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A discretization of the wave-number space is proposed, using nested polyhedra, in the form of alternating
dodecahedra and icosahedra that are self-similarly scaled. This particular choice allows the possibility of forming
triangles using only discretized wave vectors when the scaling between two consecutive dodecahedra is equal
to the golden ratio and the icosahedron between the two dodecahedra is the dual of the inner dodecahedron.
Alternatively, the same discretization can be described as a logarithmically spaced (with a scaling equal to the
golden ratio), nested dodecahedron-icosahedron compounds. A wave vector which points from the origin to a
vertex of such a mesh, can always find two other discretized wave vectors that are also on the vertices of the
mesh (which is not true for an arbitrary mesh). Thus, the nested polyhedra grid can be thought of as a reduction
(or decimation) of the Fourier space using a particular set of self-similar triads arranged approximately in a
spherical form. For each vertex (i.e., discretized wave vector) in this space, there are either 9 or 15 pairs of
vertices (i.e., wave vectors) with which the initial vertex can interact to form a triangle. This allows the reduction
of the convolution integral in the Navier-Stokes equation to a sum over 9 or 15 interaction pairs, transforming
the equation in Fourier space to a network of “interacting” nodes that can be constructed as a numerical model,
which evolves each component of the velocity vector on each node of the network. This model gives the usual
Kolmogorov spectrum of k−5/3. Since the scaling is logarithmic, and the number of nodes for each scale is
constant, a very large inertial range (i.e., a very high Reynolds number) with a much lower number of degrees
of freedom can be considered. Incidentally, by assuming isotropy and a certain relation between the phases, the
model can be used to systematically derive shell models.

DOI: 10.1103/PhysRevE.95.063102

I. INTRODUCTION

Turbulence is a complex phenomenon involving chaotic
behavior over a range of scales. Yet it has important underlying
symmetries and regularities. Both its unpredictable nature and
its regular hierarchical structure are a result of the form of the
nonlinear interactions. Therefore, the study of turbulence is a
study of the nonlinear interaction and a struggle to understand
the hierarchical structure of the underlying symmetries it
implies and their limitations [1].

While the simple picture of a turbulent cascade, intro-
duced by Kolmogorov, involves interactions between different
“scales” (i.e., wave-number magnitudes k) of a conserved
quantity, the Navier-Stokes equation does not readily uphold
this picture. One usually has to write the equation for a con-
served quadratic quantity, such as the energy or kinetic helicity,
and assume statistical isotropy, homogeneity, etc., in order to
arrive at a description that is literally consistent with the basic
cascade picture [2]. However, it is clear that the nonlinear
cascade happens in the original equation, even without these
assumptions. For instance, even without any assumption of
isotropy, the energy is transferred from wave number to wave
number. If one uses a representation of the wave vector in
spherical polar coordinates in k space [i.e., using k, θk , φk , such
that (kx,ky,kz) = (k sin θk cos φk,k sin θk sin φk,k cos θk)], one
can describe how the energy would be transferred from k to
k′, which is closely related to what we call the “cascade”, even
if the cascade, as such, is not the only thing that is implied by
the nonlinear interaction.

*ozgur.gurcan@lpp.polytechnique.fr

It is therefore tempting to imagine a discretization of the
k space using some form of spherical polar coordinates,
which would assign the phenomenon of nonlinear cascade
to a particular direction k. Furthermore, one may introduce a
logarithmic discretization, so that with only a small number
of points, one may cover a large range in this direction. In the
study of weak wave turbulence, where the frequency and the
wave number can be linked using a dispersion relation, such
a logarithmic grid may be used without any difficulty (e.g.,
see Ref. [3] for weak magnetohydrodynamic turbulence). It
is also commonly used in isotropic cascade modeling using
closures, such as the eddy-damped quasinormal Markovian
approximation [4–6] and differential approximation models
[7–9]. Cascade models that use a logarithmic discretization, or
shell models (see, for example, Ref. [10]), are also simplified
models that try to exploit this particular aspect of the geometry
of the turbulent cascade. Logarithmically discretized models
for two-dimensional (2D) turbulence, which can be derived
from a systematic self-similar reduction of the Fourier space
[11], can also be counted among these models.

More generally, the reduction of a continuous, but self-
similar system to a finite number of interacting modes [12],
respecting the original self-similar structure, has been studied
in the past for cascade models based on the structure of
Burger’s equation [13] or the Navier-Stokes equation [14],
especially in the context of earlier high-resolution simulation
efforts [15]. Such reduction procedures have played an impor-
tant role, beyond simple numerical convenience, in turbulence
studies by providing theoretical insight into the underlying
hierarchical structure of the dynamics of turbulence [16–18].
Since one of the primary goals of the study of turbulence is
a reduction of the degrees of freedom in turbulent dynamics
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as faithfully as possible to its essential features, such models
were studied for various aspects. It was found, for instance,
that severely reduced models, such as shell models, which
rely on a truncation of the original system to keep only local
interactions, recover both the wave-number spectrum and its
intermittency [19–21]. However, how the shell model gets the
intermittency correction is still controversial.

