A. Zaanan, K. Meunier, F. Sangar, J. Flejou, F. Praz et al., Microsatellite instability in colorectal cancer: from molecular oncogenic mechanisms to clinical implications The CpG island methylator phenotype in colorectal cancer: progress and problems, Cell Oncol (Dordr). Biochim Biophys Acta, vol.341825, pp.155-17677, 2011.

M. Kane, M. Loda, and G. Gaida, Methylation of the hMLH1 promoter correlates with lack of expression of hMLH1 in sporadic colon tumors and mismatch repairdefective human tumor cell lines, Cancer Res, vol.57, pp.808-811, 1997.

C. Boland, A. Goel, E. Johnstone, C. Swanton, R. Midgley et al., Microsatellite instability in colorectal cancer Genetic prognostic and predictive markers in colorectal cancer, Gastroenterology. Nat Rev Cancer, vol.1389, pp.2073-2087489, 2009.

A. Roth, M. Delorenzi, and S. Tejpar, Integrated Analysis of Molecular and Clinical Prognostic Factors in Stage II/III Colon Cancer, JNCI Journal of the National Cancer Institute, vol.104, issue.21, pp.1635-1646, 2012.
DOI : 10.1093/jnci/djs427

D. Fallik, F. Borrini, and V. Boige, Microsatellite instability is a predictive factor of the tumor response to irinotecan in patients with advanced colorectal cancer, Cancer Res, vol.63, pp.5738-5744, 2003.

F. Sinicrope and D. Sargent, Clinical implications of microsatellite instability in sporadic colon cancers, Current Opinion in Oncology, vol.21, issue.4, pp.369-373, 2009.
DOI : 10.1097/CCO.0b013e32832c94bd

M. Hewish, C. Lord, S. Martin, D. Cunningham, and A. Ashworth, Mismatch repair deficient colorectal cancer in the era of personalized treatment, Nature Reviews Clinical Oncology, vol.24, issue.4, pp.197-208, 2010.
DOI : 10.1172/JCI19757

E. Vilar and S. Gruber, Microsatellite instability in colorectal cancer???the stable evidence, Nature Reviews Clinical Oncology, vol.3, issue.3, pp.153-162, 2010.
DOI : 10.1200/JCO.2007.14.8064

A. Zaanan, P. Cuilliere-dartigues, and A. Guilloux, Impact of p53 expression and microsatellite instability on stage III colon cancer disease-free survival in patients treated by 5-fluorouracil and leucovorin with or without oxaliplatin, Annals of Oncology, vol.21, issue.4, pp.772-780, 2010.
DOI : 10.1093/annonc/mdp383

C. Pritchard and W. Grady, Colorectal cancer molecular biology moves into clinical practice, Gut, vol.60, issue.1, pp.116-129, 2011.
DOI : 10.1136/gut.2009.206250

URL : http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3006043

A. Zaanan, J. Flejou, and J. Emile, Defective Mismatch Repair Status as a Prognostic Biomarker of Disease-Free Survival in Stage III Colon Cancer Patients Treated with Adjuvant FOLFOX Chemotherapy, Clinical Cancer Research, vol.17, issue.23, pp.7470-7478, 2011.
DOI : 10.1158/1078-0432.CCR-11-1048

B. Robinson, M. Im, M. Ljungman, F. Praz, and D. Shewach, Enhanced radiosensitization with gemcitabine in mismatch repair-deficient HCT116 cells

C. Miquel, S. Jacob, and S. Grandjouan, Frequent alteration of DNA damage signalling and repair pathways in human colorectal cancers with microsatellite instability, Oncogene, vol.1, issue.40, pp.5919-5926, 2007.
DOI : 10.1038/sj.onc.1210419

A. Gylfe, J. Kondelin, and M. Turunen, Identification of Candidate Oncogenes in Human Colorectal Cancers With Microsatellite Instability, Gastroenterology, vol.145, issue.3, pp.540-543, 2013.
DOI : 10.1053/j.gastro.2013.05.015

E. Evans and E. Alani, Roles for Mismatch Repair Factors in Regulating Genetic Recombination, Molecular and Cellular Biology, vol.20, issue.21, pp.7839-7844, 2000.
DOI : 10.1128/MCB.20.21.7839-7844.2000

URL : https://www.ncbi.nlm.nih.gov/pmc/articles/PMC86394/pdf

B. Harfe and S. Jinks-robertson, DNA Mismatch Repair and Genetic Instability, Annual Review of Genetics, vol.34, issue.1, pp.359-399, 2000.
DOI : 10.1146/annurev.genet.34.1.359

M. Hawn, A. Umar, and J. Carethers, Evidence for a connection between the mismatch repair system and the G2 cell cycle checkpoint, Cancer Res, vol.55, pp.3721-3725, 1995.

S. 29-]-d-'atri, L. Tentori, and P. Lacal, Involvement of the mismatch repair system in temozolomide-induced apoptosis, Mol Pharmacol, vol.54, pp.334-341, 1998.

T. Davis, C. Wilson-van-patten, and M. Meyers, Defective expression of the DNA mismatch repair protein, MLH1, alters G2-M cell cycle checkpoint arrest following ionizing radiation, Cancer Res, vol.58, pp.767-778, 1998.

