analyze the above specification.

Properties. The properties stated below assert that the protocol behaves appropriately:

Fok : |SstopOK|= |L|∧ |CstopOK|= |L|
Fabort : |SstopAbort|> 0∨|CstopAbort|> 0

P : AF(Fok∨Fabort)) (2)

|L| corresponds to the size of the trustset. Fok corresponds to a state where a certificate gets issued. Fabort
corresponds to the situations where something went wrong: no certificate gets issued.

Let us note that, for both Fok and Fabort , we are not interested in the status of A. In particular, A may
refrain from acknowledging the completion of the service (.i.e firing transition AendCS); S issues the cer-
tificate anyway.

P is the final property to be verified. It is a Computational Temporal Logic (CTL) formula stating that,
from the initial configuration of the system, all executions lead to Fok or to Fabort .
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Figure 15: Compared sizes of the reachability graph and the symbolic reachability graph according to the
size of the trustset (|L|) in the model of figure 14.

Evaluation of these properties. As an indication, the number of configurations computed to verify the
Petri net of figure 14 via model checking is presented in figure 15. The complexity of the reachability graph
is high (there are 4.4095×1021 possible configurations for a trustset of size |L|= 22).

We first used the GreatSPN [3] that is a recognized implementation of the Symbolic Reachability
Graph. Computation of the reachability graph failed for |L| = 24 after 11 hours and 45 minutes2. Here,
the symmetry-based techniques used in the tool allow to compute the reachability graph and evaluate the
properties thanks to this exponential gain obtained by abstracting all equivalent configurations to a permu-
tation of the involved process identifiers. The symbolic reachability graph [12] is exponentially smaller:
9.2838× 106 symbolic nodes were computed in 7 hours for |L| = 22 instead of an estimated number of
4.4095×1022 explicit nodes (that could not have been computed in a similar machine).

We conducted a first evaluation of property P successfully on this model. Although we can construct
reachability graphs for trustset sizes of up to |L|= 22, we restricted our checks to values of P up to |L|= 6.
Since we deal with a qualitative analysis, larger values would not demonstrate the correctness of our protocol
any further. Property P cannot change as |L| increases: this adds new configurations due to the increased
number of actors, but in a pattern that remains the same – that of the protocol. This would not have been
the case for a quantitative analysis such as a probabilistic one since the computed values then rely on the
number of actors.

To confirm our first analysis and to strengthen our validation, we used another technique based on
hierarchical decision diagrams [41] to encode the corresponding Petri net, thus considering more symmetries
than the ones automatically computed with the previous technique. The combination of symmetry-based
analysis with the compact representation of the state space in memory provided by the decision diagrams
allowed us to verify (unsurprisingly) property P for |L|= 32. Analysis was performed using ITS-Tools [42],
that implements this technique.

The techniques exploited by the tools we used for verification (exploitation of symmetries for greatSPN,
exploitation of hierarchy and locality for ITS-Tools) is typical of the techniques that scale well in distributed
systems where a large part of the complexity comes from interleaving of actions. Moreover, when numerous
processes share the same behavior (e.i. the same code where the behavior is conducted by local data),
the situation is even better. We recommend such techniques for the analysis of distributed asynchronous
systems.

5 Evaluation

In this section, we present a probabilistic assessment of ASCENT, and show that it is highly improbable
for our quasi certification authority to fail. We also evaluate the message complexity of our solution, and

2in fact, at this stage, we reach an implementation limit of the tool (size of a hash table). The required memory when |L|= 22
is about 4 Gbytes, far from the 128 Gbytes we had on the machine.
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Probability to fail
Size of Trusted Set (L) DHT CORPS

8 0.0081 6.25×10−6

16 6.56×10−5 3.9×10−11

32 4.3×10−9 1.52×10−21

Table 2: Probability for GetTrustset to fail

deduce that it is both scalable and efficient.
Let p be the probability for a single node to be malicious, and N the total number of nodes in the Trusted

Ring.

