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We use lattice-Boltzmann and analytical calculations to investigate transient hydrodynamic finite-size effects
induced by the use of periodic boundary conditions. These effects are inevitable in simulations at the molecular,
mesoscopic, or continuum levels of description. We analyze the transient response to a local perturbation in the
fluid and obtain the local velocity correlation function via linear response theory. This approach is validated by
comparing the finite-size effects on the steady-state velocity with the known results for the diffusion coefficient.
‘We next investigate the full time dependence of the local velocity autocorrelation function. We find at long times
a crossover between the expected t~*/> hydrodynamic tail and an oscillatory exponential decay, and study the
scaling with the system size of the crossover time, exponential rate and amplitude, and oscillation frequency.
We interpret these results from the analytic solution of the compressible Navier-Stokes equation for the slowest
modes, which are set by the system size. The present work not only provides a comprehensive analysis of
hydrodynamic finite-size effects in bulk fluids, which arise regardless of the level of description and simulation
algorithm, but also establishes the lattice-Boltzmann method as a suitable tool to investigate such effects in

general.

DOI: 10.1103/PhysRevE.95.061301

It is by now well established that hydrodynamic finite-size
effects arise in simulations due to the use of periodic boundary
conditions (PBCs). These effects can be understood as the
result of spurious hydrodynamic interactions between particles
and their periodic images. Following Diinweg and Kremer [1],
Yeh and Hummer [2] proposed a complete analysis of the
finite-size effect on the diffusion coefficient of fluid particles
in a cubic box based on the mobility tensor T:

Dppc = Dol + kT }I_I}(l] [Tpec(r) — Too ()], (D

with kp Boltzmann’s constant and 7 the temperature and
where PBC and subscript co denote properties under periodic
and unbounded conditions, respectively, while 1 is the identity
matrix. This results in a finite-size scaling of the diffusion
coefficient D(L) = Do, — &kpT /6L for a cubic box of
size L, with £ ~ 2.837 a constant and 7 the fluid viscosity.
The same scaling was found independently [3] and has been
confirmed in molecular dynamics simulations of simple fluids
[2], including several water models [4,5], ionic liquids [6],
or more complex fluids such as solutions of star polymers
[7]. More recently, the extension to anisotropic boxes was
also investigated [8,9] and interpreted in terms of the same
hydrodynamic arguments [10,11].

The distortion of the flow field due to the finite size of the
system (and the associated use of PBCs) not only affects the
diffusion coefficient of particles, but in principle all dynamical
properties. In particular, hydrodynamic flows in an unbounded
fluid result in long-time tails of correlation functions, e.g.,
as t~3/2 for the velocity autocorrelation function (VACF) in
three dimensions [12,13]. Such long-time tails have been
reported in molecular simulations for the VACF since the
pioneering work of Ref. [14] (see, e.g., [15]) as well as
in purely hydrodynamic lattice simulations for the VACF
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or other correlation functions [16-19]. They have further
been observed experimentally on colloidal particles [20-22].
Their trapping in a harmonic potential by optical tweezers
modifies the decay of the VACF which remains, however,
algebraic [23]. Such slow hydrodynamic modes also manifest
themselves in the non-Markovian dynamics of solutes, which
includes a deterministic component of the force exerted by
the suspending fluid, well described for colloidal spheres by
the Basset-Boussinesq force [24,25]. Simulations displaying
such a hydrodynamic memory, either on a coarse-grained [20]
or molecular [26] scale, may therefore suffer from artifacts
associated with the use of PBCs, at least on long-time scales.
This was already recognized by Alder and Wainwright in their
seminal paper where they reported their results “up to the time
where serious interference between neighboring periodically
repeated systems is indicated” [27].

Here we address this issue of finite-size effects on the tran-
sient regime by revisiting the above hydrodynamic approach.
We investigate the transient response to a singular perturbation
of the fluid, previously considered to predict the steady-state
mobility [2,28]. More precisely, we determine numerically the
time-dependent Green’s function for the Navier-Stokes (NS)
equation using lattice-Boltzmann (LB) simulations [29]. We
validate this approach in the steady state by comparison with
known results, before turning to the transient hydrodynamic
response. We show that the multiple features of these finite-size
effects can be rationalized analytically by considering the
decay of the relevant hydrodynamic modes.