In the same spirit, here we present a direct discretization
of the Navier-Stokes equation in k space on a special
mesh constructed from self-similarly scaled dodecahedron-
icosahedron compounds (i.e., Wenninger model index 47
[22]). As shown below, choosing the scaling between two
consecutive dodecahedron-icosahedron compounds equal to
the golden ratio allows the possibility of forming triangles
using only discretized wave vectors. The same grid can be
obtained by considering nested, alternating icosahedra and do-
decahedra where the scaling between the inner dodecahedron
and the outer icosahedron is the square root of the golden ratio

times the factor
√√

5/3 so that the two consecutive polyhedra
are the duals of one another.

The model as introduced here may appear artificial, as it
is composed of rather complicated-sounding polyhedra. How-
ever, it is a minimal model in the sense that the icosahedron is
the minimal basis for the icosphere, which is an approximation
to a sphere with a roughly equal vertex density everywhere on
its surface (unlike a straightforward discretization of angles,
which results in a higher vertex density near the poles), and
that its dual polyhedron, the dodecahedron, is necessary for
completing the triads formed by the position vectors (in k

space) of its vertices.
The method of reduction, which could be generalized, can

be thought of as a discretization based on wave-vector triads
instead of a more classical discretization based on wave vectors
themselves. Note that the emposed self-similar structure of
the model enforces a uniform triad density as a function
of the scale, which is known to be incorrect in the case of
turbulence and appears to be an important weakness of the
model. However, the model gives the correct wave-number
spectrum and it can describe anisotropy in three dimensions.
Furthermore, a higher-order method, based on algorithmic
construction of the grid, may be imagined where wave vectors
picked from two distant (i.e., nonconsecutive) polyhedra could
be used to deduce a third polyhedron by completing the triads.

It can be speculated that such a structure may be meaningful
beyond the model itself as a crystalline state in wave-
number space, which could be tailored by choosing the initial
conditions and the driving to fall on the vertices of a compound
polyhedron, and the vertices of such an object would interact
with each other to drive other objects that are self-similar
scalings of the initial object as well as other higher-order
compound objects.

II. THE NESTED POLYHEDRA MODEL

Consider the Navier-Stokes equation in Fourier space:

∂tu
i
k + ikκ

[
δij − kikj

k2

] ∑
p+q=−k

uκ∗
p uj∗

q = 0. (1)

FIG. 1. Alternating dodecahedron-icosahedron shells covering
the Fourier space. Each k starts at the origin and ends at one of
the vertices of this object.

We propose a discretization of the k space using a logarithmic
alternating icosahedral-dodecahedral basis (see Fig. 1),

k = knk̂�,

where kn = gnλk0 is the logarithmically spaced wave-number

magnitude with g =
√

(1 + √
5)/2,

λ =
{√√

5
3 for icosahedron,

1 for dodecahedron,

and

k̂� = e
j

� = [sin θ� cos φ�, sin θ� sin φ�, cos θ�], (2)

where θ� and φ� are to be picked from the angles corresponding
to the icosahedral and the dodecahedral vertices, listed in
Table I. It is shown below that this choice comes from the

TABLE I. Polar and azimuthal angles θ and φ of a dodecahedron
and an icosahedron. Here α = arcsin (ϕ/

√
3) − arccos (ϕ/

√
ϕ + 2),

β = arctan (2ϕ2), and γ = π/2 − arctan (1/2) with ϕ = (1 + √
5)/2.

Dodecahedron Icosahedron

� θ� φ� � θ� φ� � θ� φ�

0 α π/5 10 π − α 6π/5 0 0 ·
1 α 3π/5 11 π − α 8π/5 1 γ 0
2 α π 12 π − α 0 2 γ 2π/5
3 α 7π/5 13 π − α 2π/5 3 γ 4π/5
4 α 9π/5 14 π − α 4π/5 4 γ 6π/5
5 β π/5 15 π − β 6π/5 5 γ 8π/5
6 β 3π/5 16 π − β 8π/5 6 π ·
7 β π 17 π − β 0 7 π − γ π

8 β 7π/5 18 π − β 2π/5 8 π − γ 7π/5
9 β 9π/5 19 π − β 4π/5 9 π − γ 9π/5

10 π − γ π/5
11 π − γ 3π/5
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condition of forming triads with the vertices of the three
consecutive polyhedra.

Note that by enumerating the vertices of the icosahedron
and the dodecahedron, we reduce the number of indices
necessary to describe a given wave vector from three to two
(i.e., using only n and �, we can define a unique wave vector).
It is also important to mention that since the original velocity
field u(x,t) is real, its Fourier transform has the symmetry that
u(k,t) = u∗(−k,t). The assignments of numbers to vertices
are made such that k̂�+N�/2 = −k̂�, where N� is the number of
vertices of the polyhedron under consideration (i.e., N� = 12
for the icosahedron, N� = 20 for the dodecahedron). This
symmetry can be used to reduce the number of degrees of
freedom by half. Otherwise, one must be careful that the initial
conditions as well as all the terms in the equation (such as
forcing, dissipation, etc.) respect this symmetry.