5.1 The Gettrustset Algorithm

This section first evaluates the probability of failure of the Gettrustset Algorithm and then assesses its mes-
sage complexity.

5.1.1 Probability of Failure

The algorithm fails to get the trustset of a given node KROOT if |L|2 consecutive nodes are malicious in a
trustset. This probability is given by

P=L/2 = p
|L|
2 (3)

As mentioned before, the main reason for using the CORPS is to prevent potentially malicious nodes
from participating to ASCENT. If we consider a DHT with 30% of malicious nodes, the theoretical limit
above which a reputation system collapses, then the CORPS can reduce this probability in the trustset to
5%. Table 2 compares the probability of failure for the Gettrustset algorithm when built above a raw DHT
to the same probability when built above the CORPS. In a system that handles billions of transactions, and
even for a large trustset (|L|= 32), the algorithm will fail several times if it is implemented directly above a
DHT. If it uses the CORPS, the probability become so low that the algorithm will likely never fail.

5.1.2 Message complexity

According to [10] the average number of tries required to make a successful routing to any node KROOT

in the Trusted Ring is around 1.5 with a ring of 150 millions of nodes. Equation (3) evaluates around
6.25× 10−6 the probability of having more than 4 consecutive malicious nodes when using the Diversity
Trusted Routing. We can then consider it highly improbable to have to make more than 4 routing attempts
to get the trustset of a node near KROOT . An upper bound for the cost of getting the trustset of KROOT is given
by

n = O(log2b(N))+4×O(log2b(N))︸ ︷︷ ︸ + Q+4︸ ︷︷ ︸
First and Diversity Routing Direct IP

n = 5×O(log2b(N))+Q+4 = O(log2b(N)) (4)

where Q is the maximum number of tries required to get a trustset from a node that belongs to the trustset
of KROOT . The probability of not being able to retrieve a trustset from a node that belongs to the trustset of
KROOT after Q = 16 tries with a trustset size |L|= 16 is 1.52×10−21. This is highly improbable, so we can
consider that |L|2 = 8 is a reasonable upper bound for Q.
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In the best case, the cost is reduced to n = O(log(N)) when the root node KROOT is honest. Thus, the
Gettrustset algorithm easily scales when the size of the Trusted Ring increases.

5.2 The Transaction between A and S

This section first evaluates the probability of failure of a Transaction between A and S and then assesses its
message complexity.

5.2.1 Probability of failure

A combination of network failures and/or malicious nodes that choose to remain silent may prevent A from
receiving at least |L|2 +1 answers from the nodes in S. More precisely, the transaction between A and S can
fail for the following reasons:

• S does not respond to A (RequestInit or during the transaction progress)

• S does not send the ACKs to A to terminate the transaction.

In both cases, this corresponds to the probability that more than L/2 nodes of S are malicious.
Since S retains the same properties as Pastry’s LeafSet, its nodes are numerically close in the trusted

ring. The random uniform distribution of nodeIDs operated by Pastry makes it extremely likely that nodes
on S will be geographically far on the Internet. For this reason, we consider that each node is malicious
independently and uniformly at random with probability p.

Therefore, the probability of |L|2 +1 simultaneous IP routing failures or node failures, that is the proba-
bility for more than |L|2 answers to not reach A, is very close to zero. The computation of this probability is
as follows.

The probability to have exactly k malicious nodes among a set of L+ 1 random nodes is given by the
binomial distribution

PKmalicious =

(|L|+1
k

)
pk(1− p)|L|+1−k (5)

where p is the probability for a single node to be malicious. It follows that the probability of having at
most k malicious nodes is

P≤k =
k

∑
i=1

(|L|+1
k

)
pi(1− p)|L|+1−i (6)

Therefore, the probability of having more than k malicious nodes in n is given by