The dynamics of an incompressible fluid of mass density
pm and shear viscosity n can be described by the mass
conservation d; 0, + p,, V - v = 0 and NS equation

ov

5, TPV VIV=nViv—Vp +f, 2)

Pm
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where v is the velocity field, p is the pressure, and f is a
force density. In the limit of small Reynolds number (Re =
W ~ % with u# and L the typical velocity and length,
and v = n/p,, the kinematic viscosity), both tensors in Eq. (1)
can be obtained by determining the Green’s function for the
Stokes equation. This corresponds to a vanishing left-hand side

in Eq. (2) and a perturbation
1
f(r') = [S(r’ —-r) — Vi|F, 3)

with § the Dirac distribution, F a force, and V the volume of the
system, i.e., a singular point force at r and a uniform compen-
sating background. The mobility tensor then follows from the
steady-state velocity as v(r’) = T(r’,r) - F. Note that the limit
in Eq. (1) corresponds to r' — r. The result for the unbounded
case is the well-known Oseen tensor Ty (1) = Snlnr (I +3),
while under PBC it is more conveniently expressed in Fourier
space [2].

Similarly, the full dynamical response can be obtained by
considering a perturbation of the form f(r')®(z), where O(¢) is
the Heaviside function and the spatial dependence is given by
Eq. (3), applied on a fluid initially at rest. The Green’s function
for the time-dependent NS equation, which corresponds to
a perturbation f(r')8(¢), is obtained as the time derivative
of the solution v(r’,7). In the limit Re < 1, the response to
f(r')O(t) converges at long times toward the stationary field
corresponding to the mobility tensor.

The transient hydrodynamic regime, as quantified by the
Green’s function, is also related to the equilibrium fluctuations
of the velocity field. Using linear response theory [13], it is
easy to show that the average velocity v (canonical average
over initial configurations) in the direction of the force at
the position where it is applied, evolves as %(v(r,t)) =
kBLTfdr’(v(r,t)v(r’,O))f(r’,t). This simplifies for the per-
turbation considered in Eq. (3), since the total applied force
vanishes and so does the total momentum f dr’v(r’,0). One
can finally express the velocity autocorrelation of the local
velocity field (LVACF) as

kgT d(v(r,t))
F dt

where (v(r,t)) is the response to the perturbation Eq. (3).
This expression, although similar to the one for the velocity
of a particle under a constant force F, has in fact a very
different meaning: Here a perturbation is applied at a fixed
position r (together with the compensating background) and
the fluid velocity is followed at that position. Integrating
between 0 and infinity, one obtains the steady-state velocity
Voo(T) = lim,, o (V(r,1)) = kBLT o7 (v(r,t)v(r,0))d?. This re-
lation is analogous to Einstein’s relation for the mobility of a
particle, u = v/F = D/kpT, with the diffusion coefficient
D= fooo Z(t)dt. In the following we will therefore refer to
the integral of the LVACF as the diffusion coefficient.

Here we use LB simulations [29] to solve the above
hydrodynamic problem, i.e., the NS equation for a fluid
initially at rest on which the perturbation Eq. (3) is applied.
In a nutshell, the LB method evolves the one-particle velocity
distribution f(r,c,t) from which the hydrodynamic moments
(density, momentum, stress tensor) can be computed. In

Z(t) = (v(r,t)v(r,0)) = “)
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FIG. 1. (a) A bulk fluid in an orthorhombic cell with one length
different from the other two is submitted to a perturbation Eq. (3)
which corresponds to a singular point force (in one of the two relevant
directions indicated by red arrows) and a uniform compensating
background. Both elongated (L, > L, as shown)andflat(L, < L)
boxes are considered. (b) Velocity at point r where the perturbation
is applied, as a function of time, from lattice-Boltzmann simulations
with various cubic boxes of size L = L ; (increasing from bottom
to top). The inset shows the scaling at long times used to extrapolate
the steady-state velocity, for the largest system.