M. Hickman and L. Samson, Role of DNA mismatch repair and p53 in signaling induction of apoptosis by alkylating agents, Proceedings of the National Academy of Sciences, vol.4, issue.1, pp.10764-10769, 1999.
DOI : 10.1128/MCB.14.3.1815

S. Jones, W. Chen, and G. Parmigiani, Comparative lesion sequencing provides insights into tumor evolution, Proceedings of the National Academy of Sciences, vol.67, issue.24, pp.4283-4288, 2008.
DOI : 10.1158/0008-5472.CAN-07-1653

URL : http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2393770

R. Bresalier, S. Raper, E. Hujanen, and Y. Kim, A new animal model for human colon cancer metastasis, International Journal of Cancer, vol.4, issue.5, pp.625-630, 1987.
DOI : 10.1159/000408625

I. Fidler, Orthotopic implantation of human colon carcinomas into nude mice provides a valuable model for the biology and therapy of metastasis, Cancer and Metastasis Review, vol.62, issue.3, pp.229-243, 1991.
DOI : 10.1038/bjc.1982.310

T. Kuo, T. Kubota, and M. Watanabe, Early resection of primary orthotopicallygrowing human colon tumor in nude mouse prevents liver metastasis: further evidence for patient-like hematogenous metastatic route, Anticancer research, vol.13, pp.293-297, 1993.

M. Pocard, H. Tsukui, R. Salmon, B. Dutrillaux, and M. Poupon, Efficiency of orthotopic xenograft models for human colon cancers, In vivo, vol.10, pp.463-469, 1996.

R. Bresalier, E. Hujanen, and S. Raper, An animal model for colon cancer metastasis: establishment and characterization of murine cell lines with enhanced liver-metastasizing ability, Cancer Res, vol.47, pp.1398-1406, 1987.

S. Jacob, M. Aguado, D. Fallik, and F. Praz, The role of the DNA mismatch repair system in the cytotoxicity of the topoisomerase inhibitors camptothecin and etoposide to human colorectal cancer cells, Cancer Res, vol.61, pp.6555-6562, 2001.

T. Agesen, A. Sveen, and M. Merok, ColoGuideEx: a robust gene classifier specific for stage II colorectal cancer prognosis, Gut, vol.61, issue.11, pp.1560-1567, 2012.
DOI : 10.1136/gutjnl-2011-301179

M. Maak, I. Simon, and U. Nitsche, Independent Validation of a Prognostic Genomic Signature (ColoPrint) for Patients With Stage II Colon Cancer, Annals of Surgery, vol.257, issue.6, pp.1053-1058, 2013.
DOI : 10.1097/SLA.0b013e31827c1180

S. Kopetz, J. Tabernero, and R. Rosenberg, Genomic Classifier ColoPrint Predicts Recurrence in Stage II Colorectal Cancer Patients More Accurately Than Clinical Factors, The Oncologist, vol.20, issue.2, pp.127-133, 2015.
DOI : 10.1634/theoncologist.2014-0325

URL : http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4319631

R. Salazar, P. Roepman, and G. Capella, Gene Expression Signature to Improve Prognosis Prediction of Stage II and III Colorectal Cancer, Journal of Clinical Oncology, vol.29, issue.1, pp.17-24, 2011.
DOI : 10.1200/JCO.2010.30.1077

L. Wang, X. Shen, and Z. Wang, A molecular signature for the prediction of recurrence in colorectal cancer, Molecular Cancer, vol.14, issue.1, p.22, 2015.
DOI : 10.1002/ijc.22747

S. Bruin, C. Klijn, and G. Liefers, Specific genomic aberrations in primary colorectal cancer are associated with liver metastases, BMC Cancer, vol.6, issue.1, p.662, 2010.
DOI : 10.1016/j.cancergencyto.2005.12.011

T. Watanabe, T. Kobunai, and Y. Yamamoto, Prediction of liver metastasis after

A. Bertotti, G. Migliardi, and F. Galimi, A Molecularly Annotated Platform of Patient-Derived Xenografts ("Xenopatients") Identifies HER2 as an Effective Therapeutic Target in Cetuximab-Resistant Colorectal Cancer, Cancer Discovery, vol.1, issue.6, pp.508-523, 2011.
DOI : 10.1158/2159-8290.CD-11-0109

S. Julien, A. Merino-trigo, and L. Lacroix, Characterization of a Large Panel of Patient-Derived Tumor Xenografts Representing the Clinical Heterogeneity of Human Colorectal Cancer, Clinical Cancer Research, vol.18, issue.19, pp.5314-5328, 2012.
DOI : 10.1158/1078-0432.CCR-12-0372

J. Tentler, A. Tan, and C. Weekes, Patient-derived tumour xenografts as models for oncology drug development, Nature Reviews Clinical Oncology, vol.14, issue.6, pp.338-350, 2012.
DOI : 10.1158/1078-0432.CCR-08-0509

URL : http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3928688

M. Nunes, P. Vrignaud, and S. Vacher, Evaluating Patient-Derived Colorectal Cancer Xenografts as Preclinical Models by Comparison with Patient Clinical Data, Cancer Research, vol.75, issue.8, pp.1560-1566, 2015.
DOI : 10.1158/0008-5472.CAN-14-1590

V. 56-]-o-'brien and R. Brown, Signalling cell cycle arrest and cell death through the MMR System, Carcinogenesis, vol.27, issue.4, pp.682-692, 2006.
DOI : 10.1093/carcin/bgi298

D. Massalou, E. Benizri, and A. Chevallier, Peritoneal carcinomatosis of colorectal cancer: novel clinical and molecular outcomes, The American Journal of Surgery, vol.213, issue.2, pp.377-387, 2017.
DOI : 10.1016/j.amjsurg.2016.03.008

S. Popat, R. Hubner, and R. Houlston, Systematic Review of Microsatellite Instability and Colorectal Cancer Prognosis, Journal of Clinical Oncology, vol.23, issue.3, pp.609-618, 2005.
DOI : 10.1200/JCO.2005.01.086

T. Watanabe, T. Wu, and P. Catalano, Molecular predictors of survival after