P>k = P≤n−P≤k (7)

and the probability that S will not respond is

P>|L|/2 = P≤|L|+1−P≤|L|/2

=
|L|+1

∑
i=1

(
L+1

i

)
pi(1− p)|L|+1−i

−
|L|
2

∑
i=1

(|L|+1
i

)
pi(1− p)|L|+1−i

(8)

Figure 16 represents the likeliness of dealing with an increasing number k of malicious nodes among a
trustset comprising 32 nodes.
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Figure 16: Probability to have more than k malicious nodes

L DHT - p = 0.3 CORPS - p = 0.05
8 0.188 6.64×10−5

16 0.079 6.57×10−8

32 0.016 8.24×10−14

Table 3: Probability of failure of a transaction between A and S. To account for this very rare and highly
improbable case, A aborts the transaction if it has not received a sufficient amount of identical answers after
a timeout4t.

From equation 8 we can deduce the probability that S won’t respond to the RequestInit or won’t send
the final ACKs as

PAS = (1−P>L/2)P>|L|/2 +P>|L|/2

PAS = 2P>|L|/2−P2
>|L|/2

(9)

Table 3 shows the probability of failure of a transaction between A and S as the trustset size |L| increases,
and compares a quasi CA built directly above the DHT with one built above the CORPS. We consider in
the worst case that malicious nodes represent 30% of all DHT nodes. In this case, the CORPS reduces the
probability of failure for each node of the trustset to p = 0.05.

5.2.2 Message complexity

First, A must get the trustset of S. The associated cost is n = 5×O(log2b(N))+Q+4 (see section 5.1.2).
The number of messages inherent to the transaction itself is given by

n = 2(|L|+1)︸ ︷︷ ︸ + r(|L|+1)︸ ︷︷ ︸ + |L|+1︸ ︷︷ ︸
Init Data ACKs

n = (r+3)(|L|+1)

r corresponds to the number of data messages sent by A to S, and fully depends on the transaction. The
total cost is then

ntotal = 5×O(log2b(N))+Q+4+(r+3)(|L|+1)
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P1 P2 Ptotal
|L| DHT CORPS DHT CORPS DHT CORPS

C
as

e
1 8 0.00243 3.125×10−7 0.19410 3.72×10−4 0.1960 3.72×10−4

16 1.96×10−5 1.95×1012 0.07435 3.5×10−7 0.07437 3.5×10−7

32 1.29×10−9 7.63×10−23 0.01384 4.24×10−13 0.0138 4.24×10−13

C
as

e
2 8 0.027 1.25×10−4 0.194 3.71×10−4 0.216 4.97×10−4

16 2.19×10−4 7.81×10−10 0.0743 3.49×10−7 0.0745 3.5×10−7

32 1.43×10−8 3.05×10−20 0.0138 4.24×10−13 0.0138 4.24×10−13

Table 4: Probability of failure for the certificates logs maintenance

The total cost only depends on the size L of the trustset, which is a constant, and O(log(N)). In the best
case,

ntotal = O(log(N))+(r+3)(|L|+1)

Therefore, the cost of the transaction between A and service S is scalable when the size N of the TrustedRing
increases.

5.3 Lazy Log Coherency Maintenance

Case 1 - A new node X enters the trustset. The maintenance of the certificate logs fails if X encounters L
2

erroneous results consecutively when building the node interval to retrieve the logs, or if more than L
2 nodes

are malicious and make it impossible to obtain at least L
2 +1 identical answers.

The probability P1of having L
2 consecutive malicious nodes is given by equation (3)

P1 = p|L|/2

The probability of not being able to retrieve at least |L|2 +1 identical answers is given by equation (8)

P2 = P>|L|/2

Hence the total probability for a maintenance operation to fail is

Ptotal = P1 +(1−P1)P2

Case 2 - A node is leaving the trustset. The certificate logs cannot be repaired if the node cannot repair
its trustset (ie. add a node on the left or right side), or if it is impossible to find at least |L|2 + 1 identical
answers upon downloading the logs.