practice, a kinetic equation is discretized in space (lattice
spacing Ax) and time (time step At) and so are the velocities,
which belong to a finite set {¢; } (here we use the D3Q19 lattice).
The populations f;(r,t) = f(r,c;,t) are updated as follows:

filt +ciAt,t + At)
At eq ext
= fi(r,1) — ?[fi(r,t) = ]+ F e, (6

where f;(r,1) corresponds to the local Maxwell-Boltzmann
equilibrium with density p(r,r) = >_, fi(r,#) and momentum
pv(r,t) =3, fi(r,t)c;, expanded to second order in the
velocity to minimize discretization effects resulting, e.g., in
numerical viscosity. The relaxation time 7 controls the fluid
viscosity. Here we use t = A¢, which results in a kinematic

. . _ CfA’ 1 Ax? .
viscosity v = =5— = ¢ 5= since for the D3Q19 lattice the

speed of soundis ¢, = \/Li %
force acting on the fluid [29]. We perform simulations for
orthorhombic cells with one length (L) different from the
other two (L)), as illustrated in Fig. 1(a), in order to analyze
the effect of both the system size and shape.

Starting from ffq for a uniform fluid at rest, we apply the
singular perturbation to a single node (an extension to arbitrary
singular forces, including off-lattice, has been proposed in
Ref. [30]) with the compensating background everywhere and
monitor the velocity on that node [see Fig. 1(b)]. The same
force F is applied for all systems (10~* lattice units to ensure
that the Mach number is always small: Ma = = < 1073)
whose sizes are chosen to remain in the limit of small Knudsen
numbers (Kn ~ % = ﬁ ~ % < 0.1), with Re at most O(1).

As a validation of this approach for the computation of
hydrodynamic Green’s functions, we first describe the results
for the diffusion coefficient, obtained from the steady-state
velocity as D = kT vo(r)/F. Here the diffusion tensor is
anisotropic and the two independent components Dy jare
determined by applying the perturbation Eq. (3) in the

and Ff’“ accounts for the external
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FIG. 2. Scaling functions h, = (D) — Ds)/(kgT /6nL))
defined in Eq. (6) as a function of the aspect ratio L, /L. Lattice-
Bolzmann results (symbols) are compared to analytical results (lines)
from Ref. [10]. Note the logarithmic scale on the x axis. Each point
corresponds to the slope of a scaling with system size at fixed aspect
ratio, as illustrated in the inset for a cubic box (L = L, ), where the
line again corresponds to Eq. (6).

corresponding directions. Continuum hydrodynamics predicts
a scaling with system size [10]:

kgT L,
h — ], 6
6L ’L<Ln ) ©

D||7J_ = Dy +

where the two functions % | depend only on the aspect ratio
L, /Ly (see Ref. [10]). For the isotropic case | (1) = —§ ~
—2.837. The inset of Fig. 2 shows the diffusion coefficient for
a cubic box as a function of the size L = L. For reasons
discussed below, the velocity (v(r,?)) converges slowly to its
steady-state value, as vo — ot/ /1 [see the inset of Fig. 1(b)].
Therefore we used a fit to this expression at long times to
determine vy, for the larger systems.

The LB results are in excellent agreement with the slope
expected from Eq. (6), even though some deviations are
observed for the smaller box sizes (~10Ax) as expected.
The extrapolated value for an infinite system is Dy, =
0.286Ax?/At. By performing similar size scalings for various
aspect ratios (see Table I), we can compute the scaling
functions &, for both components of the diffusion tensor.
The results, shown in the main part of Fig. 2, are also in
excellent agreement with Eq. (6). This validates the present
approach combining linear response and LB simulations to
determine hydrodynamic finite-size effects on the steady-state
dynamics.

We now turn to the transient regime. As explained above,
the Green’s function for the time-dependent NS equation is
obtained from the derivative of the response v(r,t) to the
perturbation f(r')©(¢). More precisely, we discuss here the
LVACF defined by Eq. (4) which is proportional to this
Green’s function and quantifies the equilibrium hydrodynamic
fluctuations. In an unbounded medium, such fluctuations
result in the long-time tail of the VACF in simple fluids
according to [13]

Zoo(t) = %“—T[zmvt]*/z. (7)

Pm
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TABLE 1. The simulated systems correspond to orthorhombic
boxes with Ly = L, = Lj and L, = L, . For each size ratio o =
L,/Ly, we compute the steady-state velocity as a function of
kgT /6L, for a singular force applied either in the x or z direction.
The corresponding slopes provide the scaling functions 4 ; reported
in Fig. 2.