Three-dimensional turbulence requires solving three vector
components of the velocity. Here we use Cartesian coordinates
uk = u

(x)
knk̂�

x̂ + u
(y)
knk̂�

ŷ + u
(z)
knk̂�

ẑ → ui
n�x̂i . In this representa-

tion, the Navier-Stokes equation becomes

∂tu
i
n,� + ikκ

n�

[
δij − ki

n�k
j

n�

k2
n

]∑
n′,�′

uκ∗
n′�′u

j∗
n′′�′′ = 0, (3)

where �′′ and n′′ can be inferred from n, �, n′, and �′ using the
fact that the corresponding wave numbers form a triad,

knk̂� + kn′ k̂�′ + kn′′ k̂�′′ = 0,

consider three consecutive spherical shells such that n′ =
n − 1 and n′′ = n + 1, and take alternating spheres to be
discretized as dodecahedrons and icosahedrons (i.e., n = 1
is an icosahedron, n = 2 is a dodecahedron, n = 3 is an
icosahedron, and so on), we can write

knk̂i
� + kn−1k̂d

�′ + kn+1k̂d
�′′ = 0, (4)

knk̂d
� + kn−1k̂i

�′ + kn+1k̂i
�′′ = 0, (5)

which can be shifted in n (i.e., n → n + 1 and n → n − 1) to
cover all the necessary triads. Note that other interactions do
not correspond to grid points and are dropped. It is interesting
to note that this does not lead to leaking of conserved
quantities.

Now consider � = 0, �′ = 5, �′′ = 10 for the first equation:[
g sin(π − α) cos

6π

5
+ g−1 sin β cos

π

5

]
x̂

+
[
g sin(π − α) sin

6π

5
+ g−1 sin β sin

π

5

]
ŷ

+ [λ + g−1 cos β + g cos(π − α)]ẑ = 0.

Here the coefficients of x̂ and ŷ can be made to vanish by

choosing g = √
ϕ =

√
(1 + √

5)/2, while in order to make
the coefficient of ẑ vanish, we need to choose the scaling of
the radius of the icosahedron with respect to gnk0 as λ =√√

5
3 . This way we can satisfy the condition of the triad. The

icosahedron that is constructed in this way is actually nothing
but the dual icosahedron of the inner dodecahedron with radius
kn−1. While these two can be thought of as being on separate

TABLE II. Two dodecahedral vertices from neighboring shells
(i.e., n − 1 and n + 1) that form a perfect triad with the icosahedral
vertex at shell n.

�i :(n) �
′
d :(n − 1) �

′′
d :(n + 1) �i :(n) �

′
d :(n − 1) �

′′
d :(n + 1)

0 5 10 3 0 11
6 11 18 16
7 12 14 9
8 13 15 17
9 14 3 12

1 1 10 4 1 12
18 15 19 17
12 7 10 5
16 19 16 18
3 14 4 13

2 4 10 5 2 13
17 15 15 18
13 8 11 6
19 16 17 19
2 11 0 14

shells in k space, since their radii are different, they could also
be thought as sampling a single shell together in the form of a
dodecahedron-icosahedron compound (the shell boundary in
this case could be thought to be between the two consecutive
compounds).

Of course one can rotate the triangle around the primary
vector k to obtain another interacting pair. For instance, for
the node � = 0, the condition of the triad will be satisfied
by the pairs {�′,�′′} = [{5,10},{6,11},{7,12},{8,13},{9,14}].
Since each vertex of the icosahedron is equivalent, we can
compute the interacting pairs of dodecahedral vertices for each
vertex of the icosahedron using the same algorithm. The node-
pair connections obtained in this way are listed in Tables II
and III.

TABLE III. Two icosahedral vertices from neighboring shells
(i.e., n − 1 and n + 1) that form a perfect triad with the dodecahedral
vertex at shell n.

�d :(n) �
′
i :(n − 1) �

′′
i :(n + 1) �d :(n) �

′
i :(n − 1) �

′′
i :(n + 1)

0 4 6 5 3 8
9 7 5 7

11 8 6 4
1 5 6 6 1 8

7 9 4 9
10 8 6 5

2 1 6 7 2 9
11 9 5 10
8 10 6 1

3 2 6 8 3 10
9 11 1 11
7 10 6 2

4 3 6 9 2 7
8 11 4 11

10 7 6 3
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Now consider (5), and choose � = 0, �′ = 6, �′′ = 4. This
gives (

sin α cos
π

5
+ g−1λ sin γ cos

6π

5

)
x̂

+
(

sin α sin
π

5
+ g−1λ sin γ sin

6π

5

)
ŷ

+
(

cos α + g−1λ cos γ − λg

)
ẑ = 0,

which is automatically satisfied by the earlier choices g = √
ϕ

and λ =
√√

5/3. Note again that the above condition for � = 0
is also satisfied by the pairs {�′,�′′} = [{4,6},{9,7},{11,8}].
Similarly to the case where the icosahedron was in the middle,
we can find the rest of the interacting pairs of icosahedral
vertices for each vertex of the dodecahedron by rotating the
mesh.

Since by exchanging (n′,�′) ↔ (n′′,�′′) we obtain another
interaction, we consider this explicitly by symmetrizing the
equations as

∂tu
i
n� + iM

κij

n�

∑
n′<n′′,�′

(
uκ∗

n′�′u
j∗
n′′�′′ + uκ∗

n′′�′′u
j∗
n′�′

) = 0, (6)

where

M
κij

n� = kκ
n�

[
δij − ki

n�k
j

n�

k2
n

]
.