A node cannot repair its trustset if |L|2 −1 consecutive nodes are malicious with a probability of

P1 = p|L|/2−1

and the download of the logs fails with a probability of

P2 = P>|L|/2

Hence the total probability of failure is

Ptotal = P1 +(1−P1)P2

Table 4 gives the results for each probability for a varying trustset size of |L|= {8,16,32} nodes.
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5.4 Certificate Generation

This section first evaluates the probability of failure of a Certificate Generation and then assesses its message
complexity.

5.4.1 Probability of failure

The generation of a certificate fails if S fails to send a sufficient amount of ACKs to C, or if a sufficient
amount of nodes from C do not attest that the certificate exists. S or C will fail if at least more than L/2 of
their nodes are malicious. We have

P>|L|/2 = P≤|L|+1−P≤|L|/2

Hence, the probability PCF of failure of the certification is given by

PCF = 1− (1−P>|L|/2)²

PCF = 1−
(

1−
|L|+1

∑
i=1

(|L|+1
i

)
pi(1− p)|L|+1−i

+

|L|/2

∑
i=1

(|L|+1
i

)
pi(1− p)|L|+1−i

)2

(10)

Table 3 also shows the evaluation of the probability of failure of the certification in ASCENT according
to the size L of the trustset, and compares the raw DHT construct with the CORPS construct. Indeed, the
certificate generation corresponds to the transaction itself.

5.4.2 Message complexity

To generate a certificate, every node of S must first acquire the trustset that corresponds to C, then the public
keys of each node of C, and then send a notification (ACK) to each node of C. Let nT RUST ED be the cost of
getting the trustset of C. The total cost is then given by

ntotal = (|L|+1)nT RUST ED︸ ︷︷ ︸+ 2(|L|+1)2 +(|L|+1)2︸ ︷︷ ︸
Gettrustset Public Keys+ACK

ntotal = (|L|+1)(3(|L|+1)+5×O(log2b(N))+Q+4)

and in the best case

ntotal = (|L|+1)(3(|L|+1)+O(log(N)))

This complexity confirms that the certification protocol remains scalable when the size N of the Trusted
Ring increases.

6 Discussion and Related Work

Similarly to all scientific contributions, our approach may raise several debatable issues such as its overall
usefulness. In this section we try to address some of these issues, namely:

• how reliable can our solution be in practical terms, and how well it compares to centralized certifica-
tion authorities,
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• what kind of applications may benefit from our approach,

• how interchangeable are the building blocks we use to design our solution.

6.1 Scope of Applicability

Many applications may benefit from a scalable one-side certification service. We propose three examples of
applications, explain in every case why a centralized solution is not fully satisfactory, and give an overview
of how they might be implemented over ASCENT.

Digital filing for tax purposes. Many governments expect their citizens to file a revenue declaration form
every year; for instance in the USA this process is called tax returns. Usually there is an annual deadline
beyond which filings will incur substantial extra fees. Digital filing is becoming ever more popular as it
saves significant amounts of money and time both for the taxpayers and for the collector. However the
servers that process filings must handle huge peak workloads as the deadline approaches.

Since digital declaration has been validated in France, not a year has gone by without a total server crash
on the day of the deadline; some filers have faced gruesome consequences because of this. ASCENT offers
a simple load balancing solution for this application. Since the data size of a declaration is very small, it is
perfectly affordable to store the encrypted declaration directly with the timestamped certificate. The scalable
service will remain available despite intense activity from last minute filers, and the taxation authority may
then process declarations in its own time well after the deadline.

Certified e-mail. This application represents an extension of the digital declaration of revenues. In many
countries, certified mail receipts are accepted as legal evidence for sending or the receipt of a particular piece
of mail on a particular date. As a consequence many postal delivery companies, be they private or public,
offer certified mail services. Certified electronic mail (CEM) is by no means a new research topic [19, 30, 7].
But to the best of our knowledge our solution is the first that prevents repudiation from both the sender and
the receiver simultaneously without requiring a centralized third party infrastructure.