Size ratio o« Lengths Values (in lattice unit Ax)

1/16 L, 175 271 337 429
L, 11 17 21 27
1/8 L, 103 119 135 151 169
L, 13 15 17 19 21
1/4 L, 85 115 125 155 165 175
L, 21 29 31 39 41 43
1/2 L, 31 41 51 61 71 101
L, 15 21 25 31 35 5I
1 L, 11 21 41 81 161
L, 11 21 41 81 161
2 L, 11 17 23 29 35 41 47 53 59
L, 22 35 47 59 71 83 95 107 119
4 L, 11 17 23 29 35 41 47
L, 45 69 93 117 141 165 189
8 L, 11 17 23 29 35
L, 89 137 185 233 281
16 L, 11 17 23 29 35

L, 175 273 369 465 561

Mode-coupling theory predicts, in fact, a scaling with D + v
instead of v, but here the Green’s function is not associated
with the diffusion of a tagged particle, so that D is not
involved.

Figure 3 reports the LVACF computed from Eq. (4) using
the present LB approach, for various cubic boxes of size
L. For the larger systems, the simulation results coincide

10 2%kpT '
2kl -3y
. l ahERlE [dmvt) =32
3
N l
2 l
< — 1
~ — 21
S071t—u l
N 81
— L/Az =161 N
1077 - - : -t
10" 10! 10? 10° 10*

t/At

FIG. 3. LVACF computed from lattice-Boltzmann simulations in
a cubic cell, for various cell sizes L/Ax (increasing from left to
right). The double logarithmic scale underlines the algebraic decay
expected from hydrodynamics in an unbounded fluid, Eq. (7). The
finite size results in a crossover to an exponential decay, analyzed in
further detail in Fig. 4. The arrows indicate the diffusion time for the
slowest mode, t; = 1/vk?, with k; = 27/L, which corresponds to
the exponential decay rate and is also typical of the crossover between
the algebraic and exponential regimes.
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exactly with the hydrodynamic scaling Eq. (7) over several
orders of magnitude, without any adjustable parameter. This
scaling, together with Eq. (4), justifies a posteriori the fit
of the velocity as v, — a/+/t to extrapolate the steady-state
value. However, we observe a crossover from the algebraic
decay to an exponential regime (and oscillations discussed in
more detail below), with a crossover time that decreases with
decreasing L.

The algebraic decay Eq. (7) arises from the superposi-
tion of an infinite number of modes (corresponding to the
hydrodynamic limit of vanishing wave numbers k — 0) for
momentum diffusion, which in Fourier space decay as ~e VR
The exponential decay therefore results from the cutoff at
low wave numbers introduced by the PBC, with the slowest
mode corresponding to k;, = 27 /L and a characteristic time
=1/ vki. The vertical arrows in Fig. 3, which indicate
this time, show that it is also typical of the crossover from
algebraic to exponential decay A Le kit of the LVACF. The
scaling of the crossover time 7y, is consistent with that reported
for the velocity decay of a particle submitted to an impulsive
force in LB simulations with fixed system size and varying
viscosity [30]. The prefactor A; can be roughly estimated by
assuming the continuity between the two regimes at t = ;.
Using Eq. (7), this results in

2e kT
¢ BT R, (8)

L= "—"""=>

3471 P

Another striking feature in Fig. 3 is the presence of
oscillations, with a frequency which depends on the size of
the simulation box. This is clearly another finite-size effect,
which can be understood in terms of the slight compressibility
of the fluid. Indeed, in the LB method the fluid is only
quasi-incompressible. In such a case, while the transverse
mode decays as ~e VK (as for an incompressible fluid),
the longitudinal modes follow a dispersion relation which
can be obtained by linearizing the mass conservation and
compressible NS equation, for an isothermal perturbation
of the form ¢ ~kP  Since the equation of state of the
LB fluid is that of an ideal gas (p = pkpT = pmcf), one
obtains (iw)* +iwk?(3v + V) + c2k* = 0, with v/ =¢/py,
the kinematic bulk viscosity. In the case of the D3Q19
lattice, for which v/ = %v, the solutions are of the form iw =
—vk? +ikeA/1 — 1)2k2/c52 ~ —vk? tike, (for k < cg/v),
i.e., attenuated sound waves. Such a dispersion relation had
already been considered for the LB simulation of acoustic
waves (see, e.g., [31-33]).