In this way we can go over each node-pair connection
once, without paying attention to the sign, and all possible
interactions will be covered. Defining n as the flattened node
number (e.g., {n,�} = {3,3} → n = 12 × 2 + 20 + 3 = 47 if
the first shell is an icosahedron), instead of the shell number
as before,

∂tu
i
n + iMκij

n

∑
{n′,n′′}=pn

(
uκ∗

n′ u
j∗
n′′ + uκ∗

n′′ u
j∗
n′

) = 0, (7)

where the sum is computed over the interacting {n′,n′′} pairs
of a node n (e.g., p47 is the list of the pairs of nodes
shown in Fig. 2). These connections can be obtained using
Tables II and III and the flattening rule m = floor(n/2) ×
32 + (n mod 2) × Nfs + � (and then m → n), where Nfs is
the number of vertices of the first shell, and can be thought of
as a regular network model (see Fig. 2). The set of triangles
that are involved in the interactions of three consecutive
polyhedra are shown in Figs. 3 and 4 where some triads are
arbitrarily highlighted for easier distinction. Note that in (7)
the interaction matrix M

κij

n� → M
κij
n is also flattened in the

same way as the vector ui
n� → ui

n.

A. Further simplifications

As discussed earlier, in order to reduce the degrees of
freedom of the nested polyhedra model of turbulence, one
may consider only half of each polyhedron (for instance,
the kz > 0 hemisphere) and obtain the other half using
the relation u−k = u∗

k. In order to achieve this, in practice
one has to keep in mind whether or not a node in an interaction
is conjugated [i.e., in Tables II and III if the node number
falls into the upper hemisphere it will be conjugated, and if it
falls into the lower hemisphere it will not be conjugated, in

FIG. 2. Pairs of nodes interacting with node number 47 (i.e., node
� = 3 on shell n = 3), where the first shell is an icosahedron, which
is shown here as an example.

Eq. (7)]. This can be done by keeping a “conjugated flag” for
each interaction between nodes. In addition to decreasing the
number of degrees of freedom by half, this approach has the
advantage of automatically imposing the reality condition of
the velocity field as a function of space, which is important
and is not exact in the more straightforward formulation.

Another, more interesting simplification is to consider the
helical decomposition, which allows the reduction of the
velocity 3-vector to two scalars, representing right-handed and
left-handed helicities with respect to the wave number. This is
possible because of the fact that the velocity field is divergence-
free in the Navier-Stokes equation, and therefore its projection
onto the wave number has to vanish. This formulation allows

FIG. 3. All the k-space triads corresponding to an icosahedron
squeezed in between two dodecahedra.
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FIG. 4. All the k-space triads corresponding to a dodecahedron
squeezed between two icosahedra.

us to reduce the number of degrees of freedom to 2/3 times the
initial number and it guarantees that the velocity field remains
divergence-free, in contrast to the straightforward method,
which does not guarantee this numerically.

Together these two simplifications would permit a reduction
of the number of degrees of freedom to 1/3 times the initial
number and guarantee a real and divergence-free velocity field
as a function of space.

Note that a simple spherical representation of the velocity
field in k space (i.e., un� = uk

n�k̂n� + uθ
n�θ̂n� + u

φ

n�φ̂n�) also
reduces the velocity field to two dimensions since the “radial”
component vanishes (i.e., uk

n� = un� · k̂n� = 0). However, the
simplification of the interaction coefficients as well as the
direct physical interpretation in terms of helicity is lost in this
representation. Nonetheless, this representation allows us to
see that the Fourier-transformed velocity field is everywhere
tangential to the spherical shells in k space.

Further reduction can be achieved by associating one kind
of helicity (i.e., right) with one type of polyhedron (i.e.,
dodecahedron) and the other kind of helicity (i.e., left) with the
other type of polyhedron (i.e., icosahedron). This reduces the
number of degrees of freedom further by half. It also assigns a
physical sense to the different types of polyhedra in the model.
The reduced model obtained in this way can be written as

∂tu
sn

n� + 1

4

∑
n′<n′′,�′

(kn′sn′ − kn′′sn′′ )

× (
ĥsn∗

� · ĥsn′ ∗
�′ × ĥsn′′ ∗

�′′
)
u

sn′ ∗
n′�′ u

sn′′ ∗
n′′�′′ = −νk2

nu
sn

n,�,

where

u(x) =
N∑

n=0

u
sn

n�ĥsn

� (8)

and sn = (+) if n:even, and sn = (−) if n:odd, with

ĥ±
n� = ν̂k × k̂ ± iν̂k,

ν̂k = k × ẑ
|k × ẑ| .