If both parties acquire an ASCENT certificate for the same data exchange, then the encrypted data can
be stored either on the set S of server nodes, or on the set C of certification nodes, or even on another set
of nodes entirely. The important contribution is that at any moment anyone (the sender, the receiver, or any
other independent party) can check whether an exchange did truly occur, and around what time if it did.

Online game refereeing. Online games regroup large numbers of players that interact in the same virtual
universe. It is not uncommon for players to tamper with the game commands in order to gain an unfair
advantage against other players. The current solution adopted by the software game industry is to deploy
potent server architectures to centralize the refereeing process.

Yet in reality, Massively Multiplayer Online Games (MMOGs) do not live up to their name. For instance
in the case of World of Warcraft, every server imposes a limit on the number of simultaneous players that is
evaluated by unofficial sources around 15,000. Besides their huge maintenance cost, central servers are not
failproof and hacks have occurred in the past.

Distributing the refereeing process over the player nodes would allow to cut the costs and to remove the
limit on the size of the virtual universe. For instance, [44] proposes such a distributed refereeing architecture.
It is also based on a reputation system but it cannot detect complex cheating behaviors such as gold f arming,
where some players spend their time online gathering virtual resources in order to sell them for profit in the
real world. Every game action could lead to a certificate in ASCENT, and the logs would allow to analyze
whether a specific player behaves honestly over long periods of time.
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6.2 Reliability in Practical Terms

The reliability of a centralized certification authority depends mostly on the supporting host: its availability,
its securedness and its capacity to handle significant amounts of concurrent requests. In practice this entails
that a centralized CA is not foolproof: it is as trustworthy as the (group of) server(s) it runs on. Well-
established centralized CAs have been corrupted before. For instance, in April 2011 the Sony Playstation
Network servers [35] got hacked and the attackers retrieved vital information. The very same happened
repeatedly to VeriSign [28] in 2010.

In a decentralized approach, the main additional issue is that the supporting hosts are not accountable
for their decisions and therefore cannot be trusted. That is precisely the point of our solution: a reputation
system makes the CA nodes accountable. Furthermore, we build sets of accountable nodes selected for their
trustworthiness and enforce an agreement among these sets.

The secondary second issue linked to decentralization is that the distributed algorithm may be faulty.
We think the formal verification we conducted in Section 4 is enough to set this issue aside.

Overall the resulting probability of a false positive, where a decision made by malicious nodes is
adopted, is of the order of 10−14. This value is way lower than any we have encountered in the literature
about decentralized CAs. It is obtained with a trustset containing 32 nodes, and we believe it guarantees that
in practice no false positive will occur during a system run. We also showed in Section 5 that a trustset size
of 32 remains very affordable in terms of communications overhead.

Another possibility of failure is the loss of a certificate, which is evaluated to be of the order of 10−13

(see table 4). For the reasons mentioned above, chances are that no certificate loss will ever happen in
practice.

For instance, let us consider Digital filing for tax purposes applicable to France (about 36.5 million
revenue declarations every year). Such values would lead to issue a wrong tax certificate once every 5132
years or to lose a tax certificate once every 997 years. This makes the system theoretically quasi reliable.

6.3 Portability

We wish to emphasize that ASCENT is a modular, and therefore portable solution. Although our prototype
relies on Pastry as its DHT and WTR as its reputation system, our approach can rely on other building block
implementations.

For example it is very simple to switch the underlying DHT from Pastry to Chord [39], as it maintains
a structure called the successors list that is equivalent to the Pastry leafset and to the CORPS trustset. Each
node in Chord also maintains a routing table equivalent called the finger table.

Similarly, any reputation system such as PowerTrust [46] that matches the properties described in Sub-
section 2.4 will do. The same principles apply to the CORPS membership system, as discussed in [36].