For periodic systems, the slowest modes correspond to k;, =
2m /L and longitudinal modes decay as ~e"ki! coswy t, witha
frequency w; = kpcv/' 1 — v2k? /¢ ~ kpc,. Figure 4 reports
the LVACF normalized by the exponential decay A Le kit as
a function of the rescaled time wy ¢, for various system sizes
spanning more than one order of magnitude. It clearly shows
that the above analysis captures all the main features of the
finite-size effects on the transient hydrodynamic response: (1)
the rate of the exponential decay, since at long times the curves
oscillate around a plateau; (2) the order of magnitude A, of the
exponential regime, since the value of the plateau is the same
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FIG. 4. LVACF computed from lattice-Boltzmann simulations
in a cubic cell, for various cell sizes L/Ax (increasing from left
to right), normalized by the expected exponential scaling at long
times Are "' with k, = 27/L and A; given by Eq. (8), as a
function of time rescaled by the frequency w; = kcg(/1 — v2k?/c2.
The oscillations are due to the small compressibility of the LB fluid,
which results in damped acoustic waves. For the larger systems the
contribution of faster modes nk; is still visible on the time scale of
the simulations.

for all system sizes; and (3) the frequency of the oscillations,
which are in phase after rescaling by w;. While only the
slowest mode contributes to the oscillations for the smallest
system (L = 11Ax), others are increasingly visible in this time
range as the system size increases. Indeed, the other modes
nky decay as ~e VKL — o=k fovout e W:Ui = nz%
times faster—a difference which decreases with inLcreasing L.
Using more elaborate LB schemes for compressible thermal
flows [34] or any other hydrodynamic simulation algorithm
(or even the continuous Boltzmann equation from which
the LB algorithm follows), will also result in the crossover
to the exponential regime, which is an inevitable consequence
of the finite size of the system and the associated PBC. It
should also manifest itself with strictly incompressible flow
simulations, even though we do not expect oscillations in the
VACEF in that case.

Overall, the present work shows that it is possible to
rationalize all finite-size effects in terms of the cutoff of
hydrodynamic modes at small wave numbers introduced by
the use of PBC. Coming back to Alder and Wainwright’s quote
[27], the time where neighboring periodically repeated systems
seriously interfere corresponds to momentum diffusion for
the slowest mode, t;, = 1/ vk%. It is crucial for the setup and
analysis of molecular simulations to control these finite-size
effects, which can be efficiently computed from the present
approach combining linear response and LB simulations. In
turn, such an analysis is useful to extrapolate the macroscopic
limit without actually performing the simulations for too large
systems. One could exploit these effects further to determine
material properties, not only the viscosity from the slope of
the diffusion coefficient vs inverse box size (as for water in
first-principles molecular dynamics simulations [35]), but also,
e.g., the speed of sound from the oscillation frequency of the
LVACE, as shown here.
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The systematic finite-size analysis of the transient response
could also be extended to other situations. For example, the
long-time decay of the VACF under confinement or near a
boundary, in an otherwise unbounded fluid, scales as 1752
instead of #=3/2 in the bulk [36,37], but PBCs in the directions
parallel to the interface will also result in deviations from the
algebraic decay. Similarly, the diffusion coefficient of lipids
and carbon nanotubes embedded in a membrane diverges
logarithmically with system size [11] and one should also
observe the impact of PBC on the transient dynamics. This may

RAPID COMMUNICATIONS
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also prove important for extracting from finite-size simulations
other dynamical properties for which hydrodynamics play an
important role, such as memory kernels [26].
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