This gives

∂tu
(+)
n,�+kng

−2(1+λg)
∑

{�′,�′′}
(ĥ(+)∗

� · ĥ(+)∗
�′ × ĥ(−)∗

�′′ )u(+)∗
n−2,�′u

(−)∗
n−1,�′′

− λkng
−1(g2−1)

∑
{�′,�′′}

(ĥ(+)∗
� · ĥ(−)∗

�′ ×ĥ(−)∗
�′′ )u(−)∗

n−1,�′u
(−)∗
n+1,�′′

− kng(λ+ g)
∑

{�′,�′′}
(ĥ(+)∗

� · ĥ(−)∗
�′ × ĥ(+)∗

�′′ )u(−)∗
n+1,�′u

(+)∗
n+2,�′′

= −νk2
na

(+)
n,�

for even n and

∂tu
(−)
n,� −kng

−2(λ+g)
∑

{�′,�′′}
(ĥ(−)∗

� · ĥ(−)∗
�′ ×ĥ(+)∗

�′′ )u(−)∗
n−2,�′u

(+)∗
n−1,�′′

+ kng
−1(1−g2)

∑
{�′,�′′}

(ĥ(−)∗
� · ĥ(+)∗

�′ × ĥ(+)∗
�′′ )u(+)∗

n−1,�′u
(+)∗
n+1,�′′

+ kng(1 + λg)
∑

{�′,�′′}
(ĥ(−)∗

� · ĥ(+)∗
�′ × ĥ(−)∗

�′′ )u(+)∗
n+1,�′u

(−)∗
n+2,�′′

= −νk2
nu

(−)
n,�

for odd n.
It is interesting to note that these two equations have the

same form (apart from the additional � resolution) as the
model discussed in Ref. [23]. In particular, the above form
corresponds to the model SM1 as discussed in that paper.

B. Conservation laws

Energy conservation can be shown by considering the
energy of a single triad (e.g., kn�, kn−1,�′ , and kn+1,�′′ ),

dE�

dt
= Re

[
iM

κij

n� uκ∗
n−1,�′u

j∗
n+1,�′′u

i∗
n�

+ iM
κij

n−1,�′u
i∗
n−1,�′u

κ∗
n,�u

j∗
n+1,�′′

+ iM
κij

n+1,�′′u
i∗
n+1,�′′u

κ∗
n−1,�′u

j∗
n,�

] = 0,

by using the form of M
κij

n� and the facts that ki
n�u

i
n� = 0

and ki
n� = −ki

n−1,�′ − ki
n+1,�′′ . The total energy can then be

written as the sum of the energy E� over triads. Since
each closed triad conserves energy, any discretization of the
Fourier space using a reduced set of “triads” automatically
respects energy conservation. In fact this should be true for
all the conservation laws of the system even without explicit
knowledge of the conservation laws. This is important, as
we see later, since it provides a “derivation” of shell models
and their generalizations without detailed knowledge of the
conservation laws. A similar effort was discussed earlier for
2D turbulence [11].
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C. Connection to shell models

When the sum over different n values is written explicitly,
the model takes the form

∂tu
i
n,� + iM

κij

n�

∑
{�′,�′′}

[
uκ∗

n−2,�′u
j∗
n−1,�′′ + uκ∗

n−1,�′u
j∗
n+1,�′′

+uκ∗
n+1,�′u

j∗
n+2,�′′

]
(9)

regardless of whether the nth shell is an icosahedron or a

dodecahedron. Note that M
κij

n� = M
κij

n� + M
jiκ

n� and the sum is
computed over pairs of interacting nodes of the consecutive
shells as listed in Tables II and III. The basic form of Eq. (9) is
consistent with the Gledzer-Ohkitani-Yamada (GOY) model
[19]. In fact one can arrive at a form very similar to the
GOY model by arranging a certain (rather particular) choice
of phases and signs of helicities for each node. Taking

u
j

n,� = une
iθ

j

n,�

and imposing the resulting coefficients to be independent of �

(see below for a discussion of this), we get

∂tun + ikn(anu
∗
n−2u

∗
n−1 + bnu

∗
n−1u

∗
n+1 + cnu

∗
n+1u

∗
n+2),

(10)

where

an ≡
∑

{�′,�′′}
k̂j

n�

(
δiκ − k̂κ

n�k̂i
n�

)
[e

−iξ
κji

n,�
′
�
′′

� + e
−iξ

jκi

n,�
′
�
′′

� ],

bn ≡
∑

{�′,�′′}
k̂j

n�

(
δiκ − k̂κ

n�k̂i
n�

)
[e

−iξ
κij

n+1,�
′
�,�

′′ + e
−iξ

jiκ

n+1,�
′′

��
′ ],

cn ≡
∑

{�′,�′′}
k̂j

n�

(
δiκ − k̂κ

n�k̂i
n�

)
[e

−iξ
iκj

n+2,��
′
�
′′ + e

−iξ
ijκ

n+2,��
′′

�
′ ],

and

ξ
κji

n,�
′
�
′′
�
≡ θκ

n−2,�
′ + θ

j

n−1,�
′′ + θ i

n,�.

The fact that (10) loses its dependence on � (as the system is
summed over �′ and �′′) means that the an, bn, and cn as defined
above should be identical for all � values of a polyhedron.

Assuming that the phases repeat after each four shells (i.e.,
θ i
n+4,� = θ i

n,�) gives (6 + 10) × 2 = 32 independent nodes,
and having two independent vector components for velocity
each, we have 64 independent phases. The idea that the
coefficients of (10) be independent of � can be written as

an� = an, bn� = bn, cn� = cn

for any �. In total this would give 3 × 32 = 96 equations.
(Here 3 is the number of coefficients per node and 32 is
the number of nodes. Note that the number of components
does not enter, since the coefficients an�, bn�, and cn� are
already summed over i, j , and κ). However, the equations
for cn+2,�, cn+3,�, and bn+3,� involve the phases ξn+4,�,�′,�′′ ,
ξn+5,�′,�,�′′ , and ξn+4,�,�′,�′′ , which are the same as ξn,�,�′,�′′ ,
ξn+1,�′,�,�′′ , and ξn,�,�′,�′′ , respectively (due to the assumption of
fourfold periodicity), resulting in some of the same equations
as before. If we assume that the nth shell is an icosahedron, the
number of repeated equations is (2 × 10 + 1 × 6) × 2 = 52,
which reduces the number of independent equations to 44.