6.4 Security Issues

As the protocol of ASCENT uses a public key exchange during the initialization of each transaction, an
attacker may attempt a Man In The Middle (MITM) attack. A MITM attack requires to intercept publics
keys from both sides of the transaction and replace them by the attacker’s own key in order to be able to
decrypt and modify further traffic during the transaction. In ASCENT, such an attack only makes sense
between service S and the certification layer C, or between client A and service S.

6.4.1 MITM attack between S and C

To carry out a MITM attack between service S and the certification layer C it is necessary to intercept at
least 2× |L|2 +1 publics keys between unique nodes Si and Ci in order to succeed. Indeed, you must be able
to send fake messages to at least |L|2 + 1 node of C in order to make them take a wrong decision using the
local consensus. Intercepting the keys requires to be on the routing paths (at IP level) between S and C.
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Figure 17: Man In The Middle attacke between A and S

• In the best case: the attacker has to control at least |L|2 +1 nodes of S and |L|2 +1 nodes of C, that is
2× |L|2 + 1 nodes. However, by construction, and due to the properties of the DHT (and the Trusted
Ring), these nodes have very different IP addresses and in practice they belong to 2× |L|2 +1 different
IP subnetworks.

• In the worst case: the attacker will have to control 2×
(
|L|
2 +1

)2
paths on the Internet to control the

traffic between S and C. This is because the routing path between a node Si and a node Ci at IP level
is not necessarily the same as the return routing path.

Provided that the size |L| of a leafset/trustset is reasonably high, a MITM attack between service S and the
certification layer C is theoretically possible, but would be very difficult to carry out in practice due to the
number of nodes or routing paths that an attacker would have to control. This is especially true because of
the physical remoteness of DHT nodes in the same leafset; indeed, by construction they are very likely to
be in different IP subnetworks.

6.4.2 MITM attack between A and S

The MITM attack between A and S, illustrated in figure 17, consists in intercepting public keys between
the client A and at least |L|2 +1 nodes of S in order to generate fake messages. Controlling |L|2 +1 nodes of S
is a difficult task, as explained above, because of the property of physical remoteness for nodes in a leafset.
The most effective way to carry out a MITM attack is then to control node A or the local area network of
A. Avoiding an attacker to control node A completely depends on the security level of A (software updates,
anti-virus and anti-malware), as well as the security level of its local network. This security fully depends
on the administration of node A and the associated local area network, and we have no way to control this.
The possibility of a MITM attack in a client server model would be exactly the same.

The attacker can also try to control the routing paths between A and service S in order to intercept the
public keys. This consists in potentially controlling 2× |L|2 +1 different routing paths, which is theoretically
possible but practically infeasible considering that the |L|2 + 1 nodes of S very likely belong to different IP
subnetworks.

Moreover, using the Diffie-Hellman [34] public key exchange algorithm to compute a secret shared sym-
metric key won’t solve the problem as the Diffie-Hellman algorithm is also vulnerable to MITM attacks [1].

A physical distribution of a private shared symmetric key would be the only secure way to prevent
MITM attacks, but this is an impossible task in a large scale distributed system. Nevertheless, the number
of nodes and their different locations, or the number of routings paths that an attacker would have to control
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in ASCENT makes this attack very improbable to carry out successfully. For this reason we consider that,
even if it is theoretically possible, a MITM attack against ASCENT is practically infeasible.

6.5 Related Work

A considerable amount of former research addresses the issue of creating a distributed certification system.
Some solutions, such as [5] and [6], are hierarchic: when a node suspects a certificate of coming from

a faulty principal, it can refer to one or several root CAs that are hosted on fully trusted servers. The main
advantage of root CAs is that the certificates they deliver are both reliable and verifiable. However, the
trusted server nodes remain single points of failure and limit the scalability of these approaches.

[2] and [40] attempt to extend the scalability of the hierarchic approaches by adding DHT support. Both
solutions use Chord [39] to store copies of the certificates issued by a fully trusted CA. While this partially
mitigates the formation of a bottleneck around the CA, the reconstruction and validation of a certificate from
its copies requires a byzantine consensus which is extremely costly over an asynchronous network.