If the nth shell is a dodecahedron, on the other hand, the
number of repeated equations is (2 × 6 + 1 × 10) × 2 = 44,
which results in 52 independent equations. This means that
we can actually pick the 64 independent phases in such a
way that the 44 or 52 independent equations that guarantee a
GOY-like model are satisfied, and we would still have 20 or
12 undetermined phases, which could be taken, for example,
as the phases of the independent components of the (n + 1)st
polyhedron (i.e., θ i

n+1,�).
Note that this analytical exercise should qualify as an

actual, rigorous derivation of the GOY model, starting from
the nested polyhedra model, assuming isotropy, and imposing
some particular phase relations. Since the nested polyhedra
model comes from a systematic reduction of the triads in a
self-similar way, the derivation provides a rigorous path from
the initial field equations to the shell model. Of course both
the coefficients and the shell spacing are not free parameters,
as they are imposed by the constraints of self-similarity of the
nested polyhedra model.

D. Velocity field as a function of space

The 3D velocity field in real space implied by a k-space
discretization using a set of vertices,

u(x) =
∑

n

ui
ne

ikn·xx̂i (11)

where x̂i is the unit vector in the ith direction (typically the x, y,
and z directions). Now if we consider a single unit icosahedron
(i.e., of radius kn = 1), we can write the velocity field as

uico(x) =
6∑

�=1

(
ui

�e
ik̂n�·x + c.c.

)
x̂i

=
6∑

�=1

(u+
� eik̂�·xĥ+

� + u−
� eik̂�·xĥ−

� + c.c.), (12)

which is defined by the 12 complex coefficients u±
� . These

coefficients correspond to the weights of right- and left-handed
helicities in six different directions that are defined by the
icosahedron. The same can be done for a unit dodecahedron:

udod(x) =
10∑

�=1

(u+
� eik̂�·xĥ+

� + u−
� eik̂�·xĥ−

� + c.c.). (13)

In order to see the real space structure of such a flow, we have
considered an icosahedron-dodecahedron compound with
randomly picked values for the coefficients u±

� , constructed
the flow using (12) and (13), and plotted the result in Fig. 5.

E. Transition to two dimensions

There are various limiting cases, such as rotating turbu-
lence, magnetohydrodynamic turbulence with a strong mean
magnetic field, and turbulence in a thin film, where the
turbulent dynamics become two-dimensional. However, there
are some peculiar aspects of 2D turbulence and other peculiar
aspects of 2D shell models (or logarithmically discretized
models). Two-dimensional turbulence is generally believed to
result in a dual cascade, where the enstrophy cascades in the
forward and the energy cascades in the backward directions.
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FIG. 5. The 3D velocity field corresponding to a single
icosahedron-dodecahedron compound in Fourier space, with random
phases for the Fourier coefficients.

However, logarithmic discretization of 2D space leads to
the numerical inconvenience that the equipartition of energy
between shells dominates over the inverse energy cascade.
Thus, 2D shell models cannot describe the inverse energy
cascade (unless there are additional terms in the equation,
which keeps the system away from this tendency to equiparti-
tion). Interestingly, this is less of an issue in three-dimensional
models. When the model is isotropic, however, it is impossible
to study the transition from 3D to 2D, since all the directions
are, by construction, the same. However, a nested polyhedra
model can in principle be scaled in one direction (say the
kz direction), spherical shells can be flattened to pancakelike
forms, and therefore the transition to 2D can be studied.

The limiting form of 2D turbulence can be obtained by
simply setting kz = 0 in the nested polyhedra structure of the
grid. However, an interesting phenomenon takes place in this
limit. The projection of nodes 1 to 5 of the nth icosahedron
(which gives a regular pentagon) is the same as that of nodes
10 to 14 of the (n + 1)th and 15 to 19 of the (n − 1)th
dodecahedra. Similarly, nodes 7 to 11 of the nth icosahedron
are the same as nodes 0 to 4 of the (n + 1)th and 5 to 9 of the
(n − 1)th dodecahedra. This means that the nth “shell” (really
a circular ring or annulus) in a 2D model corresponds to at
least three “shells”, n, n + 1, and n − 1, in a 3D model, as
they fall exactly on the same points in the 2D space and they
are indistinguishable and lead to degeneracy.

Note that α = arcsin ( 2
3λg

) is equivalent to the form listed
in Table I for α. The smaller pentagon, which results from the
projection of the inner points of a dodecahedron on the kz = 0
plane, has a circumscribed circle of radius

k⊥ = 2k

3λg
.

The larger pentagon, which comes from the projection of the
outer points of the dodecahedron, and that which comes from
those of its dual icosahedron have a circumscribed circle of
radius

k⊥ = 2gk

3λ
.

This gives a scaling factor of g2 between two consecutive
circles. In other words, the wave numbers of the shells can
now be defined with

kn⊥ = k0⊥ϕn,

where ϕ = g2 = (1 + √
5)/2 and k0⊥ = 2k0

3λg
= 2

√
2√

3(5+√
5)

k0.

The equations for the shells can be obtained by projection
also. The helicity directions become

ĥ±
� = ẑ ± ik̂⊥ × ẑ,

which allows us to write separate equations for u±
ico and u±

dod
for each scale simply by projecting the corresponding three-
dimensional equations to two dimensions. This means that
now we need to solve 4 × 10 equations for each scale or,
noting that half of these points are simply reflections of the
rest of the points, 4 × 5 = 20 equations for each shell.

The fourfold degeneracy which appears upon going from
3D to 2D is remarkable, since in the standard 2D formulation
one would consider only vorticity (not helicities of both signs)
and only one kind of polygon as a representation of the 2D
k space [11]. The effort discussed in this work for going to a
2D formulation may be worthwhile, however, due to the issue
of unphysical shell equipartition overwhelming the inverse
cascade in 2D logarithmic discretization. A model which has
the same topological structure as the 3D one may actually be
able to reproduce the k−5/3 inverse cascade spectrum without
requiring the expensive hierarchical tree approach [24,25].
However, this particular issue is not the focus of the current
article, and therefore the concentrated effort necessary for
establishing the implications of such a model is left to a future
publication.

III. NUMERICAL RESULTS

The model, solves for all three components of the velocity
field, with an interaction matrix M

κij

n� representing the Navier-
Stokes equation. In order to implement it, an object-oriented
approach can be used, where each node has a list of its
connecting pairs, as can be inferred from Tables II and III
(as shown in Fig. 2), and so that a sum over these pairs
can be computed rapidly. The resulting model is a stiff set
of ordinary differential equations on an exponentially coarse
grid, somewhat similar to the 2D model discussed in Ref. [11].

We have implemented the nested polyhedra model in
Python with no parallelization, which is distributed as an open
source solver at http://github.com/gurcani/nestp3d. It solves
3 × 8 × N (where N is the number of k-space shells) complex
system of equations, for the three components of the velocity
field for each half-polyhedra as discussed in Sec. II A. We
performed several runs ranging from N = 30 to N = 60.

The three-dimensional spectra for the highest-resolution
case (i.e., N = 60) are shown in Fig. 6. As expected, with no
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FIG. 6. Resulting instantaneous 3D k spectrum at t = 250 (left)
and averaged over the range t = [200,250] (right) for a run with N =
60 and ν = 10−10. Here we use a spherical log-log representation,
where E(kn) = log10[(u2

n�x + u2
n�y + u2

n�z)/kn] is plotted with respect

to κn� = log10(kn)k̂�. The resulting spectrum is consistent with the
Kolmogorov spectrum E(k) ∝ k−5/3 as shown in Fig. 7.

source of anisotropy, the resulting spectrum remains perfectly
isotropic. Nonetheless, it shows the capability of the model to
resolve three-dimensional anisotropy accross many decades.
The results of the two limiting cases N = 30 with ν = 10−6

and N = 60 with ν = 10−10 are shown in Fig. 7, where the
case N = 60 (which takes several weeks to compute on a PC
workstation) covers almost six decades in k space and has
almost no need for a dissipative range to reach steady state.
This seems to be a feature of the model, which may facilitate
development of large eddy simulation (LES) versions of itself.
As shown in Fig. 7, the truncation from 60 to 30 shells, while
varying ν accordingly, has almost no effect on the part of the
spectrum that is resolved by the N = 30 run. In order to study
the effect of the existence of a dissipation range, we have also
varied the viscosity coefficient ν. The results for ν = 10−6,
ν = 2 × 10−7, and ν = 6 × 10−8 are considered for N = 40

FIG. 7. Log-log plot of the spectral energy density E(k) =
1

N�kn

∑
�,i |ui

n�|2 as a function of k = kn. The bluecurve that spans

from 1 to 103 is a run with N = 30 and ν = 10−6 averaged in the
range t = [800,1000], whereas the red curve that spans all the way
up to 106 is a run at the limit of the currently available resolution with
N = 60 and ν = 10−10 averaged in the range t = [200,250].

FIG. 8. Log-log plot of the spectral energy density as a function
of k (see Fig. 7 for definition) for N = 40. The blue curve represents
ν = 2 × 10−7, while the red curve corresponds to ν = 10−6, both
averaged in the range t = [800,1000].

and shown in Fig. 8. As expected, an increasing ν causes a
dissipative range to appear, but it doe not change either the
saturation level or the slope of the spectrum.