Since our solution aims for scalability, fully decentralized solutions are better suited for comparison. In
particular, distributed public-key infrastructures (PKIs) constitute a potent way of delivering certificates. [16]
identifies three main sub-classes of decentralized PKIs : web of trust, statistical, and hybrid approaches.

Web of trust approaches rely on transitive trust models to coalesce nodes into chains of certification.
For instance, KeyChains [29] combines an unstructured P2P lookup protocol with a PGP-like web of trust
model to build certificate chains. However, the strength of a chain is determined by the weakest link. This
makes the simple transitive trust assumed by KeyChains highly vulnerable, and thus unreliable.

Statistical approaches form quorums made of multiple random and thus presumably independent peers.
As in ASCENT, signing a certificate thus requires the cooperation of a minimal number of honest nodes.
Many statistical solutions that scale, such as [24], [45] and [16], split private keys among the nodes and
maintain virtual distributed search trees on top of structured P2P overlays to index the partial keys. The
main problem with quorum-based approaches that disregard node reputation is that they exhibit a high
probability of certification failure.

Ω [33], another statistical solution that scales, relies on state-machine replication and on byzantine
agreement to provide a powerful and extensive PKI service. ASCENT also relies on deterministic server
replication, but there are important differences. Conversely to our approach where the client synchronizes
the exchanges with the servers, Ω requires atomic multicast which is impossible to implement with unreli-
able failure detectors over an asynchronous network [21]. Also, Ω manages the groups of server replicas as
part of its agreement protocol; this makes it vulnerable to denial-of-service attacks, particularly those lead
by either mobile or Sybil adversaries. ASCENT delegates the group management to the CORPS [36], which
is designed to handle highly volatile groups of reputable nodes over a DHT.

Hybrid approaches [32, 31] form weighted quorums dependent on the relative trust that is acquired
among peers by exchanging public key information. Despite the multiplication of alternate trust paths,
guaranteeing the emergence of a fully trustworthy path remains impossible since a single malicious node
can invalidate one or more paths. Besides, the authentication metrics used to quantify the reliability of a
path induce a costly consumption of network and computation resources on every node.

Initially aimed at decentralizing PKIs, secure logging systems [26, 27] also allow to store and access
persistent proofs of transactions. They generally involve a trusted service that supports the issuance of
certificates by domain owners and another service that logs these certificates. An auditing service checks
logs periodically and/or upon client request to reinforce the security of the overall architecture. The main
difference with our approach is the definition of both the adversary and the Trusted Computing Base in the
system model; for instance ARPKI [8] can tolerate much stronger adversaries capable of compromising up to
n-1 server nodes. However our model assumes a network that is both dynamic and scalable: servers may join
or leave at any point and are never expected to constitute a static set, and no operation ever requires global
synchronization. Our solution trades off the strength of a fail-proof protocol for these network properties.
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7 Conclusion

In this paper, we present ASCENT (A Scalable Certification through Endorsement by Nodes that are Trust-
worthy), a distributed quasi-certification entity that scales. This entity (called C) ensures that a given client
A has performed a given service S and may provide a certificate proof of this action. We demonstrate that
our solution scales out and remains reliable even in the presence of arbitrary failures, and can withstand a
significant degree of maliciousness. Our certification authority also guarantees a timestamp for recorded
actions, thus allowing checks for precedence.

A major strength of this work is to combine formal methods (here, model checking on colored Petri
nets) together with a probabilistic analysis. We thus (i) demonstrate that our protocols are sound and do not
generate false positives in the absence of failures, and (ii) show that the probability of failure or interference
due to a malicious node is low to the extreme (10−13). If applied to Digital filing for tax in France, the most
frequent problem would arise once every 997 years (see section 6.2).

Further validation of our work could be achieved by measuring its efficiency on a full-fledged experi-
mental deployment of our architecture.
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