Finally, we have performed some preliminary studies of
intermittency using this model, and the results are shown in
Fig. 9. Curiously, the model shows no sign of intermittency,
as it follows the Sp(kn) ∼ k

−p/3
n scaling in the inertial range

[i.e., Sp(kn) = 〈 1
N�

∑
�(

∑
i |ui

n�|2)p/2〉 where 〈·〉 denotes the
average over time]. On one hand, this is surprising, since,

FIG. 9. Index ζp of the power law for the structure function of
order p [i.e., Sp(kn) ∼ k−ζp ] as a function of p, displaying a clear
Sp(kn) ∼ k−p/3

n scaling. The case shown here corresponds to N = 60,
with ν ∼ 10−10, which was averaged only from t = 200 to t = 250
over shells N = 4 to N = 50. However, another case with N = 30
was integrated up to t = 25 000 so that an average could be computed
from t = 1000 to t = 25 000 over shells 4 to 12, and it gives virtually
the same result.
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for instance, the GOY model, which can be derived from the
nested polyhedra model by additional assumptions about the
way the phases are organized, displays dynamical multiscaling
and intermittency [21,26], while on the other hand, it is natural,
since the model is perfectly self-similar and made of a single
three-dimensional “fractal”. In order to further verify that our
method of obtaining intermittency is valid, we double-checked
our results by repeating the exercise in Ref. [21] with the
standard GOY model, as well as a model with alternating
shells (i.e., kn = k0g

n for even n and kn = k0g
nλ for odd n),

and found that while their results are rather robust for shell
models, our result of “no intermittency” is similarly robust for
our model. We repeated this exercise many times and remain
puzzled by these results, since it seems to us paradoxical that
the reduction of a reduction can recover a property of the
original system that was lost in the first level of reduction. One
possible explanation is the fact that shell models do not rely
on a single type of triad but are the result of a net transfer
of conserved quantity from shell to shell, where many similar
triads may play a role. This sense of “net flux” computed over
a set of similar triads may be the reason why these models can
somehow have intermittent dynamics, while our model, which
relies on a single triad family across many scales, does not.

IV. CONCLUSION

The dodecahedron-icosahedron compound discretization of
the Navier-Stokes equation proposed in this paper gives the
expected wave-number spectrum k−5/3 of Kolmogorov and
can possibly be used to study the spectra in three-dimensional
fluid turbulence. The advantage of a formulation based on
logarithmic scaling with a constant number of nodes per scale
is that a very large inertial range (i.e., very high Reynolds
numbers) can be considered with a much lower number of
degrees of freedom. Further simplifications of the model were
proposed using the symmetry in k space and the helical
decomposition. It was shown that, when isotropy and a
particular relation between phases are imposed, the nested
polyhedra model reduces to a GOY model. This provides
an actual “systematic derivation” of the latter, since the
nested polyhedra model itself was obtained by a systematic
reduction-decimation of the continuous wave-number space
to a finite set of self-similar triads. The straightforward
issue of reconstruction of the velocity field from the nested
polyhedra description is also discussed in order to demonstrate
the richness of the types of flows that the highly reduced
model can sustain. Transition to two dimensions is briefly
discussed as a reference for future work. It is noteworthy
that one can derive a model for describing two-dimensional
turbulence which has the same topological network structure
as the three-dimensional one. Preliminary studies show that the
model described in this paper shows no sign of intermittence
since it follows the Sp(kn) ∼ k

−p/3
n scaling in the inertial range.

This is curious, since the GOY model, which can be derived
from the nested polyhedra model by additional assumptions
about the way the phases are organized, displays dynamical
multiscaling and intermittency [21,26]. On the other hand, it
is natural, since the model is perfectly self-similar and made
of a single three-dimensional “fractal”.

Note that the icosahedron and the dodecahedron (i.e.,
its dual) together form a compound polyhedron called
a “dodecahedron-icosahedron compound” (i.e., Wenninger
model index 47 [22]). The nested polyhedra model that
we introduced here can be seen as a discretization of the
k space using these objects. A faceting of this compound
polyhedron is a Catalan solid called a “rhombic triacontahe-
dron”, which is also the dual of an Archimedean solid called
an “icosidodecahedron”. One could use this connection to
“refine” the k space, which is divided into self-similar nested
polyhedra, by introducing an icosidodecahedron between
two dodecahedron-icosahedron compounds that constitute the
nested polyhedra model. The resulting model would use nested
“icosidodecahedron–rhombic triacontahedron compounds” as
the building blocks for the nested polyhedra model. It would
be interesting to determine, using wave-number triad matching
conditions, whether more of these complex polyhedra exist,
which can be used to develop more and more complex nested
polyhedra models. One could then speculate that if one were
to initialize the turbulence on an icosahedron in k space, the
full system of Navier-Stokes equations (with no truncation)
would result in the turbulence energy going from one type of
complex polyhedron to another, without ever leaving the space
of the compound polyhedra. This is remarkable, as it would
transform the infinite system to a set of nested polyhedra.
Incidentally, the use of multiple types of polyhedra would also
introduce multifractality naturally.

When the approach detailed in this study is applied to
a system that supports waves (i.e., linearly), the resulting
network model could be suitable for the study of various
phenomena including synchronization [27] and small-world
or scale freedom [28] since it can be thought of as a complex
network of coupled “oscillators” [29]. The structure of the
model is somewhat similar to that of models describing food
web networks [30] or supply chains, which implies a complex
adaptive system. Such analogies are used regularly in plasma
turbulence, especially in the presence of large-scale flow
structures called zonal flows [31,32]. It would be interesting
to see if a similar analogy can be extended to fluid turbulence
and to what extent a rigorous mathematical relation can be
established between such reduced models of turbulence and
analogous ones from biology and other fields